Chapter 1

Probability Theory

“If any little problem comes your way, I shall be happy, if I can, to give you a hint or two as
to its solution.”

1.1 a.

€.

Sherlock Holmes
The Adventure of the Three Students

Each sample point describes the result of the toss (H or T) for each of the four tosses. So,
for example THTT denotes T on 1st, H on 2nd, T on 3rd and T on 4th. There are 2% = 16
such sample points.

. The number of damaged leaves is a nonnegative integer. So we might use S = {0,1,2,...}.

. We might observe fractions of an hour. So we might use S = {¢ : ¢ > 0}, that is, the half

infinite interval [0, c0).

. Suppose we weigh the rats in ounces. The weight must be greater than zero so we might use

S = (0, 00). If we know no 10-day-old rat weighs more than 100 oz., we could use S = (0, 100].
If n is the number of items in the shipment, then S = {0/n,1/n,...,1}.

1.2 For each of these equalities, you must show containment in both directions.

a.

b.

1.3 a.

1.4 a.

re€A\BerzcAandz ¢ B&recAande ¢ ANB &z e A\(AN B). Also, z € A and
r¢BeorecAandze B xe ANBe.

Suppose € B. Then either x € A or ¢ € A°. If x € A, then z € BN A, and, hence
z € (BNA)U(BNA®). Thus B C (BNA)U (BN A°). Now suppose z € (BN A)U (BN A°).
Then either x € (BN A) or x € (BN A°). If z € (BN A), then x € B. If z € (BN A°),
then € B. Thus (BN A) U (BN A°) C B. Since the containment goes both ways, we have
B = (BnA)U(Bn A°). (Note, a more straightforward argument for this part simply uses
the Distributive Law to state that (BN A)U (BN A°) =BN(AUA°)=BnNS=B.)

. Similar to part a).

. From part b).

AUB=AU[(BNA)U(BNAY)|=AUBNAUAUBNA)=AU[AU(BNA®)| =
AU (BN A°).

r€AUB & zcAorzeB & z€BUA

2€ANB & zcAandzeB & z€BNA.

r€AUBUC)& z€AorzeBUC &S z€ AUBorzeC& z€ (AUB)UC.

(It can similarly be shown that AU(BUC) =(AUC)UB.)

zeAN(BNC)& z€AandzeBandeeC & ze(ANB)NC.

z€(AUB) e ¢ A r¢ B czcAandz € B¢ & z € A°N B¢

z€(ANB)s ¢ ANB& ¢ A0FP ¢ B € Aorxz e B x € A°U BC.
“A or B or both” is AUB. From Theorem 1.2.9b we have P(AUB) = P(A)+P(B)—P(ANB).
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“A or B but not both” is (AN B€) U (B N A°). Thus we have

P((ANB°)U(BNA®%) = P(ANB°) + P(Bn A° (disjoint union)
[P(A) — P(ANB)] + [P(B) — P(AN B)] (Theorem1.2.9a)
P(A) + P(B) —2P(AN B).

I

“At least one of A or B” is AU B. So we get the same answer as in a).

d. “At most one of A or B” is (AN B)¢, and P((ANB)¢) =1—- P(ANB).

1.5 a.

1.6

ANBNC ={aU.S. birth results in identical twins that are female}

P(ANBNC)=g3x 2 x1

pO:(l_u)(l_w)a p1:u(1—w)+w(1_u‘)’ b2 = uw,

po=p2 = utw=1
pr=p2 = uw=1/3.

These two equations imply «(1 — u) = 1/3, which has no solution in the real numbers. Thus,
the probability assignment is not legitimate.

1.7 a.

1.8 a.

1.9 a.

P(scoring 7 points) = {

P(scoring % points N board is hit)

P(scoring ¢ points|board is hit) P(board is bit)

2
P(board is hit) = %
2 1(6 =92 —(5—4)2
P(scoring i points N board is hit) = % 69 52( ) 1=1,...,5.

Therefore,

(6—14)% —(5—1)2
52

which is exactly the probability distribution of Example 1.2.7.

P(scoring exactly ¢ points) = P(inside circle i) — P(inside circle 7 + 1). Circle ¢ has radius
(6 —i)r/5, so

P(scoring 4 points|board is hit) =

i=1,...,5

6 — )22 — (i +1)))2r2 —i2_(5 — )2
P(sscoring exactly ¢ points) = 7r(527r:~)2 L m (6 5(;7:;2))) L. (6-19) 52(5 J :

Expanding the squares in part a) we find P(scoring exactly ¢ points) = 112“52", which is
decreasing in 3.

Let P(i) = 14524 Since ¢ < 5, P(i) > 0 for all i. P(S) = P(hitting the dartboard) = 1 by
definition. Lastly, P(i U j) = area of 4 ring + area of j ring = P(i) + P(j).

Suppose z € (UpAqa)¢, by the definition of complement x & U,A,, that is & A, for all
a € I'. Therefore x € AS, for all o € I'. Thus x € Ny A, and, by the definition of intersection
z € AS for all & € T'. By the definition of complement = ¢ A, for all & € T'. Therefore
T & UgAq. Thus z € (Ugpdn)©.
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b. Suppose z € (NaAq)¢, by the definition of complement = ¢ (NyAy). Therefore z ¢ A, for
some a € I'. Therefore z € A¢, for some o € I'. Thus z € U, A, and, by the definition of
union, z € A¢, for some a € T'. Therefore z ¢ A, for some « € I". Therefore x & Ny A,. Thus
z € (NgAy)°.

1.10 For Al, e ,A

n

0 (UAi) A4 @) (mAi) _Jas
=1 =1 =1

i=1
Proof of (i): If z € (UA;)¢, then ¢ UA,. That implies = ¢ A; for any i, so x € A¢ for every i
and z € NAS
Proof of (ii): If x € (NA;)¢, then z ¢ NA;. That implies z € A¢ for some 4, so z € UAS.

