
(Probabilistic) Experiment: (Ω,B, P )

Ω is the sample space ≡ set of all possible outcomes.

(Often denoted S.)

ω denotes a particular outcome.

Ω = { all possible ω }

B is the class of “events” for which probabilities are defined.

(We mainly ignore B in this class. Assume all events of
interest have well-defined probabilities.)

P is a “Probability function”.

P (A) = probability of the event A.

An event A is a subset of Ω.

Experiments and events are often depicted by Venn dia-
grams.
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Example: Roll Two Fair Dice

Ω = {(i, j) : 1 ≤ i ≤ 6,1 ≤ j ≤ 6}

#(Ω) = 36

ω = (i, j)

Example: Poker (5 card draw)

Ω = set of all poker hands

#(Ω) =
(52

5

)
= 52!

5!47!

a particular outcome is ω = {A♥,5♣,5♠,K♥,3♦}

These are examples of experiments which are

discrete,
have finite Ω,
have equally likely outcomes ω.

In these situations:

P (A) =
#(A)

#(Ω)
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Example: Toss a biased coin with P (Heads) = 2/3 three
times.

Ω = {HHH, HHT, HTH, . . . , TTH, TTT}

#(Ω) = 8

For ω = HTH , P (ω) = (2/3)× (1/3)× (2/3), etc.

This experiment is discrete, has finite Ω, has outcomes
which are not equally likely.

Example: Turn on a Geiger counter for one minute and
count the number of clicks. (Assume an average of λ clicks
per minute.)

Ω = {0,1,2,3, . . .}

A typical outcome might be ω = 3.

P (ω) is given by Poisson distribution:

P (ω) =
λωe−λ

ω!

This experiment is discrete, has infinite (but countable)
Ω, has outcomes which are not equally likely.

In these situations:

P (A) =
∑
ω∈A

P (ω)
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Example: Turn on a Geiger counter. Measure the length of
time until you hear the first click. (Assume an average of λ
clicks per minute.)

Ω = (0,∞)

#(Ω) =∞ (and even worse, Ω is uncountable.)

For all outcomes ω, P (ω) = 0.

This is an example of a continuous experiment where P
is described in terms of a density function (pdf).

The time has an exponential distribution and

P ([a, b]) =

∫ b

a

λe−λx dx .

P (A) =

∫
A

λe−λx dx .

Example: Toss a biased coin with P (Heads) = 2/3 infinitely
many times. Record the sequence of heads and tails.

Ω = { all possible sequences of H and T }.

A typical ω = (H,H, T,H,H,H, T, T, . . .)

#(Ω) =∞.

P (ω) = 0 for all ω.
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The experiment has an infinite (and uncountable) Ω.

Is this experiment discrete or continuous?

How to compute probabilities P (A)?

Example: Toss a dart at a square target (1 ft. by 1 ft.).
Dart is tossed “at random” (uniformly).

Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

#(Ω) =∞.

This is continuous experiment with P given by

P (A) =
Area(A)

Area(Ω)
.

Example: Now suppose the dart is tossed according to a
joint density f(x, y) on the plane. Then (by definition)

P (A) =

∫ ∫
A

f(x, y) dx dy .

Comment: More complicated experiments lead to higher-
dimensional sample spaces Ω and probability functions P
described by higher-dimensional joint density or mass func-
tions.
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Properties of a Probability Function P

For any experiment (Ω, P ):

P (Ω) = 1 ?

P (∅) = 0

0
?
≤ P (A) ≤ 1

P (Ac) = 1− P (A) (where Ac = Ω−A)

A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B)

A1, A2, A3, . . . disjoint ⇒ P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) ?

A ⊂ B ⇒ P (A) ≤ P (B)

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P (Ai)

etc.

[? denotes an axiom.]

[Can change ∞ to finite n above.]
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Further comments on:

(1) P (A ∪B) = P (A) + P (B)− P (A ∩B)

(2) P

(
k⋃
i=1

Ai

)
≤

k∑
i=1

P (Ai)

[There are proofs of both in text on pages 10–12.]

Proof of (2):

For k = 2, (2) becomes P (A ∪B) ≤ P (A) + P (B).

This follows immediately from (1) since P (A ∩B) ≥ 0.

For k = 3, (2) is P (A∪B ∪C) ≤ P (A) +P (B) +P (C).

