January 11, 2016 Debdeep Pati ## 1 Probability Model Model: A family of distributions $\{P_{\theta} : \theta \in \Theta\}$. $P_{\theta}(B)$ is the probability of the event B when the parameter takes the value θ . P_{θ} is described by giving a joint pdf or pmf $f(x \mid \theta)$. Experiment: Observe $X(\text{data}) \sim P_{\theta}$, θ unknown. Goal: Make inference about θ . Joint distribution of independent rv's: If $X = (X_1, ..., X_n)$ and $X_1, ..., X_n$ are independent with $X_i \sim g_i(x_i \mid \theta)$, then the joint pdf is $f(x \mid \theta) = \prod_{i=1}^n g_i(x_i \mid \theta)$ where $x = (x_1, ..., x_n)$. For iid random variables $g_1 = ... = g_n = g$. ### 1.1 Types of models to be discussed in the course Let $X = (X_1, ..., X_n)$. - 1. Random Sample: X_1, \ldots, X_n are iid - 2. **Regression Model:** X_1, \ldots, X_n are independent (but not necessarily identically distributed; the distribution of X_i may depend on covariates z_i) #### 1.1.1 Random Sample Models Example: Let X_1, X_2, \ldots, X_n iid Poisson (λ) , λ unknown. Here we have: $X = (X_1, X_2, \ldots, X_n)$, $\theta = \lambda, \Theta = \{\lambda : \lambda > 0\}$, P_{θ} is described by the joint pmf $$f(x \mid \lambda) = f(x_1, \dots, x_n \mid \lambda) = \prod_{i=1}^n g(x_i \mid \lambda)$$ where g is the Poisson(λ) pmf $g(x \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$ for $x = 0, 1, 2, \dots$ Hence $$f(x \mid \lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$ for $x \in \{0, 1, 2, \ldots\}^n$. Example: Let X_1, X_2, \ldots, X_n iid $N(\mu, \sigma^2)$, with μ and σ^2 unknown. Here we have: X = $(X_1, X_2, \dots, X_n), \ \theta = (\mu, \sigma^2), \ \Theta = \{(\mu, \sigma^2) : -\infty < \mu < \infty, \sigma^2 > 0\}, \ P_\theta$ is described by the joint pmf $$f(x \mid \mu, \sigma^2) = \prod_{i=1}^n g(x_i \mid \mu, \sigma^2)$$ where g is the N(μ , σ^2) pdf $g(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$. Hence $$f(x \mid \mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i - \mu)^2/(2\sigma^2)}$$ ## 2 Sufficient Statistic Let $X \sim P_{\theta}$, θ unknown. What part (or function) of the data X is essential for inference about θ ? Example: Suppose X_1, \ldots, X_n iid Bernoulli(p) (independent tosses of a coin). Intuitively, $$T = \sum_{i=1}^{n} X_i = \# \text{ of heads}$$ contains all the information about p in the data. We need to formalize this. Let $X \sim P_{\theta}, \theta$ unknown. **Definition 1.** The statistic T = T(X) is a <u>sufficient statistic</u> for θ if the conditional distribution of X given T does <u>not</u> depend on the unknown parameter θ . <u>Abbreviation:</u> T is SS if $\mathcal{L}(X \mid T)$ is same for all θ , where \mathcal{L} stands for law or distribution. ### 2.1 Motivation for the definition Suppose $X \sim P_{\theta}, \theta \in \Theta$, θ unknown. Let T = T(X) be any statistic. We can imagine that the data X is generated hierarchically as follows: - 1. First generate $T \sim \mathcal{L}(T)$. - 2. Then generate $X \sim \mathcal{L}(X \mid T)$. If T is a sufficient statistic for θ , then $\mathcal{L}(X \mid T)$ does <u>not</u> depend on θ and Step 2 can be carried out without knowing θ . Since, given T, the data X can be