1.11 We must verify each of the three properties in Definition 1.2.1.

a. (1) Theemptyset® € {0, S}. Thus@ € B. (2)¢° =S € Band S°=0 € B. (3)puS =S € B.

b. (1) The empty set () is a subset of any set, in particular, § C S. Thus § € B. (2) If A € B,
then A C S. By the definition of complementation, A is also a subset of S, and, hence,
A e B. (3)If Ay, A, ... € B, then, for each i, A; C S. By the definition of union, UA; C S.
Hence, UA; € B.

c. Let B; and Bz be the two sigma algebras. (1) § € By and §) € B; since By and By are
sigma algebras. Thus § € By NBa. (2) If A € By N By, then A € By and A € Bs. Since
B and By are both sigma algebra A® € By and A° € By. Therefore A° € By N By. (3) If
Ay, As, ... € BiN By, then Ay, Ay, ... € By and Ay, As, ... € By. Therefore, since By and B,
are both sigma algebra, U2, A; € By and U2, A; € Bs. Thus U2, A; € By N Bs.

1.12 First write

(99 - #(@++ 5.9
= (U >+P< U Ai> (A;s are disjoint)

i=1 i=n+1
n (o)
= Z )+ P ( U Ai> (finite additivity)
i=1 i=n+1

Now define By, = Ufik A;. Note that Byy1 C By and By — ¢ as k — oo. (Otherwise the sum
of the probabilities would be infinite.) Thus

o0 o0
(0) s (0 -
13

1.13 If A and B are disjoint, P(AU B) = P(A) + P(B) = 1 + 2 = 13, which is impossible. More
generally, if A and B are disjoint, then A C B¢ and P(A) < P(B¢). But here P(A) > P(B°),
so A and B cannot be disjoint.

n

ZP(Ai) + P(B,41)

i=1

1.14 If S = {s1,...,5,}, then any subset of S can be constructed by either including or excluding
s;, for each i. Thus there are 2™ possible choices.

1.15 Proof by induction. The proof for k = 2 is given after Theorem 1.2.14. Assume true for k, that
is, the entire job can be done in ny X ny X -+ X ng ways. For k + 1, the k + 1th task can be
done in ngy1 ways, and for each one of these ways we can complete the job by performing



1.16
1.17

1.18

1.19

1.20

1.21

Solutions Manual for Statistical Inference

the remaining k tasks. Thus for each of the ngy; we have n; X ng x --- X ng ways of com-
pleting the job by the induction hypothesis. Thus, the number of ways we can do the job is
(Ix (i xngXx---xng))+---+ (1 x (N Xna X+ XNg)) =Ny XNg X+ X Ng X Ny 1

N\ /

N~

nk41terms
a) 263.  b) 263 +262. ¢) 26% + 263 + 262.
There are (}) = n(n — 1)/2 pieces on which the two numbers do not match. (Choose 2 out of

n numbers without replacement.) There are n pieces on which the two numbers match. So the
total number of different pieces is n 4+ n(n —1)/2 = n(n +1)/2.

The probability is (";L)nn! = ("_22&;1) ! There are many ways to obtain this. Here is one. The
denominator is n™ because this is the number of ways to place n balls in n cells. The numerator
is the number of ways of placing the balls such that exactly one cell is empty. There are n ways
to specify the empty cell. There are n — 1 ways of choosing the cell with two balls. There are
(72‘) ways of picking the 2 balls to go into this cell. And there are (n — 2)! ways of placing the
remaining n — 2 balls into the n — 2 cells, one ball in each cell. The product of these is the
numerator n(n — 1)(3)(n — 2)! = (5)nl.

2
a. (§) =15.
b. Think of the n variables as n bins. Differentiating with respect to one of the variables is

equivalent to putting a ball in the bin. Thus there are r unlabeled balls to be placed in n
unlabeled bins, and there are ("+:_1) ways to do this.

A sample point specifies on which day (1 through 7) each of the 12 calls happens. Thus there
are 712 equally likely sample points. There are several different ways that the calls might be
assigned so that there is at least one call each day. There might be 6 calls one day and 1 call
each of the other days. Denote this by 6111111. The number of sample points with this pattern
is 7(162)6!. There are 7 ways to specify the day with 6 calls. There are (162) to specify which of
the 12 calls are on this day. And there are 6! ways of assigning the remaining 6 calls to the
remaining 6 days. We will now count another pattern. There might be 4 calls on one day, 2 calls
on each of two days, and 1 call on each of the remaining four days. Denote this by 4221111.

The number of sample points with this pattern is 7(*7) ($) () ()4!. (7 ways to pick day with 4

calls, (') to pick the calls for that day, (5) to pick two days with two calls, (3) ways to pick
two calls for lowered numbered day, (g) ways to pick the two calls for higher numbered day,
4! ways to order remaining 4 calls.) Here is a list of all the possibilities and the counts of the
sample points for each one.

pattern  number of sample points

6111111 7(1(;;)6! = 4,656,960
5211111 7(152)6(;)5! = 83,825,280
4221111 7(142) )G = 523,908,000
4311111 7('7)6(3)5! = 139,708,800
3321111 ()(%) (3)5(3)4! = 698,544,000
3222111 7(%)(5) 3) (g) ()3 = 1,397,088,000
2222211 (1) (7)(5)G)(G) (32! = 314,344,800

3,162,075,840

The probability is the total number of sample points divided by 7'2, which is §—’—1-62’7017——2w =
.2285.

n 27
The probability is % There are @:‘) ways of choosing 2r shoes from a total of 2n shoes.
2r

Thus there are @’:) equally likely sample points. The numerator is the number of sample points

for which there will be no matching pair. There are (2’; ) ways of choosing 2r different shoes



1.20: My telephone rings 12 times each week, the calls being randomly distributed
among the 7 days. What is the probability that I get at least one call each day?

