TEST #2 STA 5326 November 4, 2020

NWR = No Work Required For parts that are labeled NWR, you
will get full credit just for stating the correct answer. You do NOT have to show any
work or give any explanation.

Please read the following directions. (They are included in the di-
rections I posted to the Canvas Announcements, so you can skip the following if you
have already read those directions.)

The exam is closed book and closed notes. No books, notes, or internet resources are allowed.

A copy of the Table of Common Distributions from the back of our textbook is attached to
the end of your exam.

During the exam, you need only a supply of blank paper and writing implements (pens,
pencils, erasers, etc). If you wish, you may use an ordinary scientific calculator (TI-86 or
below is fine).

Partial credit is available. (If you know part of a solution, write it down. If you know an
approach to a problem, but cannot carry it out — write down this approach. If you know a
useful result, write it down.)

You must show and explain your work (including your calculations). No credit is given
without work or explanation! But don’t get carried away! Give enough explanation and
work so that what you have done is clearly understandable.

Make sure that the grader can easily see how you get from one step to the next. If you
needed scratch paper to work something out, this work should be copied to your written
solutions.

If your answer is valid only for a certain range of values, this should be stated as
part of your answer. For example, if a density is zero outside of some interval,
this interval should be stated explicitly.

You should give only one answer to each problem. Circle your answer if there is any
chance for confusion.

Simplify your answers when it is easy to do so. But more difficult arithmetic does not have
to be done completely. Answers can be left as fractions or products. You do not have to
evaluate large binomial coefficients, factorials or powers. Answers can be left as summations
(unless there is a simple closed form such as when summing a geometric or exponential
series).

All algebra and calculus must be done completely. (Only arithmetic can be left incomplete.)

Do not quote homework results. If you wish to use a result from homework in a solution,
you must prove this result.

All the work on the exam should be your own. No “cooperation” is allowed.

The exam has 6 problems and there are a total of 100 points.



Problem 1. Suppose X has density

2 2

e forx >0
flx)=4qVvm

0 for x < 0.

(a) (8%) Find EX.
(b) (8%) Find Var(X).

Problem 2. (10%) Suppose X ~ Negative Binomial(r,p) and Y ~ Binomial(n,p). (Here we
use the lecture definition of the Negative Binomial distribution in which Y is the number of trials
needed to get r successes. This is referred to as the “alternative form” in the appendix.)

Show that Fx(n) =1— Fy(r —1).

Problem 3. A truncated discrete distribution is one in which a particular class cannot be
observed and is eliminated from the sample space. In particular, if X has range 0, 1, 2, ...and
the 0 class cannot be observed, the 0-truncated random variable X7 has mass function (pmf)

P(X =)

P(XTZQ?):m,

r=1,2,3,...

Let X7 be the 0-truncated random variable X7 obtained starting from X ~ Binomial(n, p).
(a) (8%) Find the mean of Xr.
(b) (8%) Find the variance of X

Problem 4. Let X be a random variable with moment generating function (mgf) given by
t
M(t):1+1p—t fort < 1.

where p is some value in the range 0 < p < 1. (Any value in this range leads to a valid mgf.)
(a) (8%) Find EX.
(b) (8%) Find Var(X).

(c) (6%, NWR) Let X1, Xo,..., X, be iid with the mgf M (t) given above. Define

Y:Zn:Xi.
=1

Find My (t), the mgf of Y.

(d) (8%) Let 8 > 0. Find the limit of My (t) as n — oo, p — 0, and np — S. (For example, you
could take p, = 8/n for all n.)



Problem 5. There are four snipers firing at the enemy from hidden positions. The enemy is
constantly searching for the snipers’ locations, and when a sniper’s location is discovered, she is
killed in a hail of bullets. Assume that the snipers begin their work at the same time and that the
snipers’ “lifetimes” (the time until they are discovered and killed) are i.i.d. exponential random
variables with a mean of 8 hours.

(a) (4%, NWR) Find the mean of the time until the last sniper dies.
(b) (4%, NWR) Find the variance of the time until the last sniper dies.