generated <u>without</u> knowing θ , the data X supplies no further information about θ beyond what is already contained in T. Notation: $X \sim P_{\theta}$, $\theta \in \Theta$, θ unknown. If T = T(X) is a sufficient statistic for θ , then T contains all the information about θ in X in the sense that if X is discarded, but we keep T = T(X), we can "fake" the data (without knowing θ) by generating X^* from $\mathcal{L}(X \mid T)$. X^* has the same distribution as X ($X^* \sim P_{\theta}$) and the same value of the sufficient statistic ($T(X^*) = T(X)$) and can be used for any purpose we would use the real data for. Example: If U(X) is an estimator of θ , then $U(X^*)$ is another estimator of θ which performs just as well since $U(X) \stackrel{d}{=} U(X^*)$ for all θ . Cautionary Note: If the model is correct $(X \sim P_{\theta})$ and T(X) is sufficient for θ , then can ignore data X and just use T(X) for inference about θ . BUT if we are not sure that the model is correct, X may contain valuable information about model correctness not contained in T(X). Example: X_1, X_2, \ldots, X_n iid Bernoulli(p). $T = \sum_{i=1}^n X_i$ is a sufficient statistic for p. Possible Model violations: The trial might be correlated as not independent. The success probability p might not be constant from trial to trial. These model violations cannot be investigated using the sufficient statistic. This can be only done by further investigation with the data. #### 2.2 Examples of Sufficient Statistic 1. $X = (X_1, X_2) \sim \text{iid Poisson}(\lambda)$. $T = X_1 + X_2$ is a sufficient statistic for λ because $$P_{\lambda}(X_{1} = x_{1}, X_{2} = x_{2} \mid T = t) = \frac{P_{\lambda}(X_{1} = x_{2}, X_{2} = x_{2}, T = t)}{P_{\lambda}(T = t)}$$ $$= \begin{cases} \frac{P_{\lambda}(X_{1} = x_{2}, X_{2} = x_{2}, T = t)}{P_{\lambda}(T = t)} \\ \frac{P_{\lambda}(X_{1} = x_{2}, X_{2} = x_{2}, T = t)}{P_{\lambda}(T = t)}, & \text{if } t = x_{1} + x_{2} \\ 0 & \text{if } t \neq x_{1} + x_{2} \end{cases}$$ This follows from the fact that for discrete distributions P_{θ} , $$P_{\theta}(X = x \mid T(X) = t) = \begin{cases} \frac{P_{\theta}(X = x)}{P_{\theta}(T(X) = t)} & \text{if } T(x) = t\\ 0 & \text{otherwise} \end{cases}$$ Assuming $t = x_1 + x_2$, $$P_{\lambda}(X_1 = x_1, X_2 = x_2 \mid T = t) = \frac{\frac{\lambda^{x_1} e^{-\lambda}}{x_1!} \cdot \frac{\lambda^{x_2} e^{-\lambda}}{x_2!}}{\frac{(2\lambda)^t e^{-2\lambda}}{t!} (\operatorname{Since} T \sim \operatorname{Poisson}(2\lambda))}$$ $$= \frac{\binom{t}{x_1}}{2^t}$$ which does not involve λ . Thus, T is a sufficient statistic for λ . Note that $$P(X_1 = x_1 \mid T = t) = {t \choose x_1} {1 \choose 2}^{x_1} {1 \choose 2}^{t-x_1}, x_1 = 0, 1, \dots, t.$$ Thus $\mathcal{L}(X_1 \mid T = t)$ is Binomial(t, 1/2). Given T = t, we may generate fake data X_1^*, X_2^* without knowing λ which has the same distribution as the real data: - (a) Generate $X_1^* \sim \text{Binomial}(t, 1/2)$. (Toss a fair coin t times and count the number of heads). - (b) Set $X_2^* = t X_1^*$. The real and fake data have the same value of the sufficient statistic: $X_1 + X_2 = t = X_1^* + X_2^*$. 