Solution: The problem statement is somewhat vague. To be precise, let us assume this
person has 12 friends, each of whom calls exactly once each week on a randomly chosen
day. We assume each friend is equally likely to call on any of the 7 days of the week and
chooses the day independently of the other friends.

We switch to the complementary event and then use the principle of inclusion-exclusion.

P(at least one call each day)

= 1 — P(at least one day without any calls)
= 1—-P(A;]UAUA3U AU A5 U AgU Ay)

where we define A; = {no calls on day i} fori =1,2,...,7.

P(A1UAUA3U AU A5 U Ag U A7)
= Y P(4)=>_P(AiNA)+ > PANANA)—- +PANAN---NA;)

i<j i<j<k

= (;)P(Al) - (;)P(Al N Az) + (;>P(A1 NAyNAg) —--- + (;>P(A1 N---NAp)
- (OO OO+ ()

-z () ()

715

X

To better understand this formula consider
> P(A;NA;NA).
i<j<k
The event A; N A; N A, is the event that there are no calls on days ¢, j, and k. The
probability of this event is clearly the same for any choice of three days so that

P(A;NA;NAL) = P(A1N AN Aj)

for all choices of 7,7, k. There are (g) choices of 3 days ¢, 7,k out of 7, so that the sum

above reduces to (;) P(A; N Ay N A3z). The event A; N Az N Az occurs only if all 12 friends
call during days 4, 5, 6, or 7. The probability that a given friend calls on one of these four
days is 4/7. By independence, the probability that all 12 friends call during these 4 days
is P(Al N A2 N Ag) = (4/7)12

Our final answer is now approximately

1—.7715 = .2285.
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styles. There are two ways of choosing within a given shoe style (left shoe or right shoe), which

gives 22" ways of arranging each one of the (2"T) arrays. The product of this is the numerator

(5)2°" |

L2 ) COEIEDED-) (3 36 (3 6L
a) 366 b)

o 30) /{730

P(1% tosses z, 2™ tosses x)

OEET - Ose

M=

P( same number of heads ) =

8
Il
<)

I
M=

=0 =0
1.24 a.
[e]
P(A wins) = Z P(A wins on it" toss)

i=1
1 N2 1 N4 /1 00 /13 2itl

oL (N Iy LY, 2 — 9/3.
+(3)3+G) G)+ - 26 -

c. a% (1_ (f_p)z) = (1”;)2]2 > 0. Thus the probability is increasing in p, and the minimum

is at zero. Using L’Hopital’s rule we find lim,_,o ﬁz =1/2.

1.25 Enumerating the sample space gives S’ = {(B, B), (B, G), (G, B), (G, G)} ,with each outcome
equally likely. Thus P(at least one boy) = 3/4 and P(both are boys) = 1/4, therefore

P( both are boys | at least one boy ) =1/3.
An ambiguity may arise if order is not acknowledged, the space is S’ = {(B, B), (B, G), (G, G)},
with each outcome equally likely.

1.27 a. For n odd the proof is straightforward. There are an even number of terms in the sum
(0,1,---,n), and (}) and ("), which are equal, have opposite signs. Thus, all pairs cancel
and the sum is zero. If n is even, use the following identity, which is the basis of Pascal’s
triangle: For k> 0, (}) = (ngl) + (Z:i) Then, for n even

o) = (5)r e ()« ()
)+ (0) Eor((4)

_|_

(i)

b. Use the fact that for k > 0, k(}) = n(}71) to write

(1) B () 5 (15 e

k=1
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Shoy (FDFE(Y) = S (DR (D) = 0 X550 (<17 (") =0 from part a).

1.28 The average of the two integrals is

[(nlogn —n)+ ((n+1)log(n+1)—n)]/2 = [nlogn+ (n+1)log(n+1)]/2—n
~ (n+1/2)logn —n.

Let dr, = logn!—[(n + 1/2)logn — n], and we want to show that lim,_,., md,, = ¢, a constant.
This would complete the problem, since the desired limit is the exponential of this one. This
is accomplished in an indirect way, by working with differences, which avoids dealing with the
factorial. Note that

1 1
dp —dpy1 = <n+§)log(1+g> — 1.

Differentiation will show that ((n + 3))log((1 + )) is increasing in n, and has minimum
value (3/2)log2 = 1.04 at n = 1. Thus dy, — dp+1 > 0. Next recall the Taylor expansion of
log(1+z) =z —2%/2 +23/3 — z%/4 4 ---. The first three terms provide an upper bound on
log(1 + z), as the remaining adjacent pairs are negative. Hence

1 11 1 1 1
0 < dpd Sl I (R [ I
< Gnfnt < (n—l— 2) <n oz + 3n3) 202 "o

It therefore follows, by the comparison test, that the series Y 7° d,, —d, 41 converges. Moreover,
the partial sums must approach a limit. Hence, since the sum telescopes,

N

i, D dn = duis = Jim s =y =c.

Thus lim,, _,o d, = d1 — ¢, a constant.

1.29 a.

1.31 a.

Unordered Ordered
441212} (4,4,12,12), (4,12,12,4), (4,12,4,12)
(12,4,12,4), (12,4,4,12), (12,12,4,4)
Unordered Ordered
(2,9,9,12), (2,9,12,9), (2,12,9,9), (9,2,9,12)
{2,9,9,12}  (9,2,12)9), (9,9,2,12), (9,9,12,2), (9,12,2,9)
(9,12,9,2), (12,2,9,9), (12,9,2,9), (12,9,9,2)
Same as (a).
There are 6° ordered samples with replacement from {1,2,7,8,14,20}. The number of or-

dered samples that would result in {2,7,7,8,14,14} is %{,1, = 180 (See Example 1.2.20).
Thus the probability is 16839.

