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1 Hypothesis Testing

Consider the family {f(x
˜
| θ), θ ∈ Θ, x

˜
∈ Rn}. Data X

˜
∼ f(x

˜
| θ). We are interested in

testing the hypothesis:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

for Θ0,Θ1 ⊂ Θ and Θ0 ∩Θ1 = φ. Often Θ1 = Θc
0.

1.1 Procedure

Definition 1. We define rejection (critical region) as a subset R ⊂ Rn such that if X
˜
∈ R,

we reject H0.

Simplest situation: H0 : θ = θ0 (simple null) vs. H1 : θ = θ1 (simple alternative).
Terminalogy: size: Pθ0(X

˜
∈ R), power = Pθ1(X

˜
∈ R). In the design of tests: we fix the

size in advance and choose R to maximize power.

1.2 Neyman-Pearson Lemma

The most powerful tests of H0 : θ = θ0 vs. H1 : θ = θ1 are based on the likelihood ratio

LR(x
˜
) =

f(X
˜
| θ1)

f(X
˜
| θ0)

.

and the rejection region is given by

{x
˜

: LR(x
˜
) > k}.

Lemma 1. Assume both f(x
˜
| θ0) and f(x

˜
| θ1) to be densities or pmf’s. Suppose R

satisfies (for some k ≥ 0),

1. If LR(x
˜
) > k, then x

˜
∈ R (equivalently f(x

˜
| θ1) > kf(x

˜
| θ0))
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2. If LR(x
˜
) < k, then x

˜
∈ Rc (equivalently f(x

˜
| θ1) < kf(x

˜
| θ0))

and

Pθ0(X
˜
∈ R) = α, Pθ1(X

˜
∈ R) = β.

Then for any other test R′, if Pθ0(X
˜
∈ R′) ≤ α, then Pθ1(X

˜
∈ R′) ≤ β.

Proof. Assume f(x
˜
| θ0) and f(x

˜
| θ1) are densities. Define

φ(x
˜
) = IR(x

˜
), φ′(x

˜
) = IR′(x

˜
)

Note that

Pθ(X
˜
∈ R) =

∫
φ(x

˜
)f(x

˜
| θ)dx

˜
.

Observe that

0 ≤
∫

[φ(x
˜
)− φ′(x

˜
)][f(x

˜
| θ1)− kf(x

˜
| θ0)]dx

˜

= Pθ1(X
˜
∈ R)− Pθ1(X

˜
∈ R′)− k{Pθ0(X

˜
∈ R)− Pθ0(X

˜
∈ R′)}.

Since Pθ0(X
˜
∈ R) ≥ Pθ0(X

˜
∈ R′), we have Pθ1(X

˜
∈ R) ≥ Pθ1(X

˜
∈ R′).

Example
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f0 and f1 are mass functions
assigning probs to values x from 1 to 12.

LR is the likelihood ratio: LR = f1(x)/f0(x)

       1     2     3      4     5     6     7     8     9    10    11    12
f0 0.123 0.016 0.125  0.006 0.047 0.149 0.011 0.144 0.028 0.034 0.103 0.214
f1 0.087 0.032 0.103  0.120 0.008 0.015 0.109 0.071 0.082 0.150 0.054 0.169
LR 0.707 2.000 0.824 20.000 0.170 0.101 9.909 0.493 2.929 4.412 0.524 0.790

Reordering x so that LR is decreasing

        4     7    10     9     2     3    12     1    11     8     5     6
f0  0.006 0.011 0.034 0.028 0.016 0.125 0.214 0.123 0.103 0.144 0.047 0.149
f1  0.120 0.109 0.150 0.082 0.032 0.103 0.169 0.087 0.054 0.071 0.008 0.015
LR 20.000 9.909 4.412 2.929 2.000 0.824 0.790 0.707 0.524 0.493 0.170 0.101

