1 Hypothesis Testing

Consider the family $\left\{f(\underset{\sim}{x} \mid \theta), \theta \in \Theta, \underset{\sim}{x} \in \mathbb{R}^{n}\right\}$. Data $\underset{\sim}{X} \sim f(\underset{\sim}{x} \mid \theta)$. We are interested in testing the hypothesis:

$$
H_{0}: \theta \in \Theta_{0} \quad \text { versus } \quad H_{1}: \theta \in \Theta_{1}
$$

for $\Theta_{0}, \Theta_{1} \subset \Theta$ and $\Theta_{0} \cap \Theta_{1}=\phi$. Often $\Theta_{1}=\Theta_{0}^{c}$.

1.1 Procedure

Definition 1. We define rejection (critical region) as a subset $R \subset \mathbb{R}^{n}$ such that if $\underset{\sim}{X} \in R$, we reject H_{0}.

Simplest situation: $H_{0}: \theta=\theta_{0}$ (simple null) vs. $H_{1}: \theta=\theta_{1}$ (simple alternative).
Terminalogy: size: $P_{\theta_{0}}(\underset{\sim}{X} \in R)$, power $=P_{\theta_{1}}(\underset{\sim}{X} \in R)$. In the design of tests: we fix the size in advance and choose R to maximize power.

1.2 Neyman-Pearson Lemma

The most powerful tests of $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$ are based on the likelihood ratio

$$
\operatorname{LR}(\underset{\sim}{x})=\frac{f\left(\underset{\sim}{X} \mid \theta_{1}\right)}{f\left(\underset{\sim}{X} \mid \theta_{0}\right)}
$$

and the rejection region is given by

$$
\{\underset{\sim}{x}: \operatorname{LR}(\underset{\sim}{x})>k\} .
$$

Lemma 1. Assume both $f\left(\underset{\sim}{x} \mid \theta_{0}\right)$ and $f\left(\underset{\sim}{x} \mid \theta_{1}\right)$ to be densities or pmf's. Suppose R satisfies (for some $k \geq 0$),

1. If $L R(\underset{\sim}{x})>k$, then $\underset{\sim}{x} \in R$ (equivalently $f\left(\underset{\sim}{x} \mid \theta_{1}\right)>k f\left(\underset{\sim}{x} \mid \theta_{0}\right)$)
2. If $L R(\underset{\sim}{x})<k$, then $\underset{\sim}{x} \in R^{c}$ (equivalently $\left.f\left(\underset{\sim}{x} \mid \theta_{1}\right)<k f\left(\underset{\sim}{x} \mid \theta_{0}\right)\right)$
and

$$
P_{\theta_{0}}(\underset{\sim}{X} \in R)=\alpha, \quad P_{\theta_{1}}(\underset{\sim}{X} \in R)=\beta .
$$

Then for any other test R^{\prime}, if $P_{\theta_{0}}\left(\underset{\sim}{X} \in R^{\prime}\right) \leq \alpha$, then $P_{\theta_{1}}\left(\underset{\sim}{X} \in R^{\prime}\right) \leq \beta$.

Proof. Assume $f\left(\underset{\sim}{x} \mid \theta_{0}\right)$ and $f\left(\underset{\sim}{x} \mid \theta_{1}\right)$ are densities. Define

$$
\phi(\underset{\sim}{x})=I_{R}(\underset{\sim}{x}), \quad \phi^{\prime}(\underset{\sim}{x})=I_{R^{\prime}}(\underset{\sim}{x})
$$

Note that

$$
P_{\theta}(\underset{\sim}{X} \in R)=\int \phi(\underset{\sim}{x}) f(\underset{\sim}{x} \mid \theta) d \underset{\sim}{x} .
$$