If the k objects were distinguishable then there would be k! possible ordered arrangements.
Since we have ki, ..., ky, different groups of indistinguishable objects, once the positions of
the objects are fixed in the ordered arrangement permutations within objects of the same
group won’t change the ordered arrangement. There are kilks!- - - k,,,! of such permutations

for each ordered component. Thus there would be m different ordered components.

Think of the m distinct numbers as m bins. Selecting a sample of size k, with replacement,
is the same as putting & balls in the m bins. This is (k”,?_l), which is the number of distinct
bootstrap samples. Note that, to create all of the bootstrap samples, we do not need to know

what the original sample was. We only need to know the sample size and the distinct values.
The number of ordered samples drawn with replacement from the set {z1,...,z,} is n™. The

number of ordered samples that make up the unordered sample {x1, ...,z } is n!. Therefore
the outcome with average w that is obtained by the unordered sample {z1,...,2z,}
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has probability n% Any other unordered outcome from {zi,...,z,}, distinct from the un-
ordered sample {z1,...,z,}, will contain m different numbers repeated ki,...,kyn, times
where k1 + ko + -+- + k,, = n with at least one of the k;’s satisfying 2 < k; < n. The
probability of obtaining the corresponding average of such outcome is

n!

n!
— < —, since kilko!--- k! > 1.
kilkol- - kppln®  nn’ phetrrim

Therefore the outcome with average £1t22t+%n jg the most likely.

b. Stirling’s approximation is that, as n — oo, n! &~ v2wn"+t(1/2e="_and thus

( n! )/ Vonm nle™® 2mnnt(1/2)g=nen .
n" er T onn2nm n"/2nm B
c. Since we are drawing with replacement from the set {z1, ..., 2, }, the probability of choosing

any x; is % Therefore the probability of obtaining an ordered sample of size n without z;
is (1— %)" To prove that lim, (1 — %)" = e~ 1, calculate the limit of the log. That is

1 log(1-1
lim nlog (1_ﬁ> = lim —Og—(——’—‘l

n—00 n—00 l/n

1.33 Using Bayes rule

P(CB|M)P(M) B 05x 1
(CB|M)P(M) + P(CB|F)P(F) .05 x 1+.0025 x 1

P(M|OB) = 3 = .9524.

1.34 a.

P(Brown Hair)
= P(Brown Hair|Litter 1)P(Litter 1) + P(Brown Hair|Litter 2) P(Litter 2)

- (GG 6) =

b. Use Bayes Theorem

. o P(BH|L1)P(L1) _QE _ 1w
P(Litter 1|Brown Hair) = PBHIDP(LL) § PBHLPI2 — 3:1))_92 = T

1.35 Clearly P(-|B) > 0, and P(S|B) = 1. If Ay, A, ... are disjoint, then

e  PUZANB)  P(UZ (4,0 B)
P (BA" B) = T B P(B)
Y2 P(ANB) &
= =) - S PAB).

i=1
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1.37 a.

1.38 a.

1.39 a.

1.40 a.
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Using the same events A, B, C and W as in Example 1.3.4, we have
PW) = P(W|A)P(A)+ P(W|B)P(B)+ P(W|C)P(C)
1 1 1\ o+l
- (5) ) (G) - 5

; _ P(ANW) __ 3 _
Thus, P(AIW) = 555" = 5575 = 5

=
=2
19
@
[¢]

I’

Yy 1 1
=3 1f7—%
Y 1 1
m<§ 1f’7<%
ol 1 1
m>3 1f")’>2.

. By Exercise 1.35, P(-|W) is a probability function. A, B and C are a partition. So

P(AW) + P(BIW) + P(CIW) = 1.

But, P(B|W) = 0. Thus, P(A|W) + P(C|W) = 1. Since P(A|W) = 1/3, P(C|W) = 2/3.
(This could be calculated directly, as in Example 1.3.4.) So if A can swap fates with C| his
chance of survival becomes 2/3.

P(A) = P(AN B) + P(AN B°) from Theorem 1.2.11a. But (AN B¢) C B¢ and P(B°) =
1—P(B)=0. So P(ANB®) =0, and P(A) = P(AN B). Thus,
P(AnB) P(A)

P(A|B) = B -1 = P(4)

A C B implies AN B = A. Thus,
P(AnB) P(A)

P(B|A) = PA) ~ P(A) =1.
And also,
_P(AnB) P(A)
PAIB)==5E) = BBy
. If A and B are mutually exclusive, then P(AU B) = P(A) + P(B) and AN (AU B) = A.
Thus,
_P(An(AuB)) P(A)
PAIAVE) = =53 08 ~ PA)+ P(B)

. P(ANBNC)=P(An(BNC)) = P(AIBNC)P(BNC) = P(A|B N C)P(B|C)P(C).

Suppose A and B are mutually exclusive. Then AN B = () and P(ANB) =0.1If A and B
are independent, then 0 = P(AN B) = P(A)P(B). But this cannot be since P(A) > 0 and
P(B) > 0. Thus A and B cannot be independent.

If A and B are independent and both have positive probability, then
0 < P(A)P(B) = P(AN B).

This implies AN B # 0, that is, A and B are not mutually exclusive.

P(A°NB) = P(A°|B)P(B) = [1 — P(A|B)|P(B) = [1 — P(A)]P(B) = P(A°)P(B) , where
the third equality follows from the independence of A and B.

. P(A°N B®) = P(A¢) — P(A°N B) = P(A°) — P(A°)P(B) = P(A°)P(B°).
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P( dash sent | dash rec)
P( dash rec | dash sent)P( dash sent)
P( dash rec | dash sent)P( dash sent) + P( dash rec | dot sent)P( dot sent)
(2/3)(4/7)
(2/3)(4/7) + (1/4)(3/7)

= 32/41.