Various likelihood ratio tests: reject when LR > const

                              const alpha typeII power
{}                              Inf 0.000  1.000 0.000
{4}                          14.955 0.006  0.880 0.120
{4,7}                         7.160 0.017  0.771 0.229
{4,7,10}                      3.670 0.051  0.621 0.379
{4,7,10,9}                    2.464 0.079  0.539 0.461
{4,7,10,9,2}                  1.412 0.095  0.507 0.493
{4,7,10,9,2,3}                0.807 0.220  0.404 0.596
{4,7,10,9,2,3,12}             0.749 0.434  0.235 0.765
{4,7,10,9,2,3,12,1}           0.616 0.557  0.148 0.852
{4,7,10,9,2,3,12,1,11}        0.509 0.660  0.094 0.906
{4,7,10,9,2,3,12,1,11,8}      0.332 0.804  0.023 0.977
{4,7,10,9,2,3,12,1,11,8,5}    0.135 0.851  0.015 0.985
{4,7,10,9,2,3,12,1,11,8,5,6} -1.000 1.000  0.000 1.000

Calculation of alpha (= size), power, and Prob(type II error)
For two different rejection regions:

rejection region: {4, 7} 

alpha = f0(4) + f0(7) = 0.006 + 0.011 = 0.017 
power = f1(4) + f1(7) = 0.12 + 0.109 = 0.229 
typeII = 1 - power = 0.771 

rejection region: {4, 7, 10, 9}
 
alpha = f0(4) + f0(7) + f0(10) + f0(9) = 0.006 + 0.011 + 0.034 + 0.028 = 0.079
power = f1(4) + f1(7) + f1(10) + f1(9) = 0.12 + 0.109 + 0.15 + 0.082 = 0.461
typeII = 1 - power = 0.539 

Figure 1: Likelihood ratio test for a discrete problem

Example: Let X ∼ N(θ, 1) (assume θ1 > θ0). Test H0 : θ = θ0 vs H1 : θ = θ1. Then

LR(x) =
f(x | θ1)

f(x | θ0)
= exp

{
− 1

2
(x− θ1)2 +

1

2
(x− θ0)2

}
= exp

{
(θ1 − θ0)x+

1

2
(θ2

0 − θ2
1)

}
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LR(x) is strictly increasing (strictly decreasing when θ1 < θ0). By NP Lemma, most powerful
tests have rejection revisions of the form

R = {x : LR(x) > k} = {x : x > k∗}.

Figure 2: Likelihood ratio for normal problem as a function of x

(Suppose θ0 = 0.) To get a size α test, choose k∗ such that

Pθ0(X > k∗) = α.

Note: k∗ does not depend on θ1, so long as θ1 > θ0.
Example: X ∼ Cauchy(θ) where

f(x | θ) =
1

π(1 + (x− θ)2)
.

Test H0 : θ = θ0 vs. H1 : θ = θ1 (where θ1 > θ0).

LR(x) =
1 + (x− θ0)2

1 + (x− θ1)2
.

LR not monotonic.

lim
x→±∞

LR(x) = 1.
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Figure 3: Likelihood ratio for Cauchy problem as a function of x

By NP Lemma, most powerful tests have rejection regions of the form

R = {x : LR(x) > k} = {x : a∗ < x < b∗}.

To get size α test: Choose k so Pθ0(LR(X) > k) = α. This gives a∗ and b∗ which depend
on both θ0 and θ1.

1.3 Sufficient Statistics and Testing

If T (X) is sufficient for θ, then testing can be done in terms of T = T (X
˜

).

LRX
˜

(x
˜
) =

f(x
˜
| θ1)

f(x
˜
| θ0)

=

Pθ1(X
˜

= x
˜
)

Pθ0(X
˜

= x
˜
)

=

Pθ1(T (X
˜

= T (x
˜
))Pθ1(X

˜
= x

˜
| T = t)

Pθ(T = t)Pθ0(X
˜

= x
˜
| T = t)

=
Pθ1(T = t)

Pθ0(T = t)
=
fT (t | θ1)

fT (t | θ0)
= LRT (t).

Thus LRX(x) > k iff LRT (t) > k. Most powerful tests based on X or T are equivalent.
(Always produce same outcome, accept or reject.)
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1.4 Power function, size and level

Let X ∼ Pθ, θ ∈ Θ. Let R be the rejection region for a test of H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1.

Definition 2. (Power function) Pθ(X ∈ R) = β(θ).

Note: For θ ∈ Θ0, β(θ) = prob of Type I error. For θ ∈ Θ1, 1 − β(θ) = prob of Type II
error. Performance of a test is judged by power function. Tests are compared via power
functions.
For 0 ≤ α ≤ 1, a test is size α if

sup
θ∈Θ0

β(θ) = α.

and level α if

sup
θ∈Θ0

β(θ) ≤ α.

