9 U-Statistics

Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ are $\mathrm{P} \in \mathscr{P}$ i.i.d. with CDF F . Our goal is to estimate the expectation $t(P)=\operatorname{Eh}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$. Note that this expectation requires more than one X in contrast to $E X, E X^{2}$, or $\mathrm{Eh}(\mathrm{X})$. One example is $E\left|X_{2}-\mathrm{X}_{1}\right|$ or $\mathrm{P}\left(\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \in \mathrm{S}\right)$.

For $\operatorname{Eh}\left(\mathrm{X}_{1}\right)$, the empirical estimator is asymptotically optimal. Now, U-statistics generalize the idea. The advantage of using U-statistics is unbiasedness.
Notation. Let $\mathrm{t}(\mathrm{P})=\int \cdots \int \mathrm{h}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \mathrm{dF}\left(\mathrm{x}_{1}\right) \cdots \mathrm{dF}\left(\mathrm{x}_{\mathrm{m}}\right)$ where h is a known function; h is called kernel. Assume that, in the following, without loss of generality, h is symmetric, i.e. $h\left(x_{1}, x_{2}\right)=h\left(x_{2}, x_{1}\right)$. If h is not symmetric, we can replace it with $h^{*}\left(x_{1}, \ldots, x_{m}\right)=$ $(\mathrm{m}!)^{-1} \sum_{\pi \in \Pi} \mathrm{h}\left(\mathrm{x}_{\pi(1)}, \ldots, \mathrm{x}_{\pi(\mathrm{m})}\right)$ where $\pi: \mathbb{N} \mapsto \mathbb{N}$ and Π is set of all possible permutations of $\{1, \ldots, \mathrm{~m}\}$. Note that h^{*} is also unbiased,

$$
\mathrm{Eh}^{*}=(\mathrm{m}!)^{-1} \sum_{\pi \in \Pi} \operatorname{Eh}\left(\mathrm{X}_{\pi(1)}, \ldots, \mathrm{X}_{\pi(\mathrm{m})}\right) \stackrel{\text { i.i.d }}{=}(\mathrm{m}!)^{-1} \sum_{\pi \in \Pi} \operatorname{Eh}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)=\mathrm{t}(\mathrm{P}) .
$$

Definition 9.1. Suppose $h: \mathbb{R}^{m} \mapsto \mathbb{R}$ is symmetric in its arguments. The U-statistic for estimating $t(P)=\operatorname{Eh}\left(X_{1}, \ldots, X_{m}\right)$ is a symmetric average

$$
\left.u=u\left(X_{1}, \ldots, X_{m}\right)=\frac{1}{\binom{n}{m}} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n} \cdots \sum_{i_{1}}, \ldots, X_{i_{m}}\right) .
$$

Example. Suppose $m=2$, then

$$
\begin{align*}
u=u\left(X_{1}, X_{2}\right) & =\frac{1}{\binom{n}{2}} \sum_{i_{1}<i_{2}} \sum_{n} h\left(X_{i_{1}}, X_{i_{2}}\right)=\frac{2}{n(n-1)} \sum_{i<j} \sum_{\mathrm{i}} h\left(X_{i}, X_{j}\right) \tag{1}\\
& =\frac{1}{n(n-1)} \sum_{i \neq j} \sum_{\mathrm{i}} h\left(X_{i}, X_{j}\right) \tag{2}
\end{align*}
$$

Remark.

$$
\mathrm{Eu}=\frac{1}{\binom{\mathrm{n}}{\mathrm{~m}}} \sum_{1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{m}} \leq \mathrm{n}} \ldots \sum_{\left.\mathrm{i}_{1}, \ldots, X_{\mathrm{i}_{\mathrm{m}}}\right)=\operatorname{Eh}\left(\mathrm{X}_{1}, \ldots, X_{\mathrm{m}}\right)=\mathrm{t}(\mathrm{P}) ~} \text {. }
$$

Example 9.2.
(a) Suppose $t(P)=E X_{1}=\int x_{1} d F\left(x_{1}\right)$. Then, $h\left(x_{1}\right)=x_{1}$ and

$$
u\left(X_{1}, \ldots, X_{m}\right)=\frac{1}{\binom{n}{1}} \sum_{i_{1}} h\left(X_{i_{1}}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}} X_{i}=\bar{X} .
$$

(b) Suppose $t(P)=\left(E X_{1}\right)^{2}=\left(\int x_{1} d F\left(x_{1}\right)\right)^{2}$. Then $u^{2}=\bar{X}^{2}$ from (a) is biased since

$$
\mathrm{E}\left(\overline{\mathrm{X}}^{2}\right)=\mathrm{n}^{-2}[\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j} \neq \mathrm{i}} \underbrace{\mathrm{EX}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}}_{=\left(\mathrm{EX}_{1}\right)^{2}}+\sum_{\mathrm{i}=1}^{\mathrm{n}} \underbrace{\mathrm{E}\left(\mathrm{X}_{\mathrm{i}}^{2}\right)}_{\mathrm{EX} X_{1}^{2} \neq\left(\mathrm{EX}_{1}\right)^{2}}] \neq\left(\mathrm{EX}_{1}\right)^{2} .
$$

Now, write $\mathrm{t}(\mathrm{P})=\iint \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{dF}\left(\mathrm{x}_{1}\right) \mathrm{dF}\left(\mathrm{x}_{2}\right)$ and $\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{x}_{2}$. Then

$$
\mathrm{u}=\mathrm{u}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\frac{2}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}<\mathrm{j}} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} .
$$