By a similar calculation as the one in (a) P(dot sent|dot rec) = 27/434. Then we have
P( dash sent|dot rec) = 32. Given that dot-dot was received, the distribution of the four
possibilities of what was sent are

Event Probability
dash-dash  (16/43)2
dash-dot  (16/43)(27/43)
dot-dash  (27/43)(16/43)
dot-dot (27/43)2

For Boole’s Inequality,
PUL) <> P(A) =P+ Ps+- £ P, <Y P(4)
i=1 i=1

since P; > P; if ¢ < j and therefore the terms —Poy, + Pogyy < O0fork=1,..., "T_l when

n is odd. When n is even the last term to consider is —F,, < 0. For Bonferroni’s Inequality
apply the inclusion-exclusion identity to the A, and use the argument leading to (1.2.10).

. We illustrate the proof that the P; are increasing by showing that P, > P;. The other

arguments are similar. Write

]
L

LNE

1l
+

P= Y P(Ain4;) =

1<i<j<n i

P(A;N A;)

1

J

o
Il

1
1

<

r—

Il
(]

Xn: [i P(A;NA;NAg) + P(AiNAj N (UkAg)©)

i=1 j=i+1 k=1

Now to get to P3 we drop terms from this last expression. That is

n—-1 n n
D3 Do P(Ain AN Ay) + P(Ai 0 A 0 (UkAr)©)
i=1 j=i+1 Lk=1
n—1 n n
> >3 1D PAinA; N A
i=1 j=i+1 Lk=1
n—2 n-—1 n
> Z Z Z P(AiﬂAjﬁAk) = Z P(AimAij]c) = Ps.
i=1 j=i+1k=j+1 1<i<j<k<n

The sequence of bounds is improving because the bounds Py, Py — Py +P3, P, — Py + P3— Py +
Ps, ..., are getting smaller since P; > P; if i < j and therefore the terms —Poi, + Pogy1 < 0.
The lower bounds Py — P, Py — P+ P3 — Py, Py — Po+ P3s — Py + Ps — P, ..., are getting
bigger since P; > P; if 1 < j and therefore the terms Pai11 — Poi > 0.
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c. If all of the A; are equal, all of the probabilities in the inclusion-exclusion identity are the

same. Thus
P =nP(4), P,= (Z)P(A), . P = (’;) P(A),
and the sequence of upper bounds on P(U;A;) = P(A) becomes

P, =nP(A), P,—Py+P;= [n - (g) + (;’)] P(A), ...

which eventually sum to one, so the last bound is exact. For the lower bounds we get

P —P= [n—— (’2‘)] P(A), Pi—P,+Ps— P = [n- <Z> + (g) - (Zﬂ P(A), ...

which start out negative, then become positive, with the last one equaling P(A) (see Schwa-
ger 1984 for details).

1.44 P(at least 10 correct|guessing) = Y 20 o (%) (%)k (-?l)n_k =.01386.

k 4

1.45 X is finite. Therefore B is the set of all subsets of X. We must verify each of the three properties

in Definition 1.2.4. (1) If A € B then Px(A) = P(Ug,ca{s; € S: X(s;) = z;}) > 0 since P
is a probability function. (2) Px(X) = P(UX,{s; € S : X(s;) = z;}) = P(S) = 1. 3) If
A1, Ay, ... € B and pairwise disjoint then

Px(Up24x) = P(|J{Uricac{s; € S: X(s;) = z:}})
k=1

D P(Useads; € S: X(s5) =m}) = Y Px(Ag),
k=1

where the second inequality follows from the fact the P is a probability function.

1.46 This is similar to Exercise 1.20. There are 77 equally likely sample points. The possible values of

Xg are 0, 1 and 2. Only the pattern 331 (3 balls in one cell, 3 balls in another cell and 1 ball in a
third cell) yields X3 = 2. The number of sample points with this pattern is (3) (%) (3)5 = 14,700.

So P(X3 = 2) = 14,700/77 ~ .0178. There are 4 patterns that yield X3 = 1. The number of
sample points that give each of these patterns is given below.

pattern  number of sample points

34 7( )6 = 1,470
322 7 )(2) (2)(5)  =22050
3211 (;;)6(3) (3)2! = 176,400
siinr 7(5) (D4t = 88,200

288,120

So P(X3 = 1) = 288,120/77 ~ .3498. The number of sample points that yield X3 = 0 is

— 288,120 — 14,700 = 520,723, and P(X3 = 0) = 520,723/77 ~ .6322.

1.47 All of the functions are continuous, hence right-continuous. Thus we only need to check the

& oo

limit, and that they are nondecreasing

im0 3+ 2 tan'l(x L(5F) =0, limpoo 3 + LtanY(z) =3 + 2 (%) =1, and

iy
4 (1 +Wtan_1( ) == >0 so F(z) is increasing.

. See Example 1.5.5.

=" =0, limyooe™® =1, Le¢ T = Tem¢ " > 0.

lim, e ) dz €

limg o, oo(1—e7®) =0, limy o (1 —e7%) = di( —e *)=e*>0.



1.48

1.49

1.50

1.51

1.52

1.53
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. p— . p— pa— et e —
e. limy,_ Hl_Tey =0, limy_,oc e+ 1-1769 =1, d%(l-lyefy = 8+Z)—ey)2 > 0 and d%(e—l— Hl_Tey) >
0, Fy (y) is continuous except on y = 0 where lim,,|o(e+ 1_}_%) = F(0). Thus is Fy (y) right

continuous.

If F(-) is a cdf, F(z) = P(X < z). Hence limy_,oo P(X <z) =0and lim, ,_o P(X <z)=1.
F(x) is nondecreasing since the set {z : X < z} is nondecreasing in x. Lastly, as = | o,

P(X <z) — P(X <), so F(-) is right-continuous. (This is merely a consequence of defining
F(z) with “<7”)

For every t, Fx(t) < Fy(t). Thus we have
P(X>t)=1-P(X <t)=1-Fx(t)>1-Fy(t)=1-P(Y <t) = P(Y >t).
And for some t*, Fx(t*) < Fy(t*). Then we have that

P(X>t)=1-P(X <t*)=1-Fx(t') > 1— Fy(t*") =1 — P(Y <t*) = P(Y > t*).

