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1 Probability Model

Model: A family of distributions {Pθ : θ ∈ Θ}.
Pθ(B) is the probability of the event B when the parameter takes the value θ.
Pθ is described by giving a joint pdf or pmf f(x | θ).
Experiment: Observe X(data)∼ Pθ, θ unknown.
Goal: Make inference about θ.
Joint distribution of independent rv’s: If X = (X1, . . . , Xn) and X1, . . . , Xn are inde-
pendent with Xi ∼ gi(xi | θ), then the joint pdf is f(x | θ) =

∏n
i=1 gi(xi | θ) where

x = (x1, . . . , xn). For iid random variables g1 = · · · = gn = g.

1.1 Types of models to be discussed in the course

Let X = (X1, . . . , Xn).

1. Random Sample: X1, . . . , Xn are iid

2. Regression Model: X1, . . . , Xn are independent (but not necessarily identically
distributed; the distribution of Xi may depend on covariates zi)

1.1.1 Random Sample Models

Example: LetX1, X2, . . . , Xn iid Poisson(λ), λ unknown. Here we have: X = (X1, X2, . . . , Xn),
θ = λ, Θ = {λ : λ > 0}, Pθ is described by the joint pmf

f(x | λ) = f(x1, . . . , xn | λ) =

n∏
i=1

g(xi | λ)

where g is the Poisson(λ) pmf g(x | λ) = λxe−λ

x! for x = 0, 1, 2, . . .. Hence

f(x | λ) =
n∏
i=1

λxie−λ

xi!

for x ∈ {0, 1, 2, . . .}n.
Example: Let X1, X2, . . . , Xn iid N(µ, σ2), with µ and σ2 unknown. Here we have: X =
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(X1, X2, . . . , Xn), θ = (µ, σ2), Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0}, Pθ is described by
the joint pmf

f(x | µ, σ2) =
n∏
i=1

g(xi | µ, σ2)

where g is the N(µ, σ2) pdf g(x | µ, σ2) = 1√
2πσ2

e−(x−µ)
2/(2σ2). Hence

f(x | µ, σ2) =

n∏
i=1

1√
2πσ2

e−(xi−µ)
2/(2σ2)

2 Sufficient Statistic

Let X ∼ Pθ, θ unknown. What part (or function) of the data X is essential for inference
about θ?
Example: Suppose X1, . . . , Xn iid Bernoulli(p) (independent tosses of a coin). Intuitively,

T =
n∑
i=1

Xi = # of heads

contains all the information about p in the data. We need to formalize this.
Let X ∼ Pθ, θ unknown.

Definition 1. The statistic T = T (X) is a sufficient statistic for θ if the conditional
distribution of X given T does not depend on the unknown parameter θ.
Abbreviation: T is SS if L(X | T ) is same for all θ, where L stands for law or distribution.

2.1 Motivation for the definition

Suppose X ∼ Pθ, θ ∈ Θ, θ unknown. Let T = T (X) be any statistic. We can imagine that
the data X is generated hierarchically as follows:

1. First generate T ∼ L(T ).

2. Then generate X ∼ L(X | T ).

If T is a sufficient statistic for θ, then L(X | T ) does not depend on θ and Step 2 can
be carried out without knowing θ. Since, given T , the data X can be generated without
knowing θ, the data X supplies no further information about θ beyond what is already
contained in T .
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Notation: X ∼ Pθ, θ ∈ Θ, θ unknown. If T = T (X) is a sufficient statistic for θ, then T
contains all the information about θ in X in the sense that if X is discarded, but we keep
T = T (X), we can “fake” the data (without knowing θ) by generating X∗ from L(X | T ).
X∗ has the same distribution as X (X∗ ∼ Pθ) and the same value of the sufficient statistic
(T (X∗) = T (X)) and can be used for any purpose we would use the real data for.
Example: If U(X) is an estimator of θ, then U(X∗) is another estimator of θ which performs

just as well since U(X)
d
= U(X∗) for all θ.

Cautionary Note: If the model is correct (X ∼ Pθ) and T (X) is sufficient for θ, then can
ignore data X and just use T (X) for inference about θ. BUT if we are not sure that
the model is correct, X may contain valuable information about model correctness not
contained in T (X).
Example: X1, X2, . . . , Xn iid Bernoulli(p). T =

∑n
i=1Xi is a sufficient statistic for p.