(c) (8%) The snipers are killed off one by one. Assume that, while k snipers remain alive, they
kill the enemy soldiers at an average rate of ck? deaths per hour. (c is an arbitrary positive value.)
What is the expected value of the total number of enemy soldiers killed by the four snipers?

Problem 6. Let X have density

cos(x)

fx(x) = ¢ BvV1—a?

0 otherwise.

for—-1l<ax<1

where B ~ 2.403939431 .

(a) (6%) Does EX'® exist? (In other words, is EX'? a well-defined finite value?) Answer ‘YES’
or ‘NO’ and state a reason to justify your answer.

(b) (6%) Let Mx(t) be the mgf of X. For what values of ¢ is Mx(t) finite? State a reason to
justify your answer.
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1able of Common Distributions

Do Not Mark |

®  omme—

T
Discrete Distributions

Bernoulli(p)

pmf PX=zlpp=p"(1-p'% z=0,1; 0<p<1

mean and
~variance B =ip, - VR SRl D)

mgf Mx(t) = (1 - p) + pe*

Binomial(n, p)

pmf  PX =zin,p)=(2)p*Q-p)" % £=0,1,2,...,m; 0<p<1
e _ T

——— EX =np, VarX = np(l —p)

mgf Mx(t) = [pe' + (1 — p)I”

notes Related to Binomial Theorem (Theorem 3.1.1). The multinomial distri-

bution (Definition 4.6.1) is a multivariate version of the binomial distribution.

Discrete Uniform

pmf PX =g|Ny= o Be=10ees N N =12

meanand oy Nil o iy gN-ill)(zN—lg
1

— b

variance 2

mef Mx@t)= &SN et
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Geometric(p)

pmf PX =zlp=p(l—-py*~ Y z=12,...; 0<p<1
e il EX =1 varX =12
variance p’ v
L 3
mgf Mx(t) = ltf%, t < —log(l —p)

notes Y = X — 1 is negative binomial(1l,p). The distribution is memoryless:

- PEX 28l X pet)=PX > 8 —it)

Hypergeometric
M (N—M
pmf P(X =z|N,M,K) = ~22222: £=0,1,2,...,K;
K.
M—-(N-K)<z<M; NMKZ>=0
mean and _ KM s - R PNy e st
variance EX =7 VaX=7 N(N=1)
notes If K << M and N, the range z = 0, 1,2, ..., K will be appropriate.

Negative binomial(r, p)

pmf P =anp= (T -p =01 0<p<T
mean and »
_rid—-p _ rdl—p)
variance L=~ Vit =S
|2
mgf Mx(t)r-(]_—(;}i—ﬁ) , t<—log(l—p)
notes An alternate form of the pmf is given by PY = y|r,p)

= (v21)9'0 =", y =, + ... The random variable ¥ = X +r. The

negative binomial can be derived as a gamma mixture of Poissons. (See Exercise
4.34.)

Poisson(\)

pmf P(X:a:]/\)zL::!)‘—z; z=0,1,...; 0<A< o
MEOBANG: e 5 Vg X =

variance _

mgf M () = e¥e'~Y
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Continuous Distributions

Beta(a, 3)

pdf flo, B) = 5pt e 1(1—z)f~!, 0<z<1, >0, >0
mean and s af

variance EX = a+pr YA X = oomp A

k—1 k
“mgf Mx(@®)=1+Y7, (H'r‘:O E%i?) o
notes The constant in the beta pdf can be defined in terms of gamma functions,
B(a, ) = DlB)  gayation (3.2.18) gives a general expression for the moments.
Ta+pB) * 9
Cauchy(8, o)
pdf f(z|f,0) = —%9—5,—00<:1:<oo —0<f<oo, >0

T 14 (2£2)

mean and o
. do not exist
variance
mgf does not ex1st
notes Spec1al case of Student s t, when degrees of freedom = 1, Also if X

and Y are independent n(0, 1), X/Y is Cauchy.