2. Extension to previous Example: If $X = (X_1, X_2, ..., X_n)$ are iid Poisson (λ) , then $T = X_1 + X_2 + \cdots + X_n$ is a sufficient statistic for λ . Moreover $$P(X_1 = x_1, \dots, X_n = x_n \mid T = t) = \frac{t!}{x_1! x_2! \cdots x_n!} \left(\frac{1}{n}\right)^t$$ $$= \left(\frac{t}{x_1, \dots, x_n}\right) \left(\frac{1}{n}\right)^{x_1} \cdots \left(\frac{1}{n}\right)^{x_n}$$ so that $\mathcal{L}(X \mid T = t)$ is Multinomial with t trials and n categories with equal probability 1/n (see Section 4.6). - 3. $X = (X_1, X_2)$ iid $\text{Expo}(\beta)$. Then $T = X_1 + X_2$ is a sufficient statistic for β . To derive this, we need to calculate $\mathcal{L}(X_1, X_2 \mid T = t)$. It suffices to get $\mathcal{L}(X_1 \mid T = t)$ since $X_2 = t X_1$. How to do this? - (a) Find joint density $f_{X_1,T}(x_1,t)$. - (b) Then get conditional density $$f_{X_1|T}(x_1 \mid t) = \frac{f_{X_1,T}(x_1,t)}{f_{T}(t)}.$$ Continuing with the steps, (a) Use the transformation $$U = X_1, T = X_1 + X_2 \implies X_1 = U, X_2 = T - U$$ with Jacobian J=1. Then $$\begin{split} f_{U,T}(u,t) &= f_{X_1,X_2}(u,t-u)|J| \\ &= \frac{1}{\beta}e^{-u/\beta}\cdot\frac{1}{\beta}e^{-(t-u)/\beta}\cdot 1 \\ &= \frac{1}{\beta^2}e^{-t/\beta}, \quad \text{for} \quad 0 \leq u \leq t < \infty. \end{split}$$ (b) $T = X_1 + X_2 \sim \text{Gamma}(\alpha = 2, \beta)$ so that $$f_T(t) = \frac{te^{-t/\beta}}{\beta^2}, \quad t \ge 0.$$ Atternatively, integrate over x_1 in the joint density $f_{X_1,T}(x_1,t)$ to get $f_T(t)$. Now $$f_{X_1|T}(x_1 \mid t) = \frac{\frac{1}{\beta^2} e^{-t/\beta} I(0 \le x_1 \le t)}{\frac{t e^{-t/\beta}}{\beta^2}}$$ $$= \frac{1}{t} I(0 \le x_1 \le t)$$ which does <u>not</u> involve β . Thus $T = X_1 + X_2$ is a sufficient statistic for β . Moreover, $\mathcal{L}(X_1 \mid T = t)$ is Unif(0,t). This can also be seen intuitively by noting that $$f_{X_1,X_2}(x_1,x_2) = \frac{1}{\beta^2} e^{-(x_1+x_2)/\beta}$$ is constant on the line segment $$\{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0, x_1 + x_2 = t\}$$ Thus given T = t, we may generate fake data X_1^*, X_2^* without knowing β which has the same distribution as the real data: - (a) Generate $X_1^* \sim \text{Unif}(0, t)$. - (b) Set $X_2^* = t X_1^*$. The real and fake data have the same value of the sufficient statistic: $X_1 + X_2 = t = X_1^* + X_2^*$. 4. Extension to previous Example: If $X = (X_1, X_2, ..., X_n)$ are iid $\text{Expo}(\beta)$, then $T = X_1 + X_2 + \cdots + X_n$ is a sufficient statistic for β and $\mathcal{L}(X \mid T = t)$ is a uniform distribution on the simplex $$\{(x_1,\ldots,x_n): x_1+\cdots+x_n=t, x_i\geq 0 \,\forall \, i\}.$$ 5. $X = (X_1, X_2)$ iid Unif $(0, \theta)$. Then $T = X_1 + X_2$ is <u>not</u> sufficient statistic for θ . *Proof.* We must show that $\mathcal{L}(X_1, X_2 \mid T)$ depends on θ . The support of (X_1, X_2) is $[0, \theta]^2$. Given T = t, we know (X_1, X_2) lies on the line $\mathcal{L} = \{(x_1, x_2) : x_1 + x_2 = t\}$. Thus, the support of $\mathcal{L}(X_1, X_2 \mid T)$ is $\mathcal{L} \cap [0, \theta]^2$ which is drawn below for two different values of θ . The support of $\mathcal{L}(X_1, X_2 \mid T = t)$ varies with θ . This shows that $\mathcal{L}(X_1, X_2 \mid T)$ depends on θ . 