This follows immediately from the result for k = 2:

P (A ∪B ∪ C) = P ((A ∪B) ∪ C)
≤ P (A ∪B) + P (C)
≤ P (A) + P (B) + P (C)

Similarly,

P (A ∪B ∪ C ∪D) = P ((A ∪B ∪ C) ∪D)
≤ P (A ∪B ∪ C) + P (D)

etc. (Use induction for a formal proof.)
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Application of P (∪iAi) ≤
∑

i P (Ai):
Dunn’s Multiple Comparison Procedure

Suppose a researcher (Ed) wishes to design an experiment
to compare k treatments with a control (placebo).

(Take k = 5 for simplicity.)

After conducting the experiment, Ed will draw conclusions
about the effectiveness of the treatments.

Suppose that none of the treatments are effective; they are
all equivalent to the control. (Of course, Ed doesn’t know
this.)

Let Ai = {Ed (falsely) claims treatment i is better than the
control}.

Define B = A1 ∪A2 ∪ · · · ∪A5 = {Ed (falsely) claims at least
one of the treatments is better than the control}.

B is the event that Ed makes an error. Suppose Ed wishes
the probability of an error to be at most .05. How can he
accomplish this?

One answer: If Ed designs his experiment so that P (Ai) =
.01 for all i, then

P (B) = P (A1 ∪A2 ∪ · · · ∪A5) ≤
5∑
i=1

P (Ai) = 5× .01 = .05 .
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Property (1) : P (A ∪B) = P (A) + P (B)− P (A ∩B)
is the simplest case of the

Principle of Inclusion-Exclusion.

The next case is:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)
− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C)

The general case is:

P

(
k⋃
i=1

Ai

)
=

∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj)

+
∑
i<j<k

P (Ai ∩Aj ∩Ak)

− · · · + (−1)k−1P (A1 ∩A2 ∩ · · · ∩Ak)

There is a “picture proof” of the case with k = 3 where
you keep track of how many times each region in the Venn
diagram gets counted. (Do it!)

A rigorous formal argument can be given using the properties
of probability we have covered.

What follows is a proof for k = 3 sets. The proof uses the
property for k = 2 sets (which is property (1) above).
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Proof of Principle of Inclusion-Exclusion for 3 sets

P (A ∪B ∪ C) = P ((A ∪B) ∪ C)
Apply the case k = 2.

= P (A ∪B) + P (C)− P ((A ∪B) ∩ C) (‡)
Now note that

P (A ∪B) = P (A) + P (B)− P (A ∩B)

and (using the distributive law for sets)

P ((A ∪B) ∩ C) = P ((A ∩ C) ∪ (B ∩ C))
Apply the case k = 2.

= P (A ∩ C) + P (B ∩ C)− P ((A ∩ C) ∩ (B ∩ C))
Apply the associative and commutative laws
for ∩ to the event in the last term.

= P (A ∩ C) + P (B ∩ C)− P (A ∩B ∩ C)

Plugging these facts back into (‡) gives the final result

P (A ∪B ∪ C) = P (A) + P (B) + P (C)
− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C)

The proof for k = 4 sets is similar. Use induction to prove
the general case.
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“Applications” of the Principle of Inclusion-Exclusion
(and more basic properties of probability)

Suppose a monkey types 5 letters “at random”. (The key
strokes are independent with each letter having equal prob-
ability = 1/26. This is equivalent to saying that all 265

possibilities are equally likely.)

(#1) P (monkey types HELLO) =

(
1

26

)5

Why?

Solution:

{monkey types HELLO} = A1 ∩A2 ∩ · · · ∩A5 where

A1 = {first letter is H} = {`1 = H}
A2 = {second letter is E} = {`2 = E}
... ... ...
A5 = {fifth letter is O} = {`5 = O} .

Since A1, A2, . . . , A5 are independent, we have

P (A1 ∩ · · · ∩A5) = P (A1)× · · · × P (A5) =

(
1

26

)5

.
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(#2) P (monkey types BURP) = 2

(
1

26

)4

Why?

Solution:

{monkey types BURP} = {BURP?} ∪ {?BURP} = B1 ∪B2 .

Here “?” stands for any letter whatsoever.
This means

B1 = {`1 = B} ∩ {`2 = U} ∩ {`3 = R} ∩ {`4 = P}
= {`1 = B, `2 = U, `3 = R, `4 = P} ,

B2 = {`2 = B, `3 = U, `4 = R, `5 = P}
Using independence as in Example #1, we see that

P (B1) = P (B2) =

(
1

26

)4

.

