Mark Hamrick

Homework 1, Exercise B3(a)

Probability that one or more people are still alive after k rounds of play = ?

Probability that anyone's gun fails to fire (and therefore the person lives) = $p = 1 - \pi$

Probability that a person is still alive after one round = p, after 2 rounds = $p \cdot p = p^2, \dots$, after k rounds = p^k (since the events are independent), where k is a non-negative integer.

Define "success" as the event that an individual's gun fails to fire after k rounds. Then $Pr(\text{success}) = p^k = p'$.

Denote X_i as any of the *n* individual players, and

$$X_i = \begin{cases} 1, & \text{success for a person with probability } p' = p^k \\ 0, & \text{fail (gun fires and person dies) with probability } 1 - p' = 1 - p^k \end{cases}$$

The pmf of X_i is:

$$f(x_i) = (p')^x (1-p')^{1-x}, \ x = 0, 1$$

And since any one individual's fate is independent of another's, the X_i 's are IID Bernoulli random variables.

We are interested in the total number of people alive after k rounds, so we are interested in the total number of successes in n repeated Bernoulli trials.

Therefore $X = \sum_{i=1}^{n} X_i$ is a Binomial random variable with probabality p' and the pmf:

$$f(x) = \binom{n}{x} (p')^x (1-p')^{n-x}$$

= $\binom{n}{x} ((1-\pi)^k)^x (1-(1-\pi)^k)^{n-x}$, for $x = 0, 1, 2, ..., n$.

So the probability that one or more people are still alive after k rounds of play =

$$Pr(X \ge 1) = 1 - Pr(X = 0)$$

= 1 - (1 - (1 - \pi)^k)^n