(c) Suppose $t(P)=P\left(X_{1} \leq t_{0}\right)=F\left(t_{0}\right)=\int h\left(x_{1}\right) d F\left(x_{1}\right)$. Then $h\left(x_{1}\right)=1_{\left(-\infty, t_{0}\right)}\left(x_{1}\right)$ and

$$
\mathrm{u}=\mathrm{n}^{-1} \sum_{\mathrm{i}} 1\left\{\mathrm{X}_{\mathrm{i}} \leq \mathrm{t}_{0}\right\}=\hat{\mathrm{F}}\left(\mathrm{t}_{0}\right)
$$

which is just the empirical CDF.
(d) Supposet $(P)=\operatorname{VarX}_{1}=\iint \frac{x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}}{2} d F\left(x_{1}\right) d F\left(x_{2}\right)$. Then $h\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}\right) / 2=$ $\left(x_{1}-x_{2}\right)^{2} / 2$. Note that

$$
\operatorname{Eh}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left\{\operatorname{Var}\left(\mathrm{X}_{1}\right)+\left[\mathrm{E}\left(\mathrm{X}_{1}\right)\right]^{2}+\operatorname{Var}\left(\mathrm{X}_{2}\right)+\left(\mathrm{EX}_{2}\right)^{2}-2 \mathrm{E}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)\right\} / 2 \stackrel{\text { i.i.d. }}{=} \operatorname{Var}\left(\mathrm{X}_{1}\right) .
$$

Hence,

$$
\begin{aligned}
\mathrm{u} & =\frac{2}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}<\mathrm{j}} \sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right) \\
& =\frac{1}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i} \neq \mathrm{j}} \sum_{\mathrm{i}} \frac{X_{\mathrm{i}}^{2}+\mathrm{X}_{\mathrm{j}}^{2}-2 \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}}{2} \\
& =\frac{1}{\mathrm{n}-1} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2} \\
& \neq \hat{\sigma}^{2}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2} .
\end{aligned}
$$

Note that $\hat{\sigma}^{2}$ is a biased estimator and \mathbf{u} is an unbiased estimator.
(e) Suppose $t(P)=E\left|X_{1}-X_{2}\right|=\iint\left|x_{1}-x_{2}\right| d F\left(x_{1}\right) d F\left(x_{2}\right)$ (measure of dispersion). Then

$$
\mathrm{u}=\frac{2}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}<\mathrm{j}} \sum_{\mathrm{i}}\left|\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}\right| .
$$

u is called Gini's Mean Difference.
(f) Suppose $\mathrm{t}(\mathrm{P})=\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2} \leq 0\right)=\iint 1\left\{\mathrm{x}_{1}+\mathrm{x}_{2} \leq 0\right\} \mathrm{dF}\left(\mathrm{x}_{1}\right) \mathrm{dF}\left(\mathrm{x}_{2}\right)$. Then, $\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=$ $1\left\{\mathrm{x}_{1}+\mathrm{x}_{2} \leq 0\right\}$ and

$$
\mathrm{u}=\frac{2}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}<\mathrm{j}} \sum_{1\left\{\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}} \leq 0\right\} . . . ~}
$$

Remark 9.3 (Preliminary Remark). Write $\underline{X}_{(n)}=\left(\mathrm{X}_{(1)}, \ldots, \mathrm{X}_{(\mathrm{n})}\right)$ as the order statistic. U-statistic can be regarded as conditional expectation given $\underline{X}_{(\mathrm{n})}$. For $\mathrm{m}=1$,

$$
\mathrm{u}=\mathrm{n}^{-1} \sum_{\mathrm{i}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{n}^{-1} \sum_{\mathrm{i}} \mathrm{~h}\left(\mathrm{X}_{(\mathrm{i})}\right)=\mathrm{E}_{\hat{\mathrm{F}}}\left[\mathrm{~h}\left(\mathrm{X}_{1}\right) \mid \underline{X}_{(\mathrm{n})}\right] .
$$

For $\mathrm{m}=2$,

$$
\mathrm{u}=\frac{1}{\binom{\mathrm{n}}{2}} \sum_{\mathrm{i}<\mathrm{j}} \sum_{\mathrm{i}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)=\frac{1}{\binom{\mathrm{n}}{2}} \sum_{\mathrm{i}<\mathrm{j}} \sum_{\mathrm{F}} \mathrm{~h}\left(\mathrm{X}_{(\mathrm{i})}, \mathrm{X}_{(\mathrm{j})}\right)=\mathrm{E}_{\hat{\mathrm{F}}}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mid \underline{X}_{(\mathrm{n})}\right] .
$$

For arbitrary m,

$$
\mathbf{u}=\mathrm{E}_{\hat{\mathrm{F}}}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}}\right) \mid \underline{X}_{(\mathrm{n})}\right] .
$$

Now: any unbiased estimator $S=S\left(X_{1}, \ldots, X_{n}\right)$ can be improved by its U-statistic version (or S^{*} if S is not symmetric)

$$
\mathrm{u}=\mathrm{E}_{\hat{\mathrm{F}}}\left[\mathrm{~S} \mid \underline{\mathrm{X}}_{(\mathrm{n})}\right] .
$$

For example, X_{1} is unbiased for EX. Now, $\mathbf{u}=\mathrm{E}_{\hat{\mathrm{F}}}\left(\mathrm{X}_{1} \mid \underline{X}_{(\mathrm{n})}\right)=\mathrm{n}^{-1} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{(\mathrm{i})}=\overline{\mathrm{X}}=\mathrm{n}^{-1} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}=$ $\mathrm{E}_{\hat{\mathrm{F}}}\left(\mathrm{X}_{1}\right)$.

Theorem 9.4. Let $S=S\left(X_{1}, \ldots, X_{n}\right)$ be an unbiased estimator of $t(P)$ with corresponding U statistic u . Then, u is unbiased as well and Varu $\leq \operatorname{VarS}$ with the equality holding if $\mathrm{P}(\mathrm{u}=$ $\mathrm{S})=1$.