2 Likelihood Ratio Test (LRT)

Suppose X ∼ Pθ, θ ∈ Θ, with oint pdf (or pmf) f(x | θ). For observed data x, the likelihood
function is L(θ | x) ≡ f(x | θ). The LRT statistic for testing

H0 : θ ∈ Θ0, versus H1 : θ ∈ Θc
0

is given by

λ(x) =
supθ∈Θ0

L(θ | x)

supθ∈Θ L(θ | x)
=
L(θ̂0 | x)

L(θ̂ | x)

where θ̂0 = argmaxθ∈Θ0
L(θ | x) and θ̂ = argmaxθ∈ΘL(θ | x).

The LRT rejects for small values of λ(x); the test has rejection region (critical region) given
by

R = {x : λ(x) ≤ c}

where c is chosen so that

sup
θ∈Θ0

Pθ(λ(X) ≤ c) = α (or failing that, ≤ α).

for some pre-specified value α (say 0.05 or 0.01). Sometimes the exact distribution of λ(X)
can be obtained and then used to find c giving an exact size α test. But often this cannot
be done, and we have to rely on the following asymptotic approximation.
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3 Asymptotic Distribution of LRT Statistic

Consider a sequence of successively larger data sets

Xn = (X1, X2, . . . , Xn)

and let λn(Xn) be the LRT statistic based on Xn.

Theorem 1. If θ ∈ Θ0, then (under regularity conditions)

−2 log λn(Xn)
d→ χ2

k, as n→∞

where k ≡ (dim(Θ)− (dimΘ0)).

Thus, if c∗ satisfies P (χ2
k ≥ c∗) = α, then the rejection region R = {x : −2 log λ(x) ≥ c∗}

gives an approximate size α test for larger sample sizes.
Comment: The test statistics λ(x) and −2 log λ(x) are equivalent since

λ(x) ≤ c, iff − 2 log λ(x) ≥ c∗

where c∗ ≡ −2 log c.
It is often convenient to replace the LRT statistic λ(x) by an equivalent statistic obtained
by applying a strictly monotone transformation.
Comment on the regularity conditions: Conditions are required on both the family of dis-
tributions f(x | θ) and the set Θ0. The family f(x | θ) must satisfy conditions like those
required for the consistency and asymptotic normality of the MLE (and the validity of the
Fisher information). The set Θ0 must be a lower dimensional subspace (or manifold) of Θ.

Lemma 2. Let T, n > 0. Define

H(σ2) = (2πσ2)−n/2e−T/(2σ
2), σ2 > 0.

Then

argmaxσ2>0H(σ2) = T/n ≡ σ̂2, and

sup
σ2>0

H(σ2) = H(σ̂2) = (2πσ̂2)−n/2e−n/2.

Example: Observe X1, . . . , Xn iid N(0, σ2). Find LRT of

H0 : σ2 = σ2
0 versus H1 : σ2 6= σ2

0.
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Here:

Θ = (0,∞) and Θ0 = {σ2
0}.

L(σ2) = (2πσ2)−n/2 exp{−(2σ2)−1
∑
i

x2
i }.

argmaxΘL(σ2) = n−1
∑
i

x2
i ≡ σ̂2 (so that

∑
i

x2
i = nσ̂2)

λ(x) =
L(σ2

0)

L(σ̂2)
=

(2πσ2
0)−n/2 exp{−(2σ2

0)−1nσ̂2}
(2πσ̂2)−n/2 exp{−n/2}

= en/2
(
σ̂2

σ2
0

)n/2
exp

[
− n

2

(
σ̂2

σ2
0

)]
= ψ

(
σ̂2

σ2
0

)
where ψ(u) ≡ en/2un/2e−(n/2)u.

With X1, X2, . . . , Xn iid N(0, σ2), the LRT of

H0 : σ2 = σ2
0 vs. H1 : σ2 6= σ2

0

rejects in the region

R = {x : λ(x) ≤ c}

where

λ(x) = ψ

(
σ̂2

σ2
0

)
, σ̂2 =

1

n

n∑
i=1

x2
i , ψ(u) = en/2un/2e−(n/2)u.

The function ψ is maximized at u = 1, refer to the following figure. Find a and b which
are functions of c such that ψ(a) = ψ(b) = c.