Clearly, B1 and B2 are disjoint (mutually exclusive). Thus

P (B1 ∪B2) = P (B1) + P (B2) = 2

(
1

26

)4

.

(#3) P (monkey types ZIT) = 3

(
1

26

)3

Why?

Solution: This is just like the previous example.

{monkey types ZIT} = {ZIT??} ∪ {?ZIT?} ∪ {??ZIT}
= C1 ∪ C2 ∪ C3 .

Clearly P (C1) = P (C2) = P (C3) = (1/26)3 and the events
are disjoint. Thus

P (C1 ∪ C2 ∪ C3) = P (C1) + P (C2) + P (C3) = 3

(
1

26

)3

.
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(#4) P (monkey types AAAA) = 2(1/26)4 − (1/26)5 .

Solution:

{monkey types AAAA} = {AAAA?} ∪ {?AAAA}
= D1 ∪D2 .

D1 and D2 are not disjoint: D1 ∩D2 = {AAAAA} . Thus

P (D1 ∪D2) = P (D1) + P (D2)− P (D1 ∩D2)
= (1/26)4 + (1/26)4 − (1/26)5 .

(#5) P (monkey types AAA) = 3(1/26)3 − 2(1/26)4 .

Solution:

{monkey types AAA} = {AAA??} ∪ {?AAA?} ∪ {??AAA}
= E1 ∪ E2 ∪ E3 .

Since

E1 ∩ E2 = {AAAA?}
E2 ∩ E3 = {?AAAA}
E1 ∩ E3 = {AAAAA}

E1 ∩ E2 ∩ E3 = {AAAAA}
we have

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3)
− P (E1 ∩ E2)− P (E2 ∩ E3)− P (E1 ∩ E3)
+ P (E1 ∩ E2 ∩ E3)

= (1/26)3 + (1/26)3 + (1/26)3

− (1/26)4 − (1/26)4 − (1/26)5

+ (1/26)5 .
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(#6) P (monkey types AA) = 4
(

1
26

)2−3
(

1
26

)3−
(

1
26

)4
+
(

1
26

)5
.

Solution:

{monkey types AA}
= {AA???} ∪ {?AA??} ∪ {??AA?} ∪ {???AA}
= F1 ∪ F2 ∪ F3 ∪ F4

and

P (F1 ∪ F2 ∪ F3 ∪ F4) =
∑
i

P (Fi)−
∑
i<j

P (Fi ∩ Fj)

+
∑
i<j<k

P (Fi ∩ Fj ∩ Fk)− P (F1 ∩ F2 ∩ F3 ∩ F4) .

To calculate this, you must find all the intersections and
their probabilities. For example,

F1 ∩ F4 = {AA?AA} so that P (F1 ∩ F4) = (1/26)4 .

(#7) P (monkey types A) = 1− (25/26)5 .

Solution: It is possible (but very tedious) to do this by
inclusion-exclusion using

{monkey types A} = {A????} ∪ {?A???} ∪ · · · ∪ {????A} .
But much better is to switch to the complement:

P (monkey types A) = 1− P (monkey does not type A) .

{does not type A} = {`1 6= A} ∩ {`2 6= A} ∩ · · · ∩ {`5 6= A} .
Now use the independence of the key strokes.
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Coming up: More examples with equally likely outcomes.

But first . . .

Fundamental Theorem of Counting (FTC)

Suppose you want to calculate the number of different ways
that some “task” can be performed.

If

1. The task can be broken down into k steps, and

2. Step i can be done in ni different ways regardless of how
the previous steps have been performed, and

3. Each different way of performing the steps gives a dif-
ferent way of performing the task,

Then the task can be done in n1×n2×· · ·×nk different ways.
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Poker Problems

Draw 5 cards from a well-shuffled deck of 52.

Problem #1: What is P (full house)?

A “full house” means (Three of a kind) + (Pair).
For example {K♥, K♠, K♦, 5♣, 5♥} .

Let A = {draw a full house}.

P (A) =
#(A)

#(Ω)
where #(Ω) =

(52

5

)
= 2,598,960 .

Use FTC to calculate #(A).

Task: Construct Full House # of ways

Step 1: Choose value to be re-
peated 3 times.