Proof. u is unbiased:

$$
\mathrm{E}(\mathbf{u})=\underbrace{\mathrm{E}\left[\mathrm{E}_{\hat{\mathrm{F}}}\left(\mathrm{~S} \mid \underline{\mathrm{X}}_{(\mathrm{n})}\right)\right]}_{\mathrm{E}(\mathrm{~S})}=\mathrm{t}(\mathrm{P}) .
$$

Since both u and S are unbiased we show $\mathrm{Eu}^{2} \leq \mathrm{ES}^{2}$,

$$
\mathrm{Eu}^{2}=\mathrm{E}\left[\mathrm{E}_{\hat{\mathrm{F}}}^{2}\left(\mathrm{~S} \mid \underline{\mathrm{X}}_{(\mathrm{n})}\right)\right] \stackrel{\text { Jensen inequ. }}{\leq} \mathrm{E}\left[\mathrm{E}_{\hat{\mathrm{F}}}\left(\mathrm{~S}^{2} \mid \underline{\mathrm{X}}_{(\mathrm{n})}\right)\right]=\mathrm{E}\left(\mathrm{~S}^{2}\right)
$$

with " $=$ " if the distribution of $\mathrm{E}_{\hat{\mathrm{F}}}\left(\mathrm{S} \mid \underline{X}_{(\mathrm{n})}\right)$ is degenerate with $\mathrm{E}_{\hat{\mathrm{F}}}\left(\mathrm{S} \mid \underline{X}_{(\mathrm{n})}\right)=\mathrm{S}$ almost surely.

Note: This also follows from the Rao-Blackwell Theorem: Taking conditional expectation of an unbiased statistic conditional on a sufficient statistic (eg. $\underline{X}_{(\mathrm{n})}$ here) will give us an estimator which is as least as good in the sense of lower risk/variance.

Remark 9.5 (The Variance for $\mathrm{m} \leq 2$ (heuristics)).

$$
\mathrm{m}=1
$$

$$
\operatorname{Varu}=\operatorname{Var}\left(\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}\right)\right)=\frac{1}{\mathrm{n}} \operatorname{Varh}\left(\mathrm{X}_{1}\right)=\mathrm{O}(1 / \mathrm{n})
$$

$\mathrm{m}=2$. Since

$$
\begin{aligned}
\mathrm{u} & =\frac{1}{\binom{\mathrm{n}}{2}} \sum_{\mathrm{i}<\mathrm{j}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)=\frac{2}{\mathrm{n}(\mathrm{n}-2)} \sum_{\mathrm{i}<\mathrm{j}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right) \\
& =\frac{1}{\binom{\mathrm{n}}{2}}[\underbrace{\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)+\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{3}\right)+\cdots+\mathrm{h}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right)}_{\text {not independent }}],
\end{aligned}
$$

then

$$
\begin{aligned}
\operatorname{Varu} & =\operatorname{Var}\left(\frac{2}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}} \sum_{\mathrm{j}>\mathrm{i}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\right) \\
& =\left(\frac{2}{\mathrm{n}(\mathrm{n}-1)}\right)^{2} \sum_{\mathrm{i}} \sum_{\mathrm{j}>\mathrm{i}} \sum_{\mathrm{k}} \sum_{1>\mathrm{k}} \underbrace{\operatorname{Cov}\left[\mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right), \mathrm{h}\left(\mathrm{X}_{\mathrm{k}}, \mathrm{X}_{1}\right)\right] .}_{=0 \text { if } \mathrm{i}, \mathrm{j}, \mathrm{k}, 1 \text { different }}
\end{aligned}
$$

The second largest term (three sums): e.g. $i=k$ but k, j, l are different $\left(\simeq u^{3}\right)$

$$
\text { Varu } \sim\left(\frac{1}{\mathrm{n}(\mathrm{n}-1)}\right)^{2} \mathrm{n}^{3} \sim \frac{\mathrm{n}^{3}}{\mathrm{n}^{4}}=\frac{1}{\mathrm{n}} \text { same order as } \mathrm{m}=1 .
$$

Thus, we expect in general, Varu $=\mathrm{O}(1 / \mathrm{n})$.
Notation. $\mathrm{h}_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}}\right)=\mathrm{E}\left[\mathrm{h}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right) \mid \mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}\right]$ and $\sigma_{\mathrm{i}}^{2}=\operatorname{Varh}_{\mathrm{i}}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}}\right)$

Lemma 9.6.

(a) $\mathrm{Eh}_{\mathrm{i}}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}}\right)=\mathrm{t}(\mathrm{P})\left(=\operatorname{Eh}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)\right)$ for all $1 \leq \mathrm{i} \leq \mathrm{m}$.
(b) $\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}+1}, \ldots, \mathrm{X}_{\mathrm{m}}\right), \mathrm{h}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}+1}^{\prime}, \ldots, \mathrm{X}_{\mathrm{m}}^{\prime}\right)\right]=\sigma_{\mathrm{i}}^{2}$

Proof. We only consider $\mathrm{m}=2$ here.
(a)

$$
\begin{aligned}
& \mathrm{Eh}_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{E}\left\{\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right]\right\}=\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right]=\mathrm{t}(\mathrm{P}) \\
& \mathrm{Eh}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{E}\left\{\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mid \mathrm{X}_{1}\right]\right\}=\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right]=\mathrm{t}(\mathrm{P})
\end{aligned}
$$

(b) $\mathrm{i}=2$.

$$
\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right]=\operatorname{Var}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right]=\operatorname{Varh}_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\sigma_{2}^{2} .
$$

The second equality is because $\mathrm{h}_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{E}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right]=\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$. $\mathrm{i}=1$.

$$
\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right]=\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathbf{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right]-\underbrace{\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right] \mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right]}_{=\left\{\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right]\right\}^{2}=[\mathrm{t}(\mathrm{P})]^{2}} .
$$

Note that first term on the right hand side can be computed by

$$
\begin{aligned}
\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right] & =\mathrm{E}\left\{\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right) \mid \mathrm{X}_{1}\right]\right\} \\
& =\mathrm{E}\left\{\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mid \mathrm{X}_{1}\right] \mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right) \mid \mathrm{X}_{1}\right]\right\} \\
& =\mathrm{Eh}_{1}^{2}\left(\mathrm{X}_{1}\right) .
\end{aligned}
$$

Theorem 9.7 (Hoeffding).