Possible Model violations: The trial might be correlated as not independent. The success
probability p might not be constant from trial to trial. These model violations cannot be
investigated using the sufficient statistic. This can be only done by further investigation
with the data.

2.2 Examples of Sufficient Statistic

1. X = (X1, X2) ∼ iid Poisson(λ). T = X1 +X2 is a sufficient statistic for λ because

Pλ(X1 = x1, X2 = x2 | T = t) =
Pλ(X1 = x2, X2 = x2,

redundant if t=x1+x2︷ ︸︸ ︷
T = t )

Pλ(T = t)

=

{
Pλ(X1=x2,X2=x2)

Pλ(T=t)
, if t = x1 + x2

0 if t 6= x1 + x2

This follows from the fact that for discrete distributions Pθ,

Pθ(X = x | T (X) = t) =

{
Pθ(X=x)
Pθ(T (X)=t) ifT (x) = t

0 otherwise

Assuming t = x1 + x2,

Pλ(X1 = x1, X2 = x2 | T = t) =
λx1e−λ

x1!
· λx2e−λx2!

(2λ)te−2λ

t! (SinceT ∼ Poisson(2λ))

=

(
t
x1

)
2t

which does not involve λ. Thus, T is a sufficient statistic for λ. Note that
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P (X1 = x1 | T = t) =

(
t

x1

)(
1

2

)x1(1

2

)t−x1
, x1 = 0, 1, . . . , t.

Thus L(X1 | T = t) is Binomial(t, 1/2). Given T = t, we may generate fake data
X∗1 , X

∗
2 without knowing λ which has the same distribution as the real data:

(a) Generate X∗1 ∼ Binomial(t, 1/2). (Toss a fair coin t times and count the number
of heads).

(b) Set X∗2 = t−X∗1 .

The real and fake data have the same value of the sufficient statistic: X1 +X2 = t =
X∗1 +X∗2 .

2. Extension to previous Example: If X = (X1, X2, . . . , Xn) are iid Poisson(λ), then
T = X1 +X2 + · · ·+Xn is a sufficient statistic for λ. Moreover

P (X1 = x1, . . . , Xn = xn | T = t) =
t!

x1!x2! · · ·xn!

(
1

n

)t
=

(
t

x1, . . . , xn

)(
1

n

)x1
· · ·
(

1

n

)xn
so that L(X | T = t) is Multinomial with t trials and n categories with equal
probability 1/n (see Section 4.6).

3. X = (X1, X2) iid Expo(β). Then T = X1 +X2 is a sufficient statistic for β.
To derive this, we need to calculate L(X1, X2 | T = t). It suffices to get L(X1 | T = t)
since X2 = t−X1. How to do this?

(a) Find joint density fX1,T (x1, t).

(b) Then get conditional density

fX1|T (x1 | t) =
fX1,T (x1, t)

fT (t)
.

Continuing with the steps,

(a) Use the transformation

U = X1, T = X1 +X2 ⇒ X1 = U,X2 = T − U
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with Jacobian J = 1. Then

fU,T (u, t) = fX1,X2(u, t− u)|J |

=
1

β
e−u/β · 1

β
e−(t−u)/β · 1

=
1

β2
e−t/β, for 0 ≤ u ≤ t <∞.

(b) T = X1 +X2 ∼ Gamma(α = 2, β) so that

fT (t) =
te−t/β

β2
, t ≥ 0.

Aternatively, integrate over x1 in the joint density fX1,T (x1, t) to get fT (t). Now

fX1|T (x1 | t) =

1
β2 e
−t/βI(0 ≤ x1 ≤ t)

te−t/β

β2

=
1

t
I(0 ≤ x1 ≤ t)

which does not involve β.

Thus T = X1 +X2 is a sufficient statistic for β.
Moreover, L(X1 | T = t) is Unif(0, t). This can also be seen intuitively by noting
that

fX1,X2(x1, x2) =
1

β2
e−(x1+x2)/β

is constant on the line segment

{(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 = t}

Thus given T = t, we may generate fake data X∗1 , X
∗
2 without knowing β which has

the same distribution as the real data:

(a) Generate X∗1 ∼ Unif(0, t).

(b) Set X∗2 = t−X∗1 .

The real and fake data have the same value of the sufficient statistic: X1 +X2 = t =
X∗1 +X∗2 .