Observe that

$$
\begin{aligned}
& 0 \leq \int\left[\phi(\underset{\sim}{x})-\phi^{\prime}(\underset{\sim}{x})\right]\left[f\left(\underset{\sim}{x} \mid \theta_{1}\right)-k f\left(\underset{\sim}{x} \mid \theta_{0}\right)\right] d \underset{\sim}{x} \\
= & P_{\theta_{1}}(\underset{\sim}{X} \in R)-P_{\theta_{1}}\left(\underset{\sim}{X} \in R^{\prime}\right)-k\left\{P_{\theta_{0}}(\underset{\sim}{X} \in R)-P_{\theta_{0}}\left(\underset{\sim}{X} \in R^{\prime}\right)\right\} .
\end{aligned}
$$

Since $P_{\theta_{0}}(\underset{\sim}{X} \in R) \geq P_{\theta_{0}}\left(\underset{\sim}{X} \in R^{\prime}\right)$, we have $P_{\theta_{1}}(\underset{\sim}{X} \in R) \geq P_{\theta_{1}}\left(\underset{\sim}{X} \in R^{\prime}\right)$.

Example

```
f0 and f1 are mass functions
assigning probs to values x from 1 to 12.
LR is the likelihood ratio: LR = f1(x)/f0(x)
\begin{tabular}{rrrrrrrrrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
f 0 & 0.123 & 0.016 & 0.125 & 0.006 & 0.047 & 0.149 & 0.011 & 0.144 & 0.028 & 0.034 & 0.103 & 0.214 \\
f 1 & 0.087 & 0.032 & 0.103 & 0.120 & 0.008 & 0.015 & 0.109 & 0.071 & 0.082 & 0.150 & 0.054 & 0.169
\end{tabular}
0.169
```

$\begin{array}{llllllllllllll}\text { LR } 0.707 & 2.000 & 0.824 & 20.000 & 0.170 & 0.101 & 9.909 & 0.493 & 2.929 & 4.412 & 0.524 & 0.790\end{array}$
Reordering x so that $L R$ is decreasing
$\left.\begin{array}{rrrrrrrrrrrr} & 4 & 7 & 10 & 9 & 2 & 3 & 12 & 1 & 11 & 8 & 5\end{array}\right) 6$
f1 $0.120 \quad 0.1090 .1500 .0820 .0320 .1030 .1690 .0870 .0540 .0710 .008 \quad 0.015$
$\begin{array}{llllllllllllllll}\text { LR } 20.000 & 9.909 & 4.412 & 2.929 & 2.000 & 0.824 & 0.790 & 0.707 & 0.524 & 0.493 & 0.170 & 0.101\end{array}$

Various likelihood ratio tests: reject when LR > const

	const	alpha	typeII	power
\{ \}	Inf	0.000	1.000	0.000
\{4\}	14.955	0.006	0.880	0.120
$\{4,7\}$	7.160	0.017	0.771	0.229
$\{4,7,10\}$	3.670	0.051	0.621	0.379
$\{4,7,10,9\}$	2.464	0.079	0.539	0.461
$\{4,7,10,9,2\}$	1.412	0.095	0.507	0.493
$\{4,7,10,9,2,3\}$	0.807	0.220	0.404	0.596
$\{4,7,10,9,2,3,12\}$	0.749	0.434	0.235	0.765
$\{4,7,10,9,2,3,12,1\}$	0.616	0.557	0.148	0.852
$\{4,7,10,9,2,3,12,1,11\}$	0.509	0.660	0.094	0.906
$\{4,7,10,9,2,3,12,1,11,8\}$	0.332	0.804	0.023	0.977
$\{4,7,10,9,2,3,12,1,11,8,5\}$	0.135	0.851	0.015	0.985
$\{4,7,10,9,2,3,12,1,11,8,5,6\}$	-1.000	1.000	0.000	1.000