———  Chi squared

pdf f(z|p) = Wﬂpm“e‘w/z; D<o p=12,..
mean and WY =p. VarX =2
variance ;
p/2 i

mef Mx®= () . t<}
notes ol Speciarlmcase of the gamma distributioﬁ.' L

\'
Double exponential(y, o) \

!
pdf Fla|p, o)== —e—lm ul/e —-oo<z<oo —oo<,u< w; Tl
mean and |

: EX =p, VarX =20?
variance : ;
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d t
mgf Mx®) = 5%, <3 |
notes Also known as the Laplace distribution.
k_
Exponential(3) \
pdf f(z|B) = %e_m/ﬁ, 0<z< ‘oo, Bg>0
meqn and EX =B VaIX':ﬁz _
variance
mef Mx®) =t t<3
notes Special case of the gamma distribution. Has the memoryless property.

Has many special cases: Y = X'/7 is Weibull, Y = (/2X/B is Rayleigh, Y =
a — vlog(X/B) is Gumbel.

F
r v +va n/2 i
d, TV, V2) = 7PN (” (ﬂ) f(umf, =7y 0SS m & o
Pf f( I 1 2) F(_ZI')F(Tz) v (H'(V_lz)x)( 1+v2)/2 —
v,V = 1, - i
mean and va
variance EX=5= 22> 2,
v (v1+12-2)
Var X =2 (;25) S, va>4
T vi+2In vy —2n
moments Fi o 2 2 (2)” vy
(mgf does not exist) = F(fzi)r(le) w) 2 M2
2 2
notes Related to chi squared (F,, ., = (Xy—':') i (%”f), where the x’s are
independent) and ¢ (F) , = t2).
Gamma(a, 3)
pdf f@lo, B = pgez®le /P, 0<z <o, @ >0
-y and EX = a8, VarX =oaf?
variance
(s

_(_1 1
mgf Mx (@) = (1—_‘@) , t<g
notes - Some special cases are exponential (o« = 1) and chi squared (o =.

p/2,8 =2). Ifa=232Y = /X/8is Maxwell. Y = 1/X has the inverted
gamma distribution. Can also be related to the Poisson (Example 3.2.1).
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e

Logistic(u, 3) E |
| el VB i z
pdf f($|li:5)=%r1f?m—fm, —0o<r<oo, —00lu<o, :
>0
meanand gy oyx _ OF |
variance
mgf  Mx(t) =e"T(1 - BT+ 61, [t < 5
notes The cdf is given by F(z|u, ) = m.
Lognermal(u, 02)
d | 2 _ 1 e“(k°gz;#)2/(2az) . O < ’ _ < <
pf f(xl“ao')_m_?_, Sz <00, oo K cQ,
>0
meanand oy ot/ yar X = @2ted) _ uko’ | R |
variance ’ 1
moments n _ nutnio?)2
(mgf does not exist) et —F -
notes Example 2.3.5 gives another distribution with the same moments.
Normal(u, o%)
pdf  flalp,0?) = e @D, _o0 < 3 < oo,
—oco< u<oo, o>0
HEURANG, . e . it 2
variance 1
mgf M (t) = ept+o't'/2
notes Sometimes called the Gaussian distribution.
Pareto(c, 3) K
' |
pdf f@le,B) =B, a<z<oo, a>0, >0
mean and i
variance EX=31 B>1,

v Bol 1
VMX—W‘-EBTZS, 8>2

mgf does not exist



r u-2|-1 |
pdf fzlv) = I{(;)) \/,17.,.; (H_(%i))(w-n/z :. —xo<r<oo, rv=1,...

mean and i
variance \

moments e F(#)F("——ﬂ) n/2

(mgf does not exist) EX T VI € 5 S I IR,
EX™ —01fn<vand odd.

notes Related to F' (F,, = tf,).