(13

1

)
= 13

Step 2: Choose 3 cards of
that value.

(4

3

)
= 4

Step 3: Choose value for pair.
(12

1

)
= 12

Step 4: Choose 2 cards of
that value.

(4

2

)
= 6

Thus #(A) = 13× 4× 12× 6 = 3744.

So P (A) =
3744

2598960
= .00144 .
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Problem #2: What is P (5 of a kind) with 2’s wild?

Solution: Let A = {draw 5 of a kind} with 2’s wild.

“5 of a kind” can arise in four ways:

K K K K 2
K K K 2 2
K K 2 2 2
K 2 2 2 2

Define Ai = {5 of a kind with i wild cards}.

These events are disjoint and A = A1 ∪A2 ∪A3 ∪A4 .

Thus

P (A) = P (A1) + P (A2) + P (A3) + P (A4) (since disjoint)

=
#(A1) + #(A2) + #(A3) + #(A4)

#(Ω)

(since
outcomes are
equally likely)

Now use FTC to find #(Ai).

Task: Construct 5 of a kind
with i wild cards.

# of ways

Step 1: Choose i wild cards.
(4

i

)
Step 2: Choose other value to

be repeated.

(12

1

)
= 12

Step 3: Choose 5 − i cards of
that value.

( 4

5− i

)
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Thus #(Ai) = 12
(4

i

)( 4

5− i

)
.

P (A) =

4∑
i=1

12
(4

i

)( 4

5− i

)
2598960

=
12 (4 · 1 + 6 · 4 + 4 · 6 + 1 · 4)

2598960

=
12 · 56

2598960
≈ .0002586

Question: Can we find P (A) directly using the FTC (without
first breaking down A into the four cases A1, A2, A3, A4) by
inserting

Step 0: Choose i (the # of wild cards) between 1 and 4.

before Steps 1–3?

No!

Because then the number of ways you can do Steps 1 and
3 depends on the choice made in Step 0.
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Comment: Condition 3 of the FTC sometimes requires
careful thought. The division of the task into steps must
be such that any difference in the way the steps are per-
formed must lead to a different outcome (a different way of
performing the task).

Example: (A Wrong Solution of Exercise 1.20)

I have 12 friends. Each will call once on a randomly chosen
day of the coming week (7 days). What is the probability
that I get at least one call each day?

Solution: There are 712 different ways that my friends could
call. Let A be the event that I get at least one call each day.
Then P (A) = #(A)/712.

#(A) = the number of ways of assigning the 12 friends to
the 7 days of the week with at least one friend each day.

Break down the task of assigning the friends to the days into
the following steps:

1. Choose 7 friends.
(12

7

)
ways

2. Assign each of the 7 to a different day. 7! ways

3. Assign the remaining 5 friends to days 75 ways
(without any restrictions).

Therefore #(A) =
(12

7

)
7! 75 .
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What is wrong with this solution?

Refer to the friends as A, B, . . . , K, L.

Consider these two different ways to perform the tasks:

1. Choose friends A, B, C, D, E, F, G.
2. Assign A to day 1, B to day 2, . . . , G to day 7.
3. Assign H to day 1, I to day 2, . . . , L to day 5.

1. Choose friends H, I, J, K, L, F, G.
2. Assign H to day 1, I to day 2, . . . , L to day 5.

Then assign F to day 6 and G to day 7.
3. Assign A to day 1, B to day 2, . . . , E to day 5.

They both lead to the same assignment of friends to days!!

So, this way of breaking down the task into steps is bogus.
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Conditional Probability

Define P (A |B) =
P (A ∩B)

P (B)
(so long as P (B) > 0).

If the sample space Ω consists of equally likely outcomes,
this becomes

P (A |B) =
#(A ∩B)/#(Ω)

#(B)/#(Ω)
=

#(A ∩B)

#(B)

Immediate Consequences of Definition

P (A ∩B) = P (B)P (A |B) = P (A)P (B |A)

P (A ∩B ∩ C) = P (A)P (B |A)P (C |A ∩B)

since the RHS can be written as

= P (A)
P (A ∩B)

P (A)

P (A ∩B ∩ C)

P (A ∩B)

and we can cancel terms.

And similarly

P (A∩B∩C∩D) = P (A)P (B |A)P (C |A∩B)P (D |A∩B∩C) ,

etc.
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Urn Model: An urn contains given numbers of colored balls.
At each draw from the urn, all the balls in the urn are equally
likely to be drawn.