Calculation of alpha (= size), power, and Prob(type II error)
For two different rejection regions:
rejection region: $\{4,7\}$
alpha $=\mathrm{f} 0(4)+\mathrm{f} 0(7)=0.006+0.011=0.017$
power $=f 1(4)+f 1(7)=0.12+0.109=0.229$
typeII $=1$ - power $=0.771$
rejection region: $\{4,7,10,9\}$

```
alpha = f0(4) + f0(7) + f0(10) + f0(9) = 0.006 + 0.011 + 0.034 + 0.028 = 0.079
power = f1(4) +f1(7) +f1(10) +f1(9) = 0.12 + 0.109 + 0.15 + 0.082 = 0.461
typeII = 1 - power = 0.539
```

Figure 1: Likelihood ratio test for a discrete problem

Example: Let $X \sim \mathrm{~N}(\theta, 1)$ (assume $\theta_{1}>\theta_{0}$). Test $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$. Then

$$
\begin{aligned}
\operatorname{LR}(x)=\frac{f\left(x \mid \theta_{1}\right)}{f\left(x \mid \theta_{0}\right)}= & \exp \left\{-\frac{1}{2}\left(x-\theta_{1}\right)^{2}+\frac{1}{2}\left(x-\theta_{0}\right)^{2}\right\} \\
& =\exp \left\{\left(\theta_{1}-\theta_{0}\right) x+\frac{1}{2}\left(\theta_{0}^{2}-\theta_{1}^{2}\right)\right\}
\end{aligned}
$$

$\operatorname{LR}(x)$ is strictly increasing (strictly decreasing when $\theta_{1}<\theta_{0}$). By NP Lemma, most powerful tests have rejection revisions of the form

$$
R=\{x: \operatorname{LR}(x)>k\}=\left\{x: x>k^{*}\right\} .
$$

Figure 2: Likelihood ratio for normal problem as a function of x
(Suppose $\theta_{0}=0$.) To get a size α test, choose k^{*} such that

$$
P_{\theta_{0}}\left(X>k^{*}\right)=\alpha .
$$

Note: k^{*} does not depend on θ_{1}, so long as $\theta_{1}>\theta_{0}$.
Example: $X \sim \operatorname{Cauchy}(\theta)$ where

$$
f(x \mid \theta)=\frac{1}{\pi\left(1+(x-\theta)^{2}\right)} .
$$

Test $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$ (where $\theta_{1}>\theta_{0}$).

$$
\operatorname{LR}(x)=\frac{1+\left(x-\theta_{0}\right)^{2}}{1+\left(x-\theta_{1}\right)^{2}}
$$

LR not monotonic.

$$
\lim _{x \rightarrow \pm \infty} \operatorname{LR}(x)=1
$$

Figure 3: Likelihood ratio for Cauchy problem as a function of x

By NP Lemma, most powerful tests have rejection regions of the form

$$
R=\{x: \operatorname{LR}(x)>k\}=\left\{x: a^{*}<x<b^{*}\right\} .
$$

To get size α test: Choose k so $P_{\theta_{0}}(\operatorname{LR}(X)>k)=\alpha$. This gives a^{*} and b^{*} which depend on both θ_{0} and θ_{1}.

1.3 Sufficient Statistics and Testing

If $T(X)$ is sufficient for θ, then testing can be done in terms of $T=T(\underset{\sim}{X})$.

$$
\begin{aligned}
\mathrm{LR}_{\underset{\sim}{X}}(\underset{\sim}{x}) & =\frac{f\left(\underset{\sim}{x} \mid \theta_{1}\right)}{f\left(\underset{\sim}{x} \mid \theta_{0}\right)}=\frac{P_{\theta_{1}}(\underset{\sim}{X}=\underset{\sim}{x})}{P_{\theta_{0}}(\underset{\sim}{X}=\underset{\sim}{x})} \\
& =\frac{P_{\theta_{1}}\left(T(\underset{\sim}{X}=T(\underset{\sim}{x})) P_{\theta_{1}}(\underset{\sim}{X}=\underset{\sim}{x} \mid T=t)\right.}{P_{\theta}(T=t) P_{\theta_{0}}(\underset{\sim}{X}=\underset{\sim}{x} \mid T=t)} \\
& =\frac{P_{\theta_{1}}(T=t)}{P_{\theta_{0}}(T=t)}=\frac{f_{T}\left(t \mid \theta_{1}\right)}{f_{T}\left(t \mid \theta_{0}\right)}=\mathrm{LR}_{T}(t) .
\end{aligned}
$$

