
TEST #1
STA 5326 Name:
October 2, 2023

Please read the following directions.
DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO

� The exam is closed book and closed notes. You will be supplied with scratch paper, and a
copy of the Table of Common Distributions from the back of our textbook.

� During the exam, you may use ONLY what you need to write with (pens, pencils, erasers,
etc). Calculators are NOT allowed.

� All other items (INCLUDING CELL PHONES) must be left at the front of the classroom
during the exam. This includes backpacks, purses, books, notes, etc. You may keep small
items (keys, coins, wallets, etc., but NOT CELL PHONEs) so long as they remain in your
pockets at all times.

� You must show and explain your work (including your calculations) for all the problems
(except for problems labeledNWR).No credit is given without work or explanation!.
But don’t get carried away! Give enough explanation and work so that what you have done
is clearly understandable.

� Partial credit is available (except for problems labeledNWR). If you know part of a solution,
write it down. If you know an approach to a problem, but cannot carry it out – write down
this approach. If you know a useful result, write it down.

� No work is required for the problems marked NWR. For these problems, you will receive
full credit just for stating the correct answer.

� Make sure that the grader can easily see how you get from one step to the next. If you
needed scratch paper to work something out, make sure to transfer your work to the exam.

� If your answer is valid only for a certain range of values, this should be stated as
part of your answer. For example, if a density is zero outside of some interval,
this interval should be stated explicitly.

� You should give only one answer to each problem. Circle your answer if there is any
chance for confusion.

� Simplify your answers when it is easy to do so. But more difficult arithmetic does not have
to be done completely. Answers can be left as fractions or products. You do not have to
evaluate large binomial coefficients, factorials or powers. Answers can be left as summations
(unless there is a simple closed form such as when summing a geometric or exponential
series).

� All algebra and calculus must be done completely. (Only arithmetic can be left incomplete.)

� Do not quote homework results. If you wish to use a result from homework in a solution,
you must prove this result.

� All the work on the exam should be your own. No “cooperation” is allowed.

� The exam has 8 problems and pages. There are a total of 100 points.
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Problem 1. n figure skaters perform in a random order. Each skater is given a rating by a
panel of judges. Assume there are no ties among the skaters, that is, there are no skaters that are
rated the same.

(a) (12%) If the i-th skater is the best so far, what is the probability this skater will be the best
overall?

This exercise is 1.32 with a slightly changed story. Two solutions (a counting solution and a
probability solution) are given in solutions1 text.pdf on pages 17–20. There may be other solutions.
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[ Problem 1 continued ]

(b) (12%) Suppose that prizes are given to the top three skaters. If the i-th skater is the
best so far, what is the probability this skater does NOT receive a prize? (Assume n > 3 and
1 ≤ i ≤ n− 3 .)

This is similar to exercise 1.32.

Solution #1: (A ‘counting’ solution) The sample space Ω consists of all the n! permutations
ω = (r1, r2, . . . , rn) of the numbers 1, 2, . . . , n. Here ri represents the final ranking of the i-th skater
(where 1 = worst and n = best). The random ordering of the skaters implies all the permutations
are equally likely. Let A = {i-th skater is the best so far}, and B = { i-th skater does NOT win a prize}.
We are interested in P (B |A) = P (A ∩ B)/P (A) = #(A ∩ B)/#(A). Just like in the posted so-

lution of 1.32 we have #(A) =

(
n

i

)
(i − 1)!(n − i)!. If the best among the first i skaters does

NOT win a prize, then it must be that the random ordering puts all of the top 3 skaters among
the last n− i skaters. A permutation ω of skaters in A ∩B is such that the i-th skater is the best
so far but does NOT win a prize. This may be constructed in three steps: (1) Choose i skaters
from among the lowest-ranked n− 3 to be the first i skaters; this may be done in

(
n−3
i

)
ways. (2)

Choose the best of these for position i and assign the other i − 1 to the first i − 1 positions; this
may be done in (i − 1)! ways. (3) Order the remaining n − i skaters (which include the top 3
skaters) in the remaining n − i positions; this can be done in (n − i)! ways. Taking the product

gives #(A∩B) =

(
n− 3

i

)
(i−1)!(n−i)! ways. Dividing this by #(A) given earlier and simplifying

gives P (B |A) =
(
n− 3

i

)
/

(
n

i

)
=

(n− i)(n− i− 1)(n− i− 2)

n(n− 1)(n− 2)
.