(a) The variance of the U-statistic is

$$
\operatorname{Varu}=\frac{1}{\binom{\mathrm{n}}{\mathrm{~m}}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\binom{\mathrm{~m}}{\mathrm{i}}\binom{\mathrm{n}-\mathrm{m}}{\mathrm{~m}-\mathrm{i}} \sigma_{\mathrm{i}}^{2} .
$$

Note that one can compute σ_{i}^{2} from Lemma 9.6.
(b) If $\sigma_{i}^{2}>0$ and $\sigma_{i}^{2}<\infty$ for $\mathrm{i}=1,2, \ldots$, m, then

$$
\operatorname{Var}(\sqrt{\mathrm{n}} \mathbf{u}) \rightarrow \mathrm{m}^{2} \sigma_{\mathrm{i}}^{2}
$$

Proof. (a) For general proof, see Lee "U-statistics" (1990). We only prove the case of $m=2$.
We want to show that

$$
\left.\operatorname{Varu}=\frac{1}{\binom{\mathrm{n}}{2}}\left(\binom{2}{1}\binom{\mathrm{n}-2}{2-1} \sigma_{1}^{2}+\binom{2}{2}\binom{\mathrm{n}-2}{2-2} \sigma_{2}^{2}\right)=\frac{1}{\binom{\mathrm{n}}{2}}\left[2(\mathrm{n}-2) \sigma_{1}^{2}\right)+\sigma_{2}^{2}\right]
$$

with $\sigma_{1}^{2}=\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right]$ and $\sigma_{2}^{2}=\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right]=\operatorname{Var}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right]$.
From Remark 9.5 we have

$$
\begin{aligned}
\operatorname{Varu} & =\left(\frac{1}{\binom{\mathrm{n}}{2}}\right)^{2} \sum_{\mathrm{i}} \sum_{\mathrm{j}>\mathrm{i}} \sum_{\mathrm{k}} \sum_{1>k} \operatorname{Cov}\left[\mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right), \mathrm{h}\left(\mathrm{X}_{\mathrm{k}}, \mathrm{X}_{1}\right)\right] \\
& =\frac{1}{\binom{\mathrm{n}}{2}} \underbrace{\sum_{\mathrm{i}} \sum_{\mathrm{j}>\mathrm{i}} \sum_{\mathrm{k}} \sum_{1>\mathrm{k}} \frac{\operatorname{Cov}\left[\mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right), \mathrm{h}\left(\mathrm{X}_{\mathrm{k}}, \mathrm{X}_{1}\right)\right]}{\binom{\mathrm{n}}{2}}}_{=2(\mathrm{n}-2) \sigma_{1}^{2}+\sigma_{2}^{2}} .
\end{aligned}
$$

Case $1 \mathrm{i}, \mathrm{j}, \mathrm{k}, 1$ are all different. Then $\mathrm{Cov}=0$.
Case $2 \mathrm{i}=\mathrm{k}$ and $\mathrm{j}=\mathrm{l}$:

$$
\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right), \mathrm{h}\left(\mathrm{X}_{\mathrm{k}}, \mathrm{X}_{\mathrm{l}}\right)\right]=\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right), \mathrm{h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\right]=\operatorname{Var}\left[\mathrm{h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\right]=\sigma_{2}^{2} .
$$

Note that the number of ways to choose i, j out of $\{1,2, \ldots, \mathrm{n}\}$ is $\binom{\mathrm{n}}{2}$. This gives us $\binom{\mathrm{n}}{2} \sigma_{2}^{2} /\binom{\mathrm{n}}{2}=\sigma_{2}^{2}$.

Case $3(i=k$ and $j \neq 1)$ or $(i \neq k$ and $j=1)$.

$$
\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right), \mathrm{h}\left(\mathrm{X}_{\mathrm{k}}, \mathrm{X}_{\mathrm{l}}\right)\right]=\sigma_{1}^{2} .
$$

Note that the number of ways to choose $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}$ is

$$
\underbrace{n}_{i} \cdot \underbrace{(n-1)}_{j \neq i} \cdot \frac{1}{2} \cdot \underbrace{n-2}_{1} \cdot \underbrace{2}_{\text {or }}=\binom{n}{2} 2(n-2) .
$$

This gives

$$
\frac{\binom{\mathrm{n}}{2} 2(\mathrm{n}-2) \sigma_{1}^{2}}{\binom{\mathrm{n}}{2}}=2(\mathrm{n}-2) \sigma_{1}^{2} .
$$

(b) Consider the variance formula from (a)

$$
\binom{n-m}{k}=\frac{(n-m)(n-m-1) \cdots(n-m-k+1)}{k!} \sim \frac{n^{k}}{k!}
$$

is large if k is large. This implies that $\binom{n-m}{m-i}$ is large if $m-i$ is large, i.e. $i=1$. Thus the terms of the sum are dominated by the $i=1$ term, i.e., by

$$
\binom{\mathrm{m}}{1}\binom{\mathrm{n}-\mathrm{m}}{\mathrm{~m}-1} \sigma_{1}^{2} \frac{1}{\left(\begin{array}{c}
\mathrm{n}
\end{array}\right)} \sim \mathrm{m} \frac{\mathrm{n}^{\mathrm{m}-1}}{(\mathrm{~m}-1)!} \sigma_{1}^{2} \frac{1}{\mathrm{n}^{\mathrm{m}} / \mathrm{m}!}=\mathrm{m}^{2} \frac{\sigma_{2}^{2}}{\mathrm{n}} .
$$

Hence, $\operatorname{Var}(\sqrt{\mathrm{n}} \mathbf{u}) \rightarrow \mathrm{m}^{2} \sigma_{1}^{2}$.