Thus $\operatorname{LR}_{X}(x)>k$ iff $\mathrm{LR}_{T}(t)>k$. Most powerful tests based on X or T are equivalent. (Always produce same outcome, accept or reject.)

1.4 Power function, size and level

Let $X \sim P_{\theta}, \theta \in \Theta$. Let R be the rejection region for a test of $H_{0}: \theta \in \Theta_{0}$ vs $H_{1}: \theta \in \Theta_{1}$.
Definition 2. (Power function) $P_{\theta}(X \in R)=\beta(\theta)$.
Note: For $\theta \in \Theta_{0}, \beta(\theta)=$ prob of Type I error. For $\theta \in \Theta_{1}, 1-\beta(\theta)=$ prob of Type II error. Performance of a test is judged by power function. Tests are compared via power functions.
For $0 \leq \alpha \leq 1$, a test is size α if

$$
\sup _{\theta \in \Theta_{0}} \beta(\theta)=\alpha .
$$

and level α if

$$
\sup _{\theta \in \Theta_{0}} \beta(\theta) \leq \alpha .
$$

2 Likelihood Ratio Test (LRT)

Suppose $\mathbf{X} \sim P_{\theta}, \theta \in \Theta$, with oint pdf (or pmf) $f(\mathbf{x} \mid \theta)$. For observed data \mathbf{x}, the likelihood function is $L(\theta \mid \mathbf{x}) \equiv f(\mathbf{x} \mid \theta)$. The LRT statistic for testing

$$
H_{0}: \theta \in \Theta_{0}, \quad \text { versus } \quad H_{1}: \theta \in \Theta_{0}^{c}
$$

is given by

$$
\lambda(\mathbf{x})=\frac{\sup _{\theta \in \Theta_{0}} L(\theta \mid \mathbf{x})}{\sup _{\theta \in \Theta} L(\theta \mid \mathbf{x})}=\frac{L\left(\hat{\theta}_{0} \mid \mathbf{x}\right)}{L(\hat{\theta} \mid \mathbf{x})}
$$

where $\hat{\theta}_{0}=\operatorname{argmax}_{\theta \in \Theta_{0}} L(\theta \mid \mathbf{x})$ and $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} L(\theta \mid \mathbf{x})$.
The LRT rejects for small values of $\lambda(\mathbf{x})$; the test has rejection region (critical region) given by

$$
R=\{\mathbf{x}: \lambda(\mathbf{x}) \leq c\}
$$

where c is chosen so that

$$
\sup _{\theta \in \Theta_{0}} P_{\theta}(\lambda(\mathbf{X}) \leq c)=\alpha \quad(\text { or failing that }, \leq \alpha)
$$

for some pre-specified value α (say 0.05 or 0.01). Sometimes the exact distribution of $\lambda(\mathbf{X})$ can be obtained and then used to find c giving an exact size α test. But often this cannot be done, and we have to rely on the following asymptotic approximation.