Solution #2: (A ‘probability’ solution.) This is somewhat heuristic. The best skater among
the first i will NOT get a prize only if none of the top 3 skaters are among the first i skaters.
Call this event D. The top 3 skaters are equally likely to be in any of the 3 positions in the
random ordering of the skaters. Let Cj be the event that the top j-th skater in the rankings is
NOT among the first i in the order of skating. Then D = C1 ∩ C2 ∩ C3 and P (C1 ∩ C2 ∩ C3) =

P (C1)P (C2|C1)P (C3|C1 ∩ C2) =
(n− i)

n
· (n− i− 1)

(n− 1)
· (n− i− 2)

(n− 2)
which is equal to the answer

given earlier.

Solution #3: (A ‘counting’ solution; a variant of Solution #2.) As noted above, the best
skater among the first i will NOT get a prize only if none of the top 3 skaters are among
the first i skaters. This is the same as saying the top 3 skaters are among the last n − i
skaters. Call this event D. Whether the event D occurs depends only on the positions of the
top 3 skaters in the ordering. So (intuitively, at least) we can reduce our sample space to the
n(n − 1)(n − 2) possible choices of the positions of the top 3 skaters, all of which are equally
likely. In this reduced sampling space, the number of possibilities in D, i.e., for which the
top 3 skaters are all among the last n − i skaters, is (n − i)(n − i − 1)(n − i − 2). Thus

P (D) = #(D)/#(Ω) =
(n− i)(n− i− 1)(n− i− 2)

n(n− 1)(n− 2)
=

(
n− i

3

)
/

(
n

3

)
.

Comment on Solutions #2 and #3: Let A,B,D be the events defined in the earlier solutions.
Both Solutions #2 and #3 rely on P (B|A) = P (D). But the definition of D says nothing about
skater i being the best so far, so why should this be true? (This is the heuristic aspect in Solutions
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#2 and #3.) The reason is that A ∩B = A ∩D so that

P (B|A) = P (A ∩B)

P (A)
=

P (A ∩D)

P (A)
=

P (D)P (A|D)

P (A)
= P (D)

because P (A|D) = P (A) = 1/i ; the random ordering of the skaters guarantees that all of the first
i skaters are equally likely to be the best among the first i even if none of the top 3 skaters are
among the first i skaters.

Solution #4: (A ‘probability’ solution.) As in the earlier solutions, let A = {skater i is the best so far}
and B = {skater i does NOT win a prize}. Then Bc = F1 ∪ F2 ∪ F3 where
Fj = {skater i is in j-th place overall} so that

P (B|A) = 1− P (Bc|A) = 1− P (F1|A)− P (F2|A)− P (F3|A)

= 1− P (F1 ∩ A)

P (A)
− P (F2 ∩ A)

P (A)
− P (F3 ∩ A)

P (A)

= 1− i

n
− i(n− i)

n(n− 1)
− i(n− i)(n− i− 1)

n(n− 1)(n− 2)

which (after a little algebra) can be shown to agree with the earlier answer. The final answer is
justified as follows. We know from the solution of exercise 1.32 that F1 ∩ A = F1, P (F1) = 1/n,
and P (A) = 1/i so that P (F1|A) = i/n. The event F2 ∩ A occurs if the 2nd place skater is in

position i and the 1st place skater is among the last n− i skaters; this has probability
1

n
· n− i

n− 1
so

that P (F2|A) =
i · (n− i)

n · (n− 1)
. Finally, F3 ∩ A occurs if the 3rd place skater is in position i and the

1st and 2nd place skaters are among the last n− i skaters; this has probability
1

n
· n− i

n− 1
· n− i− 1

n− 2

so that P (F3|A) =
i(n− i)(n− i− 1)

n(n− 1)(n− 2)
.

Solution #5: This solution is a variant of Solution #4 and is only for those few among you who
might be familiar from other courses with facts about order statistics. Suppose that the skater’s
ratings X1, X2, . . . , Xn are iid random variables with density g and cdf G. This guarantees that
the n! possible rankings of the skaters are equally likely and that the rankings are independent of
the order statistics of the ratings. We use the events A, B, F1, F2, F3 from Solution #4 and the
fact that

P (B|A) = 1− P (F1|A)− P (F2|A)− P (F3|A) . (1)

Condition on Xi and A, that is, suppose we know the rating Xi of skater i and also that skater
i is the best among the first i skaters. Then Fj occurs (i.e., skater i is ranked j-th overall)
only if exactly j − 1 skaters among the last n − i skaters have ratings which exceed Xi. This
has probability P (Fj|Xi, A) =

(
n−i
j−1

)
G(Xi)

n+1−i−j(1 − G(Xi))
j−1. We can now obtain P (Fj|A) by

integrating P (Fj|Xi = x,A) times the density of Xi|A; this is the density of the maximum of i

4



rv’s which are iid with density g which is equal to i G(x)i−1g(x). This leads to

P (Fj|A) =
∫ ∞

−∞

(
n− i

j − 1

)
G(x)n+1−i−j(1−G(x))j−1 · i G(x)i−1g(x) dx

= i

(
n− i

j − 1

)∫ ∞

−∞
G(x)n−j(1−G(x))j−1g(x) dx

=
i
(
n−i
j−1

)
n
(
n−1
n−j

) ∫ ∞

−∞
n

(
n− 1

n− j

)
G(x)n−j(1−G(x))j−1g(x) dx

=
i
(
n−i
j−1

)
n
(
n−1
n−j

) =
i

n
· (n− j)!