Theorem 9.8.

$$
\sqrt{\mathrm{n}}(\mathrm{u}-\mathrm{t}(\mathrm{P})) \xrightarrow{\mathscr{G}} \mathrm{N}\left(0, \mathrm{~m}^{2} \sigma_{1}^{2}\right) .
$$

Proof. For general proof, see p. 178 of Serfling.

$$
\mathbf{u}_{\mathrm{n}}=\sum_{\mathrm{c}=1}^{\mathrm{m}}\binom{\mathrm{~m}}{\mathrm{c}}\binom{\mathrm{n}}{\mathrm{c}}^{-1} \sum_{1 \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{c}} \leq \mathrm{n}} \mathrm{~g}_{\mathrm{c}}\left(\mathrm{X}_{\mathrm{i}_{1}}, \ldots, \mathrm{X}_{\mathrm{i}_{\mathrm{c}}}\right)+\mathrm{o}_{\mathrm{p}}\left(\mathrm{n}^{-1 / 2}\right) .
$$

For $m=2$,

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{1 / 2}\left(\mathrm{u}_{\mathrm{n}}-\mathrm{t}(\mathrm{P})\right)=\mathrm{n}^{-1 / 2} \sum 2\left[\mathrm{~h}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)-\mathrm{t}(\mathrm{P})\right]+\mathrm{o}_{\mathrm{p}}(1):=\mathrm{T}_{\mathrm{n}}^{*} .
$$

We want to show that $E\left(T_{n}-T_{n}^{*}\right) \rightarrow 0\left(\Rightarrow T_{n}-T_{n}^{*}=o_{p}(1)\right)$.

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{~T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}}^{*}\right)^{2}= & \operatorname{Var}\left(\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}}^{*}\right) \\
= & \operatorname{Var}\left(\mathrm{T}_{\mathrm{n}}\right)+\operatorname{Var}\left(\mathrm{T}_{\mathrm{n}}^{*}\right)-2 \operatorname{Cov}\left(\mathrm{~T}_{\mathrm{n}}, \mathrm{~T}_{\mathrm{n}}^{*}\right) \\
= & \operatorname{Var}[\sqrt{\mathrm{n}}(\mathrm{u}-\mathrm{t}(\mathrm{P}))]+\operatorname{Var}\left(\frac{2}{\sqrt{\mathrm{n}}} \sum\left[\mathrm{~h}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)-\mathrm{t}(\mathrm{P})\right]\right) \\
& -2 \operatorname{Cov}\left(\sqrt{\mathrm{n}}(\mathrm{u}-\mathrm{t}(\mathrm{P})), \frac{2}{\sqrt{\mathrm{n}}} \sum\left[\mathrm{~h}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)-\mathrm{t}(\mathrm{P})\right)\right. \\
= & \underbrace{\operatorname{Var}(\sqrt{\mathrm{n}} \mathbf{u})}_{\rightarrow \mathrm{m}^{2} \sigma_{1}^{2}}+\underbrace{\frac{4}{\mathrm{n}} \sum \operatorname{Var}\left[\mathrm{~h}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)\right.}_{4 \sigma_{1}^{2}}-4 \underbrace{\sum \operatorname{Cov}\left(\mathbf{u}, \mathrm{~h}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)\right)}_{\stackrel{(\alpha)}{=2 \sigma_{1}^{2}}} \stackrel{\mathrm{n} \rightarrow \infty}{\rightarrow} 0 .
\end{aligned}
$$

For (*),

$$
\sum \operatorname{Cov}\left(\mathrm{u}, \mathrm{~h}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)\right)=\frac{1}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}} \sum_{\mathrm{k}} \sum_{\mathrm{l} \neq \mathrm{k}} \underbrace{\operatorname{Cov}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{\mathrm{k}}\right), \mathrm{h}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)\right]}_{\stackrel{\oplus}{\cong} \sigma_{1}^{2}, \text { if } \mathrm{k}=\mathrm{i} \text { or } \mathrm{l}=\mathrm{i}}=2 \sigma_{1}^{2} .
$$

The number of non-zero terms is $2 n(n-1)$.
For (\dagger),

$$
\begin{aligned}
& \sigma_{1}^{2} \stackrel{(9.6)}{=} \operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right] \\
& \quad=\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right]-[\mathrm{t}(\mathrm{P})]^{2} \\
& \quad=\mathrm{E}\left\{\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right) \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right]\right\}-[\mathrm{t}(\mathrm{P})]^{2} \\
& \quad=\mathrm{E}\{\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \underbrace{\left.\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right) \mid \mathrm{X}_{1} \mathrm{X}_{2}\right]\right\}}_{\left.=\mathrm{E}\left(\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)\right] \mathrm{X}_{1}\right)=\mathrm{h}_{1}\left(\mathrm{X}_{1}\right)}-[\mathrm{t}(\mathrm{P})]^{2} \\
& \\
& \\
& =\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \mathrm{h}_{1}\left(\mathrm{X}_{1}\right)\right] .
\end{aligned}
$$

Example 9.9. Suppose $t(P)=P\left(X_{1}+X_{2}>0\right), m=2, h\left(X_{1}, X_{2}\right)=1\left(X_{1}+X_{2}>0\right)$. Then

$$
\mathrm{u}=\frac{1}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}<\mathrm{j}} 1\left(\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{\mathrm{j}}>0\right)
$$

and, by Theorem $9.8, \sqrt{\mathrm{n}}\left(\mathrm{u}-\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right)\right)^{\mathscr{B}} \mathrm{N}\left(0,4 \sigma_{1}^{2}\right)$. The next thing is to calculate σ_{1}^{2}.

$$
\begin{aligned}
& \sigma_{1}^{2} \stackrel{(9.6)}{=} \operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right] \\
& \quad=\mathrm{E}\left[\mathrm{~h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}\right)\right]-\left[\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right)\right]^{2} \\
& \quad=\mathrm{E}\left[1\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right) 1\left(\mathrm{X}_{1}+\mathrm{X}_{2}^{\prime}>0\right)\right]-\left[\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right)\right]^{2} \\
& \quad=\mathrm{E}\left[1\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0, \mathrm{X}_{1}+\mathrm{X}_{2}^{\prime}>0\right)\right]-\left[\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right)\right]^{2} .
\end{aligned}
$$