3 Asymptotic Distribution of LRT Statistic

Consider a sequence of successively larger data sets

$$
\mathbf{X}_{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

and let $\lambda_{n}\left(\mathbf{X}_{n}\right)$ be the LRT statistic based on \mathbf{X}_{n}.
Theorem 1. If $\theta \in \Theta_{0}$, then (under regularity conditions)

$$
-2 \log \lambda_{n}\left(\mathbf{X}_{n}\right) \xrightarrow{d} \chi_{k}^{2}, \quad \text { as } \quad n \rightarrow \infty
$$

where $k \equiv\left(\operatorname{dim}(\Theta)-\left(\operatorname{dim} \Theta_{0}\right)\right)$.
Thus, if c^{*} satisfies $P\left(\chi_{k}^{2} \geq c^{*}\right)=\alpha$, then the rejection region $R=\left\{\mathbf{x}:-2 \log \lambda(\mathbf{x}) \geq c^{*}\right\}$ gives an approximate size α test for larger sample sizes.
Comment: The test statistics $\lambda(\mathbf{x})$ and $-2 \log \lambda(\mathbf{x})$ are equivalent since

$$
\lambda(\mathbf{x}) \leq c, \quad \text { iff }-2 \log \lambda(\mathbf{x}) \geq c^{*}
$$

where $c^{*} \equiv-2 \log c$.
It is often convenient to replace the LRT statistic $\lambda(\mathbf{x})$ by an equivalent statistic obtained by applying a strictly monotone transformation.
Comment on the regularity conditions: Conditions are required on both the family of distributions $f(\mathbf{x} \mid \theta)$ and the set Θ_{0}. The family $f(\mathbf{x} \mid \theta)$ must satisfy conditions like those required for the consistency and asymptotic normality of the MLE (and the validity of the Fisher information). The set Θ_{0} must be a lower dimensional subspace (or manifold) of Θ.

Lemma 2. Let $T, n>0$. Define

$$
H\left(\sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-T /\left(2 \sigma^{2}\right)}, \quad \sigma^{2}>0
$$

Then

$$
\begin{aligned}
\operatorname{argmax}_{\sigma^{2}>0} H\left(\sigma^{2}\right) & =T / n \equiv \hat{\sigma}^{2}, \text { and } \\
\sup _{\sigma^{2}>0} H\left(\sigma^{2}\right) & =H\left(\hat{\sigma}^{2}\right)=\left(2 \pi \hat{\sigma}^{2}\right)^{-n / 2} e^{-n / 2} .
\end{aligned}
$$

Example: Observe X_{1}, \ldots, X_{n} iid $\mathrm{N}\left(0, \sigma^{2}\right)$. Find LRT of

$$
H_{0}: \sigma^{2}=\sigma_{0}^{2} \quad \text { versus } \quad H_{1}: \sigma^{2} \neq \sigma_{0}^{2} .
$$

Here:

$$
\begin{aligned}
\Theta & =(0, \infty) \quad \text { and } \Theta_{0}=\left\{\sigma_{0}^{2}\right\} . \\
L\left(\sigma^{2}\right) & =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\left(2 \sigma^{2}\right)^{-1} \sum_{i} x_{i}^{2}\right\} . \\
\operatorname{argmax}_{\Theta} L\left(\sigma^{2}\right) & =n^{-1} \sum_{i} x_{i}^{2} \equiv \hat{\sigma}^{2} \quad\left(\text { so that } \sum_{i} x_{i}^{2}=n \hat{\sigma}^{2}\right) \\
\lambda(\mathbf{x}) & =\frac{L\left(\sigma_{0}^{2}\right)}{L\left(\hat{\sigma}^{2}\right)}=\frac{\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left\{-\left(2 \sigma_{0}^{2}\right)^{-1} n \hat{\sigma}^{2}\right\}}{\left(2 \pi \hat{\sigma}^{2}\right)^{-n / 2} \exp \{-n / 2\}} \\
& =e^{n / 2}\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)^{n / 2} \exp \left[-\frac{n}{2}\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)\right] \\
& =\psi\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)
\end{aligned}
$$

where $\psi(u) \equiv e^{n / 2} u^{n / 2} e^{-(n / 2) u}$.
With $X_{1}, X_{2}, \ldots, X_{n}$ iid $\mathrm{N}\left(0, \sigma^{2}\right)$, the LRT of

$$
H_{0}: \sigma^{2}=\sigma_{0}^{2} \quad \text { vs. } \quad H_{1}: \sigma^{2} \neq \sigma_{0}^{2}
$$

rejects in the region

$$
R=\{x: \lambda(x) \leq c\}
$$

where

$$
\lambda(x)=\psi\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right), \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}, \quad \psi(u)=e^{n / 2} u^{n / 2} e^{-(n / 2) u} .
$$