Uniform(a, b)

pdf f(z|a,b) = a<z<bh

mean and EX — bt VarX — (b—a)®

variance s ! 12

mgf MX(t) = e(b —;):

notes If @ = 0 and b = 1, this is a special case of the beta (o = 8 = 1).
Weibull(y, 3)

pdf f@lv,B) =3z " 'e=" /P, 0<z <00, v>0, >0

rimnee. BX=0r(1+3), varx =g (143) - (145)]

moments ~EX™ = g"/7(1 + E)

notes The mgf exists only for v > 1. Its forrn is not very useful. A special
case is exponential (y = 1).
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Tables

TABLE 1 Normal distribution, right-hand tail probabilities

z .00 .01 .02 .03 .04 .05 .06 07 .08 09
0.0 5000 4960 4920 4880 .4840 .4801 4761 4721 .4681 4641
0.1 4602 4562 4522 4483 4443 4404 4364 4325 4286 .4247
0.2 4207 4168 4129 4090 .4052 .4013 3974 3936 .3897 .3859
0.3 3821 3783 .3745 3707 .3669 .3632 .3594 3557 .3520 .3483
0.4 3446 3409 3372 3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 3085 3050 .3015 .2981 .2946 .2912 2877 .2843 2810 .2776
0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451
0.7 2420 2389 .2358 .2327 2296 .2266 .2236 .2206 2177 2148
0.8 2119 2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 1587 1562 .1539 .1515 .1492 .1469 .1446 . .1423 1401 .1379.
1.1 A357 1335 1314 1292 1271 .1251 .1230 .1210 .1190 .1170
1.2 Jd151 1131 1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.3 0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 0548 .0537 .0526 .0516 .0505 .0495 .0485 (0475 .0465 .0455
1.7 0446 0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 0179 0174 0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
Z2:5 0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.1 0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
29 0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
5.1 0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
5 0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.4 0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002

SRS 4



Sec. 3]

Table 5.1 Area ®(x) Under the Standard Normal Curve to the Left of x

131

Normal Random Variables

x .00 .01 .02 .03 04 05 .06 .07 .08 .09
0 5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
b .5398 .5438 .5478 .5517 .5557 5596 .5636 .5675 5714 .5753
2 5793 5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
3 6179 6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
4 .6554 6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
J 6915 .6950 .6985 .7019 .7054 .7088 .7123 7157 .7190 .7224
6 7257 0 .7291 (7324 7357 (7389 7422 7454 7486 7517 .7549
"4 7580 7611 7642 7673 .7704 7734 7764 7794 7823 7852
8 7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
9 .8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8557 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 8849 8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 9032 9049 9066 9082 .9099 9115 9131 9147 9162 .9177
14 9192 9207 .9222 .9236 .9251 .9265 9279 .9292 9306 .9319
1.5 9332 9345 9357 9370 .9382 .9394 9406 .9418 9429 9441
1,6 9452 .9463 9474 9484 9495 9505 9515 .9525 9535 .9545
1.7 9554 9564 9573 9582 9591 .9599 9608 9616 .9625 .9633
1.8 9641 9649 .9656 9664 9671 9678 9686 9693 .9699 .9706
1.9 9713 9719 ..9726 9732 9738 9744 9750 9756 9761 9767
2.0 9772 9778 9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2u 9821 .9826 .9830 .9834 9838 9842 9846 9850 .9854 9857
2.2 9861 .9864 9868 9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 9893 9896 .9898 .9901 .9904 .9906 .9909 .9911 9913 .9916
24 9918 9920 .9922 .9925 .9927 .9929 9931 .9932 9934 9936
25 9938  .9940 9941 .9943 .9945 9946 .9948 .9949 9951 9952
2.6 9953  .9955 9956 9957 .9959 .9960 .9961 .9962 .9963 .9964
2 9965 9966 .9967 9968 .9969 9970 9971 .9972 9973 9974
2.8 9974 9975 9976 9977 .9977 .9978 9979 9979 .9980 .9981
2.9 9981 .9982 .9982 .9983 .9984 9984 9985 .9985 .9986 .9986
3.0 9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990  .9990
34 9990 .9991 .9991 .9991 9992 .9992 9992 .9992 .9993 9993
3.2 9993 9993 9994 9994 9994 9994 9994 9995 .9995 .9995
3.3 9995 9995 .9995 .9996 .9996 .9996 9996 9996 .9996 .9997
34 9997 9997 .9997 .9997 .9997 .9997 9997 9997 .9998
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