(n− 1)!
· (n− i)!

(n− i− j + 1)!

which agrees with P (Fj|A) given in Solution #4 for j = 1, 2, 3. Thus, plugging these values into
(1) gives than same final answer as Solution #4. In one step above, we evaluated an integral
by juggling the constants so that the integrand was exactly the known density of an order statistc
(which therefore integrated to one). Obviously, Solution #5 involves much more work than Solution
#4, but they do lead to the same answer, which is reassuring.

5



Problem 2. Suppose n people play Russian roulette. Each person has a gun which fires with
probability π when the trigger is pulled. (Assume the guns are independent of each other and
successive shots of the same gun are independent.) A round of play consists of every one who is
still alive raising the guns to their temples and firing simultaneously. Play continues until everyone
is dead.

This situation is the same as that in Exercise B3.

(a) (12%) What is the probability that one or more people are still alive after k rounds of play?

This exercise is exactly the same as B3(a). There is a posted solution in solutions1 ABexercises.pdf
and another in B3a alternate solution.pdf.
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[ Problem 2 continued ]

(b) (12%) The last person (or persons) to die receives a prize (flowers on the grave). What is the

probability this prize goes to exactly two persons? Assume n > 2. (Note: The answer
may not have a simple form, so do not worry if your answer is messy or contains summations you
do not know how to do.)

This exercise is a modified version of B3(b). The solution is very similar. Let A be the event that
the prize goes to exactly two persons. Then A =

⋃
i,j Ai,j where Ai,j = {only persons i and j get the prize}.

These events are disjoint and any two people have the same probability of getting the prize so that

P (A) =

(
n

2

)
P (A1,2). Let Bk, k ≥ 2, be the events that persons 1 and 2 get the prize upon the

conclusion of round k. Clearly, these events are disjoint so that P (A1,2) =
∑∞

k=2 P (Bk) . Since

Bk = {Persons 1, 2 die in round k} ∩ {Persons 3, 4, . . . , n die before round k}

and the persons are independent, we have

P (Bk) =
[
(1− π)k−1π

]2 [
1− (1− π)k−1

]n−2
.

To justify the right factor above we use arguments like those used in part (a) above. Putting this
all together gives the final answer:

P (A) =

(
n

2

) ∞∑
k=2

[
(1− π)k−1π

]2 [
1− (1− π)k−1

]n−2
.
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Problem 3. In each of the following find the density (pdf) of Y .

(a) (12%) Y = X4 and X has density fX(x) = 2(x− 1) for 1 < x < 2.

This problem is similar to the parts of Exercise 2.1. The answer is

fY (y) = fX
(
g−1(y)

) ∣∣∣∣ ddyg−1(y)

∣∣∣∣ for y ∈ Y

= 2(y1/4 − 1)

∣∣∣∣ ddy y1/4
∣∣∣∣ for y ∈ (14, 24)

= 2(y1/4 − 1) · 1
4
y−3/4 for 1 < y < 16 .

It is important in the above to state that 1 < y < 16.
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[ Problem 3 continued ]

(b) (12%) Y = X4 and X has density fX(x) = (2x+ 7)/30 for −3 < x < 2.

This problem is similar to exercise 2.7. Note that g(x) = x4 is not monotonic in (−3, 2), but we
can break (−3, 2) into the intervals (−3, 0) and (0, 2) in which it is monotonic. Using the notation
from page 26 of notes3.pdf, the answer is

fY (y) =
2∑

i=1

fX
(
g−1
i (y)

) ∣∣∣∣ ddy g−1
i (y)

∣∣∣∣ IBi
(y)

=
(2(−y1/4) + 7)

30

∣∣∣∣ ddy (−y1/4)

∣∣∣∣ I(0,(−3)4)(y) +
(2y1/4 + 7)

30

∣∣∣∣ ddy y1/4
∣∣∣∣ I(0,24)(y)

=
(2(−y1/4) + 7)

30
· 1
4
y−3/4I(0,81)(y) +

(2y1/4 + 7)

30
· 1
4
y−3/4I(0,16)(y)

(The above answer is good enough for full credit.)