The function ψ is maximized at $u=1$, refer to the following figure. Find a and b which are functions of c such that $\psi(a)=\psi(b)=c$.

Thus

$$
R=\left\{x: \frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}} \leq a(c) \quad \text { or } \quad \frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}} \geq b(c)\right\} .
$$

We reject when $\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}$ departs far enough from 1.
Obtaining an exact level α test:

$$
\begin{aligned}
P_{\sigma_{0}^{2}}(X \in R) & =1-P_{\sigma_{0}^{2}}\left(a(c)<\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}<b(c)\right) \\
& =1-P_{\sigma_{0}^{2}}\left(n a(c)<\frac{n \hat{\sigma}^{2}}{\sigma_{0}^{2}}<n b(c)\right)
\end{aligned}
$$

Figure 4: Plot of $\psi(u)$

Note that

$$
\frac{n \hat{\sigma}^{2}}{\sigma_{0}^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}}{\sigma_{0}}\right)^{2} \sim \chi_{n}^{2}
$$

under H_{0}. An exact level α test is thus obtained by chosen c so that

$$
P\left(n a(c)<\chi_{n}^{2}<n b(c)\right)=1-\alpha .
$$

Finding c requires computation. An easier approach is to reject H_{0} when

$$
\frac{n \hat{\sigma}^{2}}{\sigma_{0}^{2}} \leq \chi_{n}^{2}(\alpha / 2) \quad \text { or } \quad \frac{n \hat{\sigma}^{2}}{\sigma_{0}^{2}} \geq \chi_{n}^{2}(1-\alpha / 2)
$$

where $\chi_{n}^{2}(\alpha / 2)$ and $\chi_{n}^{2}(1-\alpha / 2)$ are the values which cut off probability $\alpha / 2$ in the left and right tails of the χ_{n}^{2} distribution.
Example continued: (A variation) Find the LRT with size α of

$$
H_{0}: \sigma^{2} \leq \sigma_{0}^{2} \quad \text { versus } \quad H_{1}: \sigma^{2}>\sigma_{0}^{2}
$$

Now we have: $\Theta_{0} \subset\left(0, \sigma_{0}^{2}\right]$. Note that

$$
\operatorname{argmax}_{\sigma^{2} \in \Theta_{0}} L\left(\sigma^{2}\right) \equiv \hat{\sigma}_{0}^{2}=\left\{\begin{array}{lll}
\hat{\sigma}^{2} & \text { if } & \hat{\sigma}^{2} \leq \sigma_{0}^{2} \\
\sigma_{0}^{2} & \text { if } & \hat{\sigma}^{2}>\sigma_{0}^{2}
\end{array}\right.
$$

since the likelihood function falls away monotonically on each size of $\hat{\sigma}^{2}$. Hence

$$
\begin{aligned}
\lambda(\mathbf{x})=\frac{L\left(\sigma_{0}^{2}\right)}{L\left(\hat{\sigma}^{2}\right)} & = \begin{cases}1 & \text { if } \quad \hat{\sigma}^{2} \leq \sigma_{0}^{2} \\
L\left(\sigma_{0}^{2}\right) / L\left(\hat{\sigma}^{2}\right) & \text { if } \quad \hat{\sigma}^{2}>\sigma_{0}^{2}\end{cases} \\
& = \begin{cases}1 \text { if } \hat{\sigma}^{2} \leq \sigma_{0}^{2} \\
\psi\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right) & \text { if } \hat{\sigma}^{2}>\sigma_{0}^{2}\end{cases}
\end{aligned}
$$