To obtain an explicit form we need some assumptions. Suppose, for example, F is symmetric around zero, i.e. $\mathrm{P}\left(\mathrm{X}_{1}<\mathrm{a}\right)=\mathrm{P}\left(\mathrm{X}_{1}>-\mathrm{a}\right)=\mathrm{P}\left(-\mathrm{X}_{1}<\mathrm{a}\right)$ which implies X_{1} and $-\mathrm{X}_{1}$ have the same distribution. Moreover, suppose F is continuous. Then $P\left(X_{1}+X_{2}>0\right)=P\left(-X_{1}-X_{2}>\right.$ $0)=P\left(X_{1}+X_{2}<0\right)$ with $P\left(X_{1}+X_{2}=0=0\right)$, and therefore

$$
1=\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}<0\right)+\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}=0\right)+\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right)=2 \mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right) \Rightarrow \mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0\right)=\frac{1}{2}
$$

On the other hand, since $P\left(X_{1}+X_{2}>0\right)=P\left(X_{1}>-X_{2}\right)=P\left(X_{1}>X_{2}\right)$,
$\mathrm{P}\left(\mathrm{X}_{1}+\mathrm{X}_{2}>0, \mathrm{X}_{1}+\mathrm{X}_{2}^{\prime}>0\right)=\mathrm{P}\left(\mathrm{X}_{1}=\max \left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{2}^{\prime}\right\}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\max \left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right\}, \mathrm{i}=1,2,3\right)=1 / 3$.
In sum, $\sigma_{1}^{2}=1 / 3-(1 / 2)^{2}=1 / 12$.

Remark 9.10 (Generalization: Two-Sample Problems). Suppose X_{1}, \ldots, X_{n} are i.i.d. with cdf F, Y_{1}, \ldots, Y_{n} are i.i.d. with cdf G, and F and G are unknown, X_{i} and Y_{i} are independent. Let

$$
\mathrm{h}(\underbrace{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}_{x}}}_{\text {symmetric }}, \underbrace{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{m}_{\mathbf{x}}}}_{\text {symmetric }})
$$

be a function of $m_{X}+m_{Y}$ arguments, with $m_{X} \leq n_{X}$ and $m_{Y} \leq n_{Y}$. We want to estimate $t(P)=$ $\operatorname{Eh}\left(X_{1}, \ldots, X_{m_{X}}, Y_{1}, \ldots, Y_{m_{Y}}\right)$. For example, $t(P)=P\left(X_{1}<Y_{1}\right)=\operatorname{Eh}\left(X_{1}, Y_{1}\right)$ where $h(X, Y)=1(X<$ Y); or $t(P)=E|Y-X|$. Note also that $h\left(X_{1}, \ldots, X_{m_{X}}, Y_{1}, \ldots, Y_{m_{Y}}\right)$ is trivally unbiased for $t(P)=$ Eh. Thus $h\left(X_{i_{1}}, \ldots, X_{i_{m_{X}}}, Y_{j_{1}}, \ldots, Y_{j_{m_{Y}}}\right)$ with $1 \leq i_{1} \leq \ldots \leq i_{m_{X}} \leq n_{X}$ and $1 \leq j_{1} \leq \ldots \leq j_{m_{Y}} \leq n_{Y}$ is unbiased as well. The number of combinations is $\binom{n_{X}}{m_{X}}\binom{n_{Y}}{m_{Y}}$. Our unbiased estiamtor is

$$
\mathrm{u}=\frac{1}{\left(\begin{array}{c}
\mathrm{n}_{\mathrm{X}}
\end{array}\right)\binom{\mathrm{n}_{\mathrm{m}}}{\mathrm{~m}_{\mathrm{Y}}}} \sum \cdots \sum \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}_{1}}, \ldots, \mathrm{X}_{\mathrm{i}_{\mathrm{m}_{\mathrm{X}}}}, \mathrm{Y}_{\mathrm{j}_{1}}, \ldots, \mathrm{Y}_{\mathrm{j}_{\mathrm{m}_{\mathrm{Y}}}}\right)
$$

Example ($\mathrm{m}_{\mathrm{X}}=\mathrm{m}_{\mathrm{Y}}=2$).

$$
\mathrm{u}=\frac{1}{\binom{\mathrm{n}_{\mathrm{X}}}{2}\binom{\mathrm{n}_{\mathrm{Y}}}{2}} \sum_{\mathrm{i}<\mathrm{k}} \sum_{\mathrm{j}<1} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{k}}, \mathrm{Y}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{l}}\right)
$$

where $\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{Y}_{1}, \mathrm{Y}_{2}\right)=1\left(\left|\mathrm{X}_{2}-\mathrm{X}_{1}\right|<\left|\mathrm{Y}_{2}-\mathrm{Y}_{1}\right|\right)$. Then

$$
\mathrm{u}=\frac{1}{\binom{\mathrm{n}_{\mathrm{X}}}{2}\binom{\mathrm{n}_{\mathrm{Y}}}{2}} \underbrace{\sum_{\mathrm{i}<\mathrm{k}} \sum_{\mathrm{j}<1} 1\left(\left|\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{k}}\right|<\left|\mathrm{Y}_{\mathrm{j}}-\mathrm{Y}_{\mathrm{l}}\right|\right)}_{=\text {the number of }(\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}) \text { where } \mathrm{y} \text {-distance is larger }}
$$

and $t(P)=P\left(\left|Y_{2}-Y_{1}\right|>\left|X_{2}-X_{1}\right|\right)$. Note that this U-statistic can be used to test Y is more dispersed than X .