Proof by induction. For n = 2

2 2
1-¢
thl=14t= :
> tt=15
k=1

Assume true for 7, this is Y p_; t*71 = L=t Then for n+ 1

n+1 n
1—t" 1—t" 4+t (1—t 1—gntl
DotTt=Y ke = +t" = L )

1—t - 1—t o1t

k=1 k=1
where the second inequality follows from the induction hypothesis.

This kind of random variable is called hypergeometric in Chapter 3. The probabilities are
obtained by counting arguments, as follows.

z  fx(z) = P(X =z)

0 Q) /() =616
1 OE) /) ~a196
2 O /C) ~ 100
3 ) /) .00
£ QE/C) w0002

The function g(-) is clearly positive. Also,

o pw)  1-F(ay)
/m g(x)de = / Py ™ = TF(ag) ~ "

a. limy_, oo Fy (y) = limy—,_ o0 = 0 and limyco Fy(y) = limyoo1 — 55 = 1. For y < 1,
Fy(y) = 0 is constant. For y > 1, %Fy(y) =2/y3® > 0, so Fy is increasing. Thus for all y,
Fy is nondecreasing. Therefore Fy is a cdf.

. 2/43 i
b. The pdf is fy (y) = & Fy(y) = { Jy* iy >1

0 ify <1.
c. Fz(z)=P(Z <2z)=P10(Y —1) <z)=P(Y <(2/10) + 1) = Fy((2/10) + 1). Thus,

. 0 if 2 <0
2(&)=11- (i) iE2>0.
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1.54 a. fOW/Q sinzdz = 1. Thus, c=1/1 = 1.

b. [7 e leldy = ffoo e®dr + [ e ®dz =1+1=2. Thus, c = 1/2.
1.55

3
PV <5)=PT<3)= / 1—15e—t/1~5dt =1-¢2
0 .

Therefore,



Miscellaneous Exercises

[1.19] A function of n variables (call them z;, 2o, ..., ,) has <"+:_1 partial derivatives of
order r. This follows by an application of one of the counting rules given in Table 1.2.1 on
page 16 (unordered with replacement). One way to see this is that every time you select
a variable to differentiate with respect to, you are sampling an “object” from the set of
n objects {z1,2,...,2,}. You are allowed to differentiate repeatedly with respect to the
same variable, so the sampling is with replacement. Also, the order of differentiation does
not matter, so the sampling is unordered. Thus, you are counting the number of ways to
select 7 objects from n where order does not matter and the sampling is with replacement.

Another way to view this situation is given in the solution manual. You can think of the
n variables as bins, and differentiating with respect to one of the variables is equivalent to
putting a ball in that bin. Differentiating 7 times is like placing r balls in n bins. The only
thing that matters about the final arrangement of balls is the number of balls in each bin;
the order the balls were placed in the bins does not matter since the order of differentiation
does not matter. Let b; denote the number of balls in bin ¢. The final arrangement of balls
is described by the n-tuple (b, bs,...,b,). Since the total number of balls is 7, the number
of possible arrangements is just the number of n-tuples of nonnegative integers which sum
to 7. The number of such n-tuples is given by "+:_1) = (":_Il) This can be seen by
the “walls and markers” argument on page 15 of the text. Here is a rewording of that
argument: The n-tuple must sum to r. We can break r into n groups of size bq,...,b,
by inserting n — 1 markers (or dividers) among r counters (coins) laid out in a line. Thus
the number of n-tuples is the number of ways to place n — 1 markers among r counters.
Viewing the markers and counters as occupying n + r — 1 positions, we must choose n — 1
of these positions to be markers, and the other r positions to be counters. This can be
done in 63 L:izl) ways.

For example, in part (a) we must count the number of 3-tuples (since there are n =
3 variables) which sum to r = 4 (the number of derivatives). These 3-tuples and the
corresponding arrangements of markers and counters are given below.

#:az (2,1,1) oo]o|o
%;;—2& (1,2,1) ooo|o
5&56?/27 (1,1,2) o|o|oo
5%%5 (3,1,0) coo|o|
b&% (3,0,1) oool|o
aza_z;ﬁ (1,3,0) o|ooo|
5?—/‘%—; (0,3,1) |ooo]o
af% (1,0,3) oflooo
8_39‘:_3 (0,1,3) |o]ooo
(9,7?2-!—/7 (2,2,0) oo | oo |
M‘Z—;zz (2,0,2) ool| oo
;9—?1—‘267 (0,2,2) ]oo]oo
88,—; (4,0,0) ooo0|
aa—; (0,4,0) |oo0o0 |
;9% (0,0,4) || oooo0



[1.22(b)] The answer given in the text is right, but the solution manual is wrong. You
can compute the answer in two different ways. If you view the sample space as being all

possible unordered choices of 30 days out of 366 (with all possibilities equally likely), then
you get (3;(?) / (336(;3). If you use an urn model, or if you view the sample space as being all

possible ordered choices of 30 days out of 366 (with all possibilities equally likely), then

you get %g—g—g— e %. These two answers are equal, of course.

[1.41(b)] The old student solution I handed out is overly long. A sketch of a shorter
argument follows. I assume you have already done the first part of the problem and know
how to calculate P(dot sent | dot received) = 27/43 and P(dash sent | dot received) =
16/43.

Two signals are sent. The signals are independent of each other. Let A; denote the
event that the ¢-th signal sent is a dot, and let B; denote the event that the i-th signal
received is a dot. Then

P(dot-dot sent | dot-dot received)
= P(A1NAz| B1N By)
P((A1 N A2) N (B N By))
P(B; N By)
P((A1 N By) N (A2 N By))
P(B1 N By)
P(A1 N By)P(A2N By)
P(B1)P(B>)
(because the first and second signals are independent)
P(A; N By) P(A2N By)
P(B1)  P(B)
= P(A;| B))P(Ay | By) = (27/43)2.