4. Extension to previous Example: If X = (X1, X2, . . . , Xn) are iid Expo(β), then T =
X1 + X2 + · · · + Xn is a sufficient statistic for β and L(X | T = t) is a uniform
distribution on the simplex

{(x1, . . . , xn) : x1 + · · ·+ xn = t, xi ≥ 0 ∀ i}.
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5. X = (X1, X2) iid Unif(0, θ). Then T = X1 +X2 is not sufficient statistic for θ.

Proof. We must show that L(X1, X2 | T ) depends on θ. The support of (X1, X2) is
[0, θ]2. Given T = t, we know (X1, X2) lies on the line L = {(x1, x2) : x1 + x2 = t}.
Thus, the support of L(X1, X2 | T ) is L ∩ [0, θ]2 which is drawn below for two
different values of θ. The support of L(X1, X2 | T = t) varies with θ. This shows

that L(X1, X2 | T ) depends on θ.

6. If X1, . . . , Xn iid Bernoulli(p), then T =
∑n

i=1Xi is a sufficient statistic for p.
First: What is the joint pmf of X1, . . . , Xn? Note that

P (X1 = 1, X2 = 0, X3 = 1, X4 = 1, X5 = 0) = p · q · p · p · q = p3q2

where q = 1− p. In general,

P (X = x) = P (X1 = x1, . . . , Xn = xn) =
n∏
i=1

pxiq1−xi = p
∑n
i=1 xiq

∑n
i=1(1−xi)

= ptqn−t = pT (x)qn−T (x),

where T (x) = t =
∑n

i=1 xi. Next, we derive L(X | T ). We will use the notation
T (X) =

∑n
i=1Xi = T and T (x) =

∑n
i=1 xi. Recall that for discrete distributions Pθ,

Pθ(X = x | T (X) = t) =

{
Pθ(X=x)
Pθ(T (X)=t) ifT (x) = t

0 otherwise

Assume T (x) =
∑n

i=1 xi = t, θ = p. Then

Pθ(X = x | T (X) = t) =
Pθ(X = x)

Pθ(T (X) = t)

=
ptqn−t(
n
t

)
ptqn−t

=
1(
n
t

)
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since T ∼ Binomial(n, p).

This does not involve p which proves that T is a sufficient statistic for p.
Note: The conditional probability is the same for any sequence x = (x1, . . . , xn) with
t 1s and n− t 0s. There are

(
n
t

)
such sequences.

Summary: Given T = X1 + · · · + Xn = t, all possible sequences of t 1s and n − t 0s
are equally likely.
Algorithm for generating from L(X1, . . . , Xn | T = t):

(a) Put t 1s and n− t 0s in an urn.

(b) Draw them out one by one (without replacement) until the urn is empty.

This makes all possible sequences equally likely. (Think about it!) The resulting
sequence (X∗1 , . . . , X

∗
n) (the fake data) has the same value of the sufficient statistic

as (X1, . . . , Xn):

n∑
i=1

X∗i = t =
n∑
i=1

Xi

2.3 Sufficient conditions for sufficiency

Sometimes finding sufficient statistic might be time-consuming and cumbersome if one
proceeds directly from the definition. We need an easy to verifiable sufficient condition to
find a sufficient statistic. Suppose X ∼ Pθ, θ ∈ Θ.
Theorem 6.2.2
T(X) is a sufficient statistic for θ iff for all x

fX(x | θ)
fT (T (x) | θ)

is constant as a function of θ.
Notation: fX(x | θ) is pdf (or pmf) of X. fT (t | θ) is pdf (or pmf) of T = T (X).
Factorization Criterion (FC): There exist functions h(x) and g(t | θ) such that

f(x | θ) = g(T (x) | θ)h(x)

for all x and θ.

Theorem 1. T (X) is a sufficient statistic for θ iff the factorization criterion is satisfied.
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2.4 Applications of FC

1. Let X = (X1, . . . , Xn) iid Poisson(λ). The joint pmf is

f(x | λ) = f(x1, . . . , xn | λ)

=
n∏
i=1

λxie−λ

xi!
=
λ
∑
i xie−nλ∏
i xi!

=

(
λ
∑
i xie−nλ

)(
1∏
i xi!

)
= g(t(x) | λ)h(x)

where T (x) =
∑

i xi, g(t | λ) = λte−nλ, h(x) = 1∏
i xi!

Thus, by FC, T (X) =
∑

iXi is

a sufficient statistic for λ.
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