Remark 9.11 (Properties of the Two-Sample U-statistic).
(a) Formula for Varu, see Lee or Serfling.
(b) Asymptotic variance and normality. Let $\mathrm{n}=\mathrm{n}_{\mathrm{X}}+\mathrm{n}_{\mathrm{Y}}$ and $\mathrm{n}_{\mathrm{X}} / \mathrm{n} \rightarrow \mathrm{c}$ where $\mathrm{c} \in(0,1)$. Suppose $\operatorname{Var}\left[h\left(X_{1}, X_{2}, \ldots, X_{m_{X}}, Y_{1}, Y_{2}, \ldots, Y_{m_{Y}}\right)\right]>0$. Then

$$
\operatorname{Var}(\sqrt{\mathrm{n}} \mathbf{u}) \rightarrow \sigma^{2}=\frac{\mathrm{m}_{\mathrm{X}}^{2}}{\mathrm{c}} \sigma_{10}^{2}+\frac{\mathrm{m}_{\mathrm{Y}}^{2}}{\mathrm{c}} \sigma_{01}^{2}
$$

and

$$
\sqrt{\mathrm{n}}(\mathrm{u}-\mathrm{t}(\mathrm{P})) \xrightarrow{\mathscr{O}} \mathrm{N}\left(0, \sigma^{2}\right)
$$

where

$$
\begin{aligned}
& \sigma_{10}^{2}=\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}_{X}}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{m}_{\mathrm{Y}}}\right), \mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}^{\prime}, \ldots, \mathrm{X}_{\mathrm{m}_{\mathrm{X}}^{\prime}}^{\prime}, \mathrm{Y}_{1}^{\prime}, \mathrm{Y}_{2}^{\prime}, \ldots, \mathrm{Y}_{\mathrm{m}_{\mathrm{Y}}^{\prime}}^{\prime}\right)\right. \\
& \sigma_{01}^{2}=\operatorname{Cov}\left[\mathrm{h}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}_{\mathrm{X}}}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{m}_{\mathrm{Y}}}\right), \mathrm{h}\left(\mathrm{X}_{1}^{\prime}, \mathrm{X}_{2}^{\prime}, \ldots, \mathrm{X}_{\mathrm{m}_{\mathrm{X}}}^{\prime}, \mathrm{Y}_{1}, \mathrm{Y}_{2}^{\prime}, \ldots, \mathrm{Y}_{\mathrm{m}_{\mathrm{Y}}}^{\prime}\right)\right]
\end{aligned}
$$

Example 9.12. Suppose $\mathrm{t}(\mathrm{P})=\mathrm{P}(\mathrm{X}<\mathrm{Y})=\mathrm{E}[1(\mathrm{X}<\mathrm{Y})]$ (thus $\left.\mathrm{m}_{\mathrm{X}}=\mathrm{m}_{\mathrm{Y}}=1\right)$. Then

$$
\mathrm{u}=\frac{1}{\mathrm{n}_{\mathrm{X}} \mathrm{n}_{\mathrm{Y}}} \sum_{\mathrm{i}} \sum_{\mathrm{j}} 1\left(\mathrm{X}_{\mathrm{i}}<\mathrm{Y}_{\mathrm{j}}\right)
$$

and

$$
\begin{aligned}
& \sigma_{10}^{2}=\operatorname{Cov}\left[1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right), 1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}^{\prime}\right)\right]=\mathrm{E}\left[\left(1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right) 1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}^{\prime}\right)\right]-\left\{\mathrm{E}\left[1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right)\right]\right\}^{2}\right. \\
&= \mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}, \mathrm{X}_{1}<\mathrm{Y}_{1}^{\prime}\right)-\left[\mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right)\right]^{2} \\
& \sigma_{01}^{2}=\operatorname{Cov}\left[1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right), 1\left(\mathrm{X}_{1}^{\prime}<\mathrm{Y}_{1}\right)\right]=\mathrm{E}\left[\left(1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right) 1\left(\mathrm{X}_{\mathrm{i}}^{\prime}<\mathrm{Y}_{\mathrm{j}}\right)\right]-\left\{\mathrm{E}\left[1\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right)\right]\right\}^{2}\right. \\
&= \mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}, \mathrm{X}_{1}^{\prime}<\mathrm{Y}_{1}\right)-\left[\mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right)\right]^{2} .
\end{aligned}
$$

Now suppose $\mathrm{F}=\mathrm{G}$ is continuous. Then $\mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right)=1-\mathrm{P}\left(\mathrm{X}_{1} \geq \mathrm{Y}_{1}\right)=1-\mathrm{P}\left(\mathrm{X}_{1}>\mathrm{Y}_{1}\right)=$ $1-\mathrm{P}\left(\mathrm{Y}_{1}>\mathrm{X}_{1}\right)$ and hence $\mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}\right)=1 / 2$. Furthermore, $\mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}, \mathrm{X}_{1}<\mathrm{Y}_{1}^{\prime}\right)=\mathrm{P}\left(\mathrm{X}_{1}=\right.$ $\left.\min \left\{\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Y}_{1}^{\prime}\right\}\right)=1 / 3$ and $\mathrm{P}\left(\mathrm{X}_{1}<\mathrm{Y}_{1}, \mathrm{X}_{1}^{\prime}<\mathrm{Y}_{1}\right)=\mathrm{P}\left(\mathrm{Y}_{1}=\max \left\{\mathrm{X}_{1}, \mathrm{X}_{1}^{\prime}, \mathrm{Y}_{1}\right\}\right)=1 / 3$. Then $\sigma_{10}^{2}=$ $\sigma_{01}^{2}=1 / 12$ and the asymptotic variance is

$$
\sigma^{2}=\frac{\mathrm{m}_{\mathrm{X}}^{2}}{\mathrm{c}} \sigma_{10}^{2}+\frac{\mathrm{m}_{\mathrm{Y}}^{2}}{\mathrm{c}} \sigma_{01}^{2}=\frac{1}{12 \mathrm{c}(1-\mathrm{c})} .
$$

In sum,

$$
\sqrt{\mathrm{n}}(\mathrm{u}-\mathrm{P}(\mathrm{X}<\mathrm{Y})) \xrightarrow{\mathscr{O}} \mathrm{N}\left(0, \frac{1}{12 \mathrm{c}(1-\mathrm{c})}\right)
$$

Note: $\mathbf{n}_{\mathrm{X}} \mathrm{n}_{\mathrm{Y}} \mathbf{u}=\sum_{\mathrm{i}} \sum_{\mathrm{j}} 1\left(\mathrm{X}_{\mathrm{i}}<\mathrm{Y}_{\mathrm{j}}\right)$ is the Mann-Whitney test statistic with $\mathrm{H}_{0}: \mathrm{F}=\mathrm{G}$ (and equivalent to a Wilcoxon rank sum statistic).