6. If X_1, \ldots, X_n iid Bernoulli(p), then $T = \sum_{i=1}^n X_i$ is a sufficient statistic for p. First: What is the joint pmf of X_1, \ldots, X_n ? Note that $$P(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 1, X_5 = 0) = p \cdot q \cdot p \cdot p \cdot q = p^3 q^2$$ where q = 1 - p. In general, $$P(X = x) = P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p^{x_i} q^{1-x_i} = p^{\sum_{i=1}^n x_i} q^{\sum_{i=1}^n (1-x_i)}$$ $$= p^t q^{n-t} = p^{T(x)} q^{n-T(x)},$$ where $T(x) = t = \sum_{i=1}^{n} x_i$. Next, we derive $\mathcal{L}(X \mid T)$. We will use the notation $T(X) = \sum_{i=1}^{n} X_i = T$ and $T(x) = \sum_{i=1}^{n} x_i$. Recall that for discrete distributions P_{θ} , $$P_{\theta}(X = x \mid T(X) = t) = \begin{cases} \frac{P_{\theta}(X = x)}{P_{\theta}(T(X) = t)} & \text{if } T(x) = t\\ 0 & \text{otherwise} \end{cases}$$ Assume $T(x) = \sum_{i=1}^{n} x_i = t, \theta = p$. Then $$P_{\theta}(X = x \mid T(X) = t) = \frac{P_{\theta}(X = x)}{P_{\theta}(T(X) = t)}$$ $$= \frac{p^t q^{n-t}}{\binom{n}{t} p^t q^{n-t}} = \frac{1}{\binom{n}{t}}$$ since $T \sim \text{Binomial}(n, p)$. This does not involve p which proves that T is a sufficient statistic for p. <u>Note:</u> The conditional probability is the same for any sequence $x = (x_1, \ldots, x_n)$ with t 1s and n - t 0s. There are $\binom{n}{t}$ such sequences. Summary: Given $T = X_1 + \cdots + X_n = t$, all possible sequences of t 1s and n - t 0s are equally likely. Algorithm for generating from $\mathcal{L}(X_1,\ldots,X_n\mid T=t)$: - (a) Put t 1s and n t 0s in an urn. - (b) Draw them out one by one (without replacement) until the urn is empty. This makes all possible sequences equally likely. (Think about it!) The resulting sequence (X_1^*, \ldots, X_n^*) (the fake data) has the same value of the sufficient statistic as (X_1, \ldots, X_n) : $$\sum_{i=1}^{n} X_i^* = t = \sum_{i=1}^{n} X_i$$ ### 2.3 Sufficient conditions for sufficiency Sometimes finding sufficient statistic might be time-consuming and cumbersome if one proceeds directly from the definition. We need an easy to verifiable sufficient condition to find a sufficient statistic. Suppose $X \sim P_{\theta}, \theta \in \Theta$. #### Theorem 6.2.2 T(X) is a sufficient statistic for θ iff for all x $$\frac{f_X(x \mid \theta)}{f_T(T(x) \mid \theta)}$$ is constant as a function of θ . Notation: $f_X(x \mid \theta)$ is pdf (or pmf) of X. $f_T(t \mid \theta)$ is pdf (or pmf) of T = T(X). Factorization Criterion (FC): There exist functions h(x) and $g(t \mid \theta)$ such that $$f(x \mid \theta) = g(T(x) \mid \theta)h(x)$$ for all x and θ . **Theorem 1.** T(X) is a sufficient statistic for θ iff the factorization criterion is satisfied. # 2.4 Applications of FC 1. Let $X = (X_1, \dots, X_n)$ iid Poisson (λ) . The joint pmf is $$f(x \mid \lambda) = f(x_1, \dots, x_n \mid \lambda)$$ $$= \prod_{i=1}^n \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda^{\sum_i x_i} e^{-n\lambda}}{\prod_i x_i!}$$ $$= \left(\lambda^{\sum_i x_i} e^{-n\lambda}\right) \left(\frac{1}{\prod_i x_i!}\right)$$ $$= g(t(x) \mid \lambda) h(x)$$ where $T(x) = \sum_i x_i$, $g(t \mid \lambda) = \lambda^t e^{-n\lambda}$, $h(x) = \frac{1}{\prod_i x_i!}$ Thus, by FC, $T(X) = \sum_i X_i$ is a sufficient statistic for λ .