In a similar fashion, you show that

P(dash-dash sent | dot-dot received)
= P(AINAj| BN B,)
= P(A{ | B;)P(45 | By) = (16/43)°

etc.



Exercises 1.26 and 1.36

P(more than 5 tosses to get a 6)
= P(no 6’s in the first 5 tosses)
= P(AiNA;NA3NAsN As)
where A; = {the i-th toss is not a 6}
= P(A;) x P(As) x -+ x P(As)

5 5
- (6)
1.36: Ten shots are fired independently. Let X be the number of times the

target is hit. Then X ~ Binomial(n = 10,p = 1/5) which has pmf
given by

flz) = (15)(1/5)5'3(4/5)10—’” forx =0,1,...,10.

Thus
P(X>2)=1-P(X <2)=1—-f(0)—f(1) =1—(4/5)"~10-(1/5)-(4/5)°

and

Pxs2lxs) - PUXZ20{X>1) P22

P(X >1) P(X >1)
1-f(0)— f(1) _1-(4/5)"—10-(1/5)- (4/5)°
1 - £(0) 1—(4/5)"° '
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Chapter 2

Transformations and Expectations

2.1 a. fy(z) =422%(1 - 1x), 0 <z < 1; y = 2% = g(z), monotone, and Y = (0,1). Use Theorem
2.1.5.

d
fry) = folg™' W) d%g“l(y)} = fx(yl/?»)@(yl/s) — 429531 — 1/3)(3 y2/%)
= My(1-y7%) = 1y—14*3, 0<y<1.

To check the integral,

1 Yy 7/3
/ (14y — 14y*3)dy = Ty —14%—
0

1
—72—67/3 =1-0=1.
73|, Y Y |0

b. fz(z) =7e""™,0 <z < 00, y = 4z + 3, monotone, and Y = (3,00). Use Theorem 2.1.5.

Fr@) = fo(2 Z 3) 1%(1; ; 3)‘ = 7¢~(1/0)(y=3)

1 7
2| = Lo (7/9)(y-3)
4‘ 46 , 3<y < o0.

To check the integral,

P 4y y-3 7/4)(y-3)| >
/ Ze_( ID=3) gy = _ =T/ = )‘3 —0—(-1)=1.
3

c. Fy(y)=P(0< X < /5) = Fx(y/7). Then fy(y) = ﬁ fx(,/9)- Therefore

fr(y) =30( (VI)*(L— 92 =15y3(1— §)?, O<y<Ll

To check the integral,

)~ 30(3) +15(3) =

1 1
/ 15y% (1 — \/9)%dy = / (15y* — 30y + 15y )dy = 15(2 5
0

0 3
2.2 In all three cases, Theorem 2.1.5 is applicable and yields the following answers.
a. fr(y)=3y7/%,0<y<1,
b. fy(y) = M e ¥t (1 — V)™ 0 < y < oo,

nlm!
C. fy(y) = 3171_;‘_.6—(1/2)((1%51/)/0)2,1 <y < o0.
23 PY=y)= P(XL_H =y)=PX=:%)= $(3)V/-Y), wherey=0,3,2,3,... S

2.4 a. f(z) is a pdf since it is positive and

* 1 *1 11
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b. Let X be a random variable with density f(z).

[ Aaereda ift <0
P(X <t)=1 7o 1y e 1y, Xz .
J- o sAeMdz+ fo e Mdr ift>0
where, [*_ 1xe’dr = leMe l_oo = 1eMand [ Ihe™Mdz = —Le | = ~le M 4 L

Therefore,

P(|X| <t)=0fort <0, and for t >0,

0 t
P(X| < t) P(-t<X<t) = / %Ae"‘”dz+/ —;—)\e"’\‘”d:z:
0

= % [1—e™] + % [—e™+1] = 1-e .

2.5 To apply Theorem 2.1.8. Let Ag = {0}, A1 = (0,%), A3z = (m, 37") and A4 = (37”,27r). Then
gi(z) = sin2(a:) on A; for i = 1,2, 3,4. Therefore gl“l(y) = sin_l(\/ﬂ), gz_l(y) =7 — sin"l(\/@),
95 '(y) =sin™'(/y) + 7 and g (y) = 27 — sin™*(,/7). Thus

1 1

fr(y) =525

Il

L1
2

1 1 l
1-y2/fy

1 1
v
1
= ———, 0<y<1
y(1—y)

To use the cdf given in (2.1.6) we have that z; = sin™"(,/y) and x5 = m —sin~' (/). Then by
differentiating (2.1.6) we obtain that

Frly) = 2fx(sin-1<¢§>%<sin L(/F) — 2 (m — sin~ wa)%(w—sm-wg)

VS SRS U NS B U

= g e vieng)
1

- y(1—-y)

2.6 Theorem 2.1.8 can be used for all three parts.

a. Let Ag = {0}, A1 = (—0,0) and Ay = (0,00). Then g;(z) = |z|> = —z3 on A; and
g2(z) = |z|*> = 2® on Aj;. Use Theorem 2.1.8 to obtain

1 13 _
fY(?J)=§€ viyTE o<y < oo

b. Let Ag = {0}, A; = (—1,0) and Az = (0,1). Then g;(z) =1 —2% on A; and go(z) = 1 — 2
on A,. Use Theorem 2.1.8 to obtain

@)= 20—y 2+ 20—y, o<y <1

Ncﬂ’e This is the Samé, as )
3 (-yFg) T (V-

SJY(;O 9 47

W O<§<’«
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c. Let Ag = {0}, A; = (~1,0) and Ay = (0,1). Then g;(z) =1 —z2 on 4; and g2(z) =1 —=x
on A;. Use Theorem 2.1.8 to obtain