Definition 9.13. Consider a symmetric function $h: \mathbb{R}^{m} \mapsto \mathbb{R}$ with $m \leq n$. The V-statistic for estimating $t(P)=\operatorname{Eh}\left(X_{1}, \ldots, X_{m}\right)$ is

$$
\mathrm{V}=\mathrm{V}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)=\frac{1}{\mathrm{n}^{\mathrm{m}}} \sum_{\mathrm{i}_{1}=1}^{\mathrm{n}} \ldots \sum_{\mathrm{i}_{\mathrm{m}}=1}^{\mathrm{n}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}_{1}}, \ldots, \mathrm{X}_{\mathrm{i}_{\mathrm{m}}}\right)
$$

Remark 9.14 (Comparing U- and V-Statistics).

$$
\mathrm{m}=1 . \mathrm{u}=\mathrm{n}^{-1} \sum \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{v}
$$

$\mathrm{m}=2$. First note that

$$
\mathrm{u}=\frac{2}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i}<\mathrm{j}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)=\frac{1}{\mathrm{n}(\mathrm{n}-1)} \sum_{\mathrm{i} \neq \mathrm{j}} \mathrm{~h}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right) .
$$

On the other hand,

$$
\begin{aligned}
v & =\frac{1}{n^{2}} \sum_{i} \sum_{j} h\left(X_{i}, X_{j}\right)=\frac{1}{n^{2}} \sum_{i}\left[\sum_{j \neq i} h\left(X_{i}, X_{j}\right)+h\left(X_{i}, X_{i}\right)\right] \\
& =\frac{1}{n^{2}} \sum_{i} \sum_{j \neq i} h\left(X_{i}, X_{j}\right)+\frac{1}{n^{2}} \sum_{i} h\left(X_{i}, X_{i}\right) \\
& =\underbrace{\frac{n(n-1)}{n^{2}}}_{\rightarrow 1} u+\underbrace{\frac{1}{n^{2}} \sum_{i} h\left(X_{i}, X_{i}\right)}_{\rightarrow 0} .
\end{aligned}
$$

Moreover, $\operatorname{Eh}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{t}(\mathrm{P})$.

$$
\begin{aligned}
\mathrm{Ev} & =\frac{\mathrm{n}-1}{\mathrm{n}} \mathrm{Eu}+\frac{1}{\mathrm{n}} \operatorname{Eh}\left(\mathrm{X}_{1}, \mathrm{X}_{1}\right) \\
& =\mathrm{t}(\mathrm{P})-\frac{1}{\mathrm{n}} \mathrm{t}(\mathrm{P})+\frac{1}{\mathrm{n}} \operatorname{Eh}\left(\mathrm{X}_{1}, \mathrm{X}_{1}\right) \\
& =\mathrm{t}(\mathrm{P})+\underbrace{\frac{1}{\mathrm{n}}[\underbrace{\operatorname{Eh}\left(\mathrm{X}_{1}, \mathrm{X}_{1}\right)-\mathrm{t}(\mathrm{P})}_{=\text {constant }}]}_{=\text {bias } \rightarrow 0}
\end{aligned}
$$

Theorem 9.15. Let $\mathrm{m}=2, \sigma_{\mathrm{i}}^{2}=\operatorname{Varh}_{\mathrm{i}}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}}\right)$ (see 9.6), and suppose $0<\sigma_{1}^{2}<\infty, \sigma_{2}^{2}<\infty$. Then U- and V-statistics have the same asymptotic distribution,

$$
\sqrt{\mathrm{n}}(\mathrm{~V}-\mathrm{t}(\mathrm{P})) \xrightarrow{\mathscr{O}} \mathrm{N}\left(0,4 \sigma_{1}^{2}\right) .
$$

Proof. From Remark 9.14,

$$
\begin{aligned}
\sqrt{n}(V-t(P)) & =\sqrt{n}\left(\frac{n-1}{n} u+\frac{1}{n^{2}} \sum_{i} h\left(X_{i}, X_{i}\right)-t(P) \frac{n-1+1}{n}\right) \\
& =\sqrt{n}\left(\frac{n-1}{n}(u-t(P))+\frac{1}{n^{2}} \sum h\left(X_{i}, X_{i}\right)-\frac{1}{n} t(P)\right) \\
& =\frac{n-1}{n} \sqrt{n}(u-t(P))+\frac{1}{n^{2}} \sqrt{n}\left[\sum\left(h\left(X_{i}, X_{i}\right)-t(P)\right)\right] \\
& =\underbrace{\frac{n-1}{n}}_{\rightarrow 1} \underbrace{\sqrt{n}(u-t(P))}_{\rightarrow N\left(0,4 \sigma_{1}^{2}\right)}+\frac{1}{\sqrt{n}} \underbrace{\frac{1}{n} \sum\left(h\left(X_{i}, X_{i}\right)-t(P)\right)}_{\rightarrow \in\left[h\left(X_{i}, X_{i}\right)-t(P)\right]=\text { constant }} \rightarrow N\left(0,4 \sigma_{1}^{2}\right) .
\end{aligned}
$$

Conclusion: U- and V-statistics are asymptotically equivalent. The V-statistic is a more intuitive estimator, the U-statistic is more convenient for proofs (and unbiased).