Since $\psi(u)$ decreases for $u \geq 1$, we have $\lambda(\mathbf{x}) \leq c$ iff $\hat{\sigma}^{2} / \sigma_{0}^{2} \geq c^{*}$ iff $S \equiv \sum_{i=1}^{n} X_{i}^{2} / \sigma_{0}^{2} \geq c^{\prime}$ where c^{\prime} is chosen to give size α.

$$
\sup _{\sigma^{2} \in \Theta_{0}} P_{\sigma^{2}}\left(S \geq c^{\prime}\right)=P_{\sigma_{0}^{2}}\left(S \geq c^{\prime}\right)=\alpha
$$

if we choose c^{\prime} such that $P\left(\chi_{n}^{2} \geq c^{\prime}\right)=\alpha$.
Example continued: Another variation Observe that $X_{1}, X_{2}, \ldots, X_{n}$ iid $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Fin the LRT of

$$
H_{0}: \sigma^{2}=\sigma_{0}^{2}, \mu \in \mathbb{R} \quad \text { vs. } H_{1}: \sigma^{2} \neq \sigma_{0}^{2}, \mu \in \mathbb{R}
$$

Now we have:

$$
\begin{aligned}
\Theta & =\left\{\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}, \sigma^{2}>0\right\} \\
\Theta_{0} & =\left\{\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}, \sigma^{2}=\sigma_{0}^{2}\right\} \\
L\left(\mu, \sigma^{2}\right) & =\left(2 \pi \sigma^{2}\right)^{n / 2} \exp \left(-\left(2 \sigma^{2}\right)^{-1} \sum_{i}\left(x_{i}-\mu\right)^{2}\right) \\
\operatorname{argmax}_{\left(\mu, \sigma^{2}\right) \in \Theta} L\left(\mu, \sigma^{2}\right) & =\left(\bar{x}, \hat{\sigma}^{2}\right), \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
\operatorname{argmax}_{\left(\mu, \sigma^{2}\right) \in \Theta_{0}} L\left(\mu, \sigma^{2}\right) & =\left(\bar{x}, \sigma_{0}^{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\lambda(\mathbf{x}) & =\frac{L\left(\bar{x}, \sigma_{0}^{2}\right)}{L\left(\bar{x}, \hat{\sigma}^{2}\right)}=\frac{\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left(-\left(2 \sigma_{0}^{2}\right)^{-1} n \hat{\sigma}^{2}\right)}{\left(2 \pi \hat{\sigma}^{2}\right)^{-n / 2} \exp (-n / 2)} \\
& =e^{n / 2}\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)^{n / 2} \exp \left[-\frac{n}{2}\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)\right]=\psi\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)
\end{aligned}
$$

where $\psi(u)=e^{n / 2} u^{n / 2} e^{(-n / 2) u}$. Just like before but with a different definition of $\hat{\sigma}^{2}$. Now determine critical values using $n \hat{\sigma}^{2} / \sigma_{0}^{2} \sim \chi_{n-1}^{2}$ under H_{0}.

4 Uniformly most powerful test for composite hypothesis

Consider a family of distributions $f(\underset{\sim}{x} \mid \theta)$ with

$$
H_{0}: \theta \leq \theta_{0} \quad \text { versus } \quad H_{1}: \theta>\theta_{0}
$$

and let T be sufficient for θ and $\mathrm{LR}_{T}(t)$ is non-decreasing.
Theorem 2. (Karlin-Rubin) If any test with rejection region $R=\{T>c\}$ satisfies $\sup _{\theta \leq \theta_{0}} P_{\theta}(\underset{\sim}{X} \in R)=\alpha$, then it is an uniformly most powerful test in the sense that its power function dominates the power function of any α-level test for all points in the alternative hypothesis.