=
(−2y1/4 + 7)

30
· 1
4
y−3/4I(16,81)(y) +

14

30
· 1
4
y−3/4I(0,16)(y)

=



(−2y1/4 + 7)

120
· y−3/4 for 16 < y < 81

7

60
y−3/4 for 0 < y < 16

0 otherwise

(The endpoints of the intervals can be handled differently

and the “otherwise” clause can be omitted).
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Problem 4. A monomial of degree d in the k variables x1, x2, . . . , xk is a product of the form
xi1
1 x

i2
2 · · ·xik

k where the k exponents i1, i2, . . . , ik are nonnegative integers which sum to d. (Note
that zero is allowed as an exponent.)

Some monomials of degree 6 in the 3 variables x, y, z are listed here as examples:

(1) x6y0z0 = x6 (2) x0y0z6 = z6 (3) x4y2z0 = x4y2

(4) x2y4z0 = x2y4 (5) x2y1z3 = x2yz3 (6) x1y3z2 = xy3z2

All six of these examples are different monomials because they are different functions of x, y, z.
Rearranging the order of factors does not change their product; xy2z3, y2z3x, and z3xy2 are all
considered to be the same monomial because they are equal.

(a) (12%) How many different monomials of degree d in the k variables x1, x2, . . . , xk are there?

This is similar to Exercise 1.19 (counting partial derivatives). By their definition the monomials
of order d in k variables are in one-to-one correspondence with the k-tuples of nonnegative integers
which sum to d which are in one-to-one correspondence with the possible arrangements of d coun-
ters and k − 1 markers (by the argument given in the long solution to Exercise 1.19). Therefore

the number of monomials is

(
d+ k − 1

k − 1

)
=

(
d+ k − 1

d

)
.

Some students may give this answer and refer to“Unordered, with replacement” method of counting
as described in the text. This should get full credit also.

(b) (3%) How many different polynomials are there which are sums of two different monomi-
als of degree d in the k variables x1, x2, . . . , xk? (NWR)

(Example: x4y2 + xy3z2 is a sum of two different monomials of degree 6 in the 3 variables x, y, z.
Changing the order of the two terms does not alter the sum so that both x4y2 + xy3z2 and
xy3z2 + x4y2 are considered to be the same polynomial.)

The number of different polynomials which are sums of two different monomials is just the number
of ways to choose two monomials from the entire set of monomials (of degree d in k variables).

This is

((d+k−1
d

)
2

)
.

If students give a wrong answer to the previous part (say, W ) but then give
(
W
2

)
as the answer to

this part, then give them full credit for this part.
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Problem 5. (4%) Approximately one-third of all human twins are identical (one-egg) and
two-thirds are fraternal (two-egg) twins. Identical twins are necessarily the same sex, with male
and female being equally likely. Among fraternal twins, approximately one-fourth are both female,
one-fourth are both male, and half are one male and one female. Finally, among all U.S. births,
approximately 1 in 90 is a twin birth.

What is the probability that a U.S. birth results in fraternal twins, with one being male and the
other female?

The answer is:

P (twin birth)P (fraternal | twin birth)P (boy and girl | fraternal twins) = 1

90
· 2
3
· 1
2
=

1

270
.

Some work should be shown.

In the remaining questions, circle the single correct response. (NWR)

Problem 6. (3%) If A, B, and C are mutually exclusive events, all having positive proba-
bility, then P (A ∪B |B ∪ C) = .

a) 0 b) P (A)

c)⋆
P (B)

P (B) + P (C)
d)

1

P (C)

e)
P (B) + P (A)P (C)− P (A)P (B)P (C)

P (B) + P (C)− P (B)P (C)
f)

P (A)P (B)P (C)

P (B) + P (C)

g)
P (A)P (B) + P (B)P (C)− P (A)P (B)P (C)

P (B) + P (C)− P (B)P (C)
h)

P (B)

P (B) + P (C)− P (B)P (C)

Problem 7. (3%) A random variable that is continuous but not absolutely continuous
.

a) has a pdf which is continuous except at finitely many points

b) has a cdf which is continuous except at finitely many points

c) has a continuous cdf with finitely many flat intervals

d) has a continuous cdf and a pdf which is NOT continuous

e)⋆ has a continuous cdf but does NOT have a pdf

f) has a cdf with NO jumps but with finitely many points where the derivative does NOT exist

Problem 8. (3%) Which one of the following statements is always true?

a) P (A ∩Bc ∩ Cc) ≥ P (A)− P (A ∩B) + P (A ∩B ∩ C)

b)⋆ P ((A ∩B) ∪ C) ≤ P (A ∩B) + P (C)

c) 1− P (Ac ∩Bc) ≥ P (A) + P (B)

d) 1− P (Ac ∪Bc) = P (A)P (B)

e) P (A ∩B) ≥ P (A)P (B)
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