+2(2-9)?% o0<y<l1

~h
<
—~
<
N—r
p—
(7]
—~
—
|
—
|
R4
N—r
©
ﬁ
Io—n
N
| W

2.7 Theorem 2.1.8 does not directly apply.
S o - e ———————
A. gQrenr2-1:8does not directly apply. Instead write {

P(Y <y s P(X*<y) S«ZQ

- {FaliemT oy | Lollowm

S x/"y fx(x)dz if|z] <1 . Pa3€ .

dr ifz >

Differgafiation gives

< £ ify<1
s Tom MY = e
(- — - = = -
b. If the sets By, Bo, ..., Bk are a partition of the range of Y, we can write

y) =Y fr(v)I(y € By)
k

and do the transformation on each of the Bj. So this says that we can apply Theorem 2.1.8
on each of the By and add up the pieces. For A; = (—1,1) and Ay = (1, 2) the calculations
are identical to those in part (a). (Note that on A; we are essentially using Example 2.1.7).

2.8 For each function we check the conditions of Theorem 1.5.3.

a.(i) limy—o F(z) =1-e0=0,lim;,_ o F(z)=1—e"® =1.
(ii) 1 — e~ is increasing in z.
(iif) 1 —e™7 is continuous.
(iv) Fri(y) = —log(1 — ).
b. (i) limg_, oo F(z) = €7°/2 =0, limy_o F(z) =1 — (e}7®/2) = 1.
(ii) e~*/? is increasing, 1/2 is nondecreasing, 1 — (e!~%/2) is increasing.
(iii) For continuity we only need check z =0 and z = 1, and lim,_,o F(z) = 1/2,

limg_,1 F(x) = 1/2, so F is continuous.
(iv)

|
o [log(2y) oLy <
FXl(y)_{lélgg@(l—y)) -;—_<y<1 2

c.(i) limy—— oo F(z) =e™®/4 =0, lim; oo F(z) =1 —e /4 =1.

ii) e*/4 and 1 —e™*/4 are both increasing in z.

(iii) limgo F(z) =1—e7%/4 =2 = F(0), so F is right-continuous.
)

log(4 0<y<
) P’ = {fglég?@a—y)) 1t



2.7(a) For y > 0 we can write

Ro) = P(Y <y) = POC<y) = Py <X < i) = [ jula)ds

)

/ —(z+1)dr for0<y<1

= / —(x+1)de forl<y<4 (%)

2 2
/ —(x+1)d for y > 4
19
4
§\/§ for0<y<1
— 1
N 9(y+1+2\/_) for1 <y <4
1 fory > 4
so that differentiation gives the pdf as
2
§y_1/2 for0<y <1
— 1
friy) = f(l—l—y_lﬂ) forl<y<4
9
0 otherwise.

The density can also be found by directly differentiating the integrals in (x)
above.

2.7(b) Using the approach from lecture, we divide the interval (—1,2) (which
is the range of X)) into A; = (—1,0) and As = (0,2) on which the function
g(z) = x? is monotonic. Let g; denote the function g restricted to x € A;
for i = 1,2. The range of the function ¢; is By = (0, 1), and the range of go
is By = (0,4). Clearly g;'(y) = —/y and g5 '(y) = /y. By the result in

lecture

Arly) = In(y) + Fx(g; | )| L)

x(91" (1)) jgfl(y)

I
2
g (V1) \/_(01() (\/_+1) \/@ ()
{ (\/_—1—1) (\/—4_)%; for0 <y <1

%(\/_—l-l) y for 1l <y<4
0 otherwise

which (after a little simplification) agrees with the answer found in part (a).
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2.9 From the probability integral transformation, Theorem 2.1.10, we know that if u(z) = F,(z)
then F(X) ~ uniform(0,1). Therefore, for the given pdf, calculate

7

0 ifz<1
u(x):Fx(x)z{(x—l)Q/zl ifl<z<3
1 if3<z

2.10 a. We prove part b), which is equivalent to part a).
b. Let Ay, = {z : Fy(z) < y}. Since F, is nondecreasing, A, is a half infinite interval, either
open, say (—00,xy), or closed, say (—oo,z,]. If Ay is closed, then

Fy(y) = P(Y <y) = P(Fo(X) <y) = P(X € Ay) = Fi(zy) <.

The last inequality is true because =, € Ay, and Fy(z) <y for every z € A,. If A, is open,
then

Fy(y) = P(Y <y) = P(Fo(X) <y) = P(X € 4y),

as before. But now we have

P(X € Ay) =P(X € (—00,2y)) = E%}P(X € (—o0,x]),

Use the Axiom of Continuity, Exercise 1.12, and this equals lim,1, Fx(z) < y. The last
inequality is true since Fy(x) < y for every x € Ay, that is, for every < z,. Thus,
Fy (y) <y for every y. To get strict inequality for some y, let y be a value that is “jumped
over” by Fy. That is, let y be such that, for some z,,

li%n Fx(z) <y < Fx(xy).
Ty

For such a y, Ay = (—00, ), and Fy(y) = limgyy Fx(z) < y.
g2
2.11 a. Using integration by parts with v = x and dv = ze™2 dz then
o0 o0 .2 1
—l—/ e 2 dz| = —(2m) = 1.
o —c0 2w

e 1 —x2 ]_ -2
EX2:/ w22—e z dx = o {——xe Z
—oo 2

Using example 2.1.7 let Y = X2. Then

Therefore,

oo
EY:/ Y_ o3y — 1 {_gy%e%l
0

o X1y 1
+ TeT dyl = —(v271) = 1.
/Oy e y} r—%( )
i’

This was obtained using integration by parts with u = 2y% and dv = 1e7" and the fact the
fy (y) integrates to 1.

b. Y = |X| where —co < 2 < 00. Therefore 0 < y < co. Then

Fy(y) = PY <y) = P(X|<y) = P(-y<X<y)
= Plx<y)-PX<-y) = Fx(y)—Fx(-y).