Thus

R =

{
x :

σ̂2

σ2
0

≤ a(c) or
σ̂2

σ2
0

≥ b(c)
}
.

We reject when σ̂2

σ2
0

departs far enough from 1.

Obtaining an exact level α test:

Pσ2
0
(X ∈ R) = 1− Pσ2

0

(
a(c) <

σ̂2

σ2
0

< b(c)

)
= 1− Pσ2

0

(
na(c) <

nσ̂2

σ2
0

< nb(c)

)
.
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Figure 4: Plot of ψ(u)

Note that

nσ̂2

σ2
0

=
n∑
i=1

(
Xi

σ0

)2

∼ χ2
n

under H0. An exact level α test is thus obtained by chosen c so that

P (na(c) < χ2
n < nb(c)) = 1− α.

Finding c requires computation. An easier approach is to reject H0 when

nσ̂2

σ2
0

≤ χ2
n(α/2) or

nσ̂2

σ2
0

≥ χ2
n(1− α/2)

where χ2
n(α/2) and χ2

n(1−α/2) are the values which cut off probability α/2 in the left and
right tails of the χ2

n distribution.
Example continued: (A variation) Find the LRT with size α of

H0 : σ2 ≤ σ2
0 versus H1 : σ2 > σ2

0

Now we have: Θ0 ⊂ (0, σ2
0]. Note that

argmaxσ2∈Θ0
L(σ2) ≡ σ̂2

0 =

{
σ̂2 if σ̂2 ≤ σ2

0

σ2
0 if σ̂2 > σ2

0.
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since the likelihood function falls away monotonically on each size of σ̂2. Hence

λ(x) =
L(σ2

0)

L(σ̂2)
=

{
1 if σ̂2 ≤ σ2

0

L(σ2
0)/L(σ̂2) if σ̂2 > σ2

0

=

1 if σ̂2 ≤ σ2
0

ψ

(
σ̂2

σ2
0

)
if σ̂2 > σ2

0

Since ψ(u) decreases for u ≥ 1, we have λ(x) ≤ c iff σ̂2/σ2
0 ≥ c∗ iff S ≡

∑n
i=1X

2
i /σ

2
0 ≥ c′

where c′ is chosen to give size α.

sup
σ2∈Θ0

Pσ2(S ≥ c′) = Pσ2
0
(S ≥ c′) = α

if we choose c′ such that P (χ2
n ≥ c′) = α.

Example continued: Another variation Observe that X1, X2, . . . , Xn iid N(µ, σ2). Fin
the LRT of

H0 : σ2 = σ2
0, µ ∈ R vs.H1 : σ2 6= σ2

0, µ ∈ R.

Now we have:

Θ = {(µ, σ2) : µ ∈ R, σ2 > 0}
Θ0 = {(µ, σ2) : µ ∈ R, σ2 = σ2

0}

L(µ, σ2) = (2πσ2)n/2 exp

(
− (2σ2)−1

∑
i

(xi − µ)2

)

argmax(µ,σ2)∈ΘL(µ, σ2) = (x̄, σ̂2), σ̂2 =
1

n

n∑
i=1

(xi − x̄)2

argmax(µ,σ2)∈Θ0
L(µ, σ2) = (x̄, σ2

0).

λ(x) =
L(x̄, σ2

0)

L(x̄, σ̂2)
=

(2πσ2
0)−n/2 exp

(
− (2σ2

0)−1nσ̂2

)
(2πσ̂2)−n/2 exp

(
− n/2

)
= en/2

(
σ̂2

σ2
0

)n/2
exp

[
− n

2

(
σ̂2

σ2
0

)]
= ψ

(
σ̂2

σ2
0

)
.

where ψ(u) = en/2un/2e(−n/2)u. Just like before but with a different definition of σ̂2. Now
determine critical values using nσ̂2/σ2

0 ∼ χ2
n−1 under H0.
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4 Uniformly most powerful test for composite hypothesis

Consider a family of distributions f(x
˜
| θ) with

H0 : θ ≤ θ0 versus H1 : θ > θ0

and let T be sufficient for θ and LRT (t) is non-decreasing.

Theorem 2. (Karlin-Rubin) If any test with rejection region R = {T > c} satisfies
supθ≤θ0 Pθ(X˜

∈ R) = α, then it is an uniformly most powerful test in the sense that

its power function dominates the power function of any α-level test for all points in the
alternative hypothesis.
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