Different types of urn models

Sampling with replacement: After a ball is drawn, it is
put back in the urn.

Sampling withOUT replacement: After a ball is drawn,
it is NOT put back.

A Pólya Urn: After drawing a ball, you replace it and add
another ball of the same color.

A Simple Example

An urn contains 7 red balls and 3 white balls. Draw 3 balls (in
sequence) withOUT replacement. What is the probability all
3 balls are red?

Let Ai = {i-th ball is red}.

P (all 3 are red) = P (A1 ∩A2 ∩A3)
= P (A1)P (A2 |A1)P (A3 |A1 ∩A2)

=
7

10
·

6

9
·

5

8

The same problem with a Pólya Urn:

P (all 3 are red) = P (A1)P (A2 |A1)P (A3 |A1 ∩A2)

=
7

10
·

8

11
·

9

12
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Return to Poker

You can view the cards in the Poker hand as being ordered
or unordered.

If your outcomes ω are all the unordered Poker hands (order

does not matter), then #(Ω) =
(52

5

)
.

If your outcomes ω are all the ordered Poker hands (order
does matter), then #(Ω) = 52 · 51 · 50 · 49 · 48.

In both points of view the outcomes are equally likely.

Many problems can be solved using either approach. Both
methods are correct and will lead to the same answer if
they are consistently followed.

With the ordered point of view, we can think of the deck
as an urn with 52 balls. Dealing a hand is drawing 5 balls
(in sequence) withOUT replacement from the urn .

23





















Fact: Any linear function ψ(z) = az + b satisfies (*).

Proof:

1

2
[ψ(z + 1) + ψ(z − 1) ]

=
1

2
[ (a(z + 1) + b) + (a(z − 1) + b) ]

=
1

2
[ az + a+ b+ az − a+ b ] = az + b

= ψ(z)

Fact: The only linear function ψ(z) = az + b which satisfies
ψ(0) = 0 and ψ(g) = 1 is ψ(z) = z/g.

Proof:

ψ(0) = a0 + b = 0 implies b = 0.

ψ(g) = ag + 0 = 1 implies a = 1/g.

This almost proves that ψ(z) = z/g. But we have not yet
shown that ψ(z) must be a linear function.

A complete proof of ψ(z) = z/g is given on the next page.



With a little algebra, we see that (*) is equivalent to

ψ(z + 1)− ψ(z) = ψ(z)− ψ(z − 1) for 0 < z < g. (†)

By using (†) repeatedly we find

ψ(z + 1)− ψ(z) = ψ(1)− ψ(0) for 0 < z < g.

Using this we see, for example, that

ψ(3)

= (ψ(3)− ψ(2)) + (ψ(2)− ψ(1)) + (ψ(1)− ψ(0)) + ψ(0)

since everything but ψ(3) cancels

= (ψ(3)− ψ(2)) + (ψ(2)− ψ(1)) + (ψ(1)− ψ(0))

since ψ(0) = 0

= 3(ψ(1)− ψ(0)) by using (†)
= 3ψ(1) by again using ψ(0) = 0 .

More generally

ψ(z) = (ψ(z)− ψ(z − 1)) + (ψ(z − 1)− ψ(z − 2)) + · · ·
+ (ψ(2)− ψ(1)) + (ψ(1)− ψ(0)) + ψ(0)

= z(ψ(1)− ψ(0)) by using ψ(0) = 0 and (†)
= zψ(1) by using ψ(0) = 0 again .

Finally, setting z = g in the above gives

1 = ψ(g) = gψ(1) =⇒ ψ(1) = 1/g

Therefore ψ(z) =
z

g
for 0 ≤ z ≤ g.





It is often useful to think of probability as the long-run frac-
tion of times that an event occurs when an experiment is
repeated very many times.

Computer simulations can be helpful in understanding and
illustrating probabilities.

Example: The Gambler’s Ruin problem with goal g = 15
and initial fortune z = 5.

According to our results:

P (reach goal) =
z

g
=

5

15
=

1

3
≈ 0.3333

P (first toss H | reach goal) =
1

2
·
z + 1

z
=

1

2
·

6

5
=

3

5
= 0.6

P (start with TT | reach goal) =
1

4
·
z − 2

z
=

1

4
·
3

5
=

3

20
= 0.15.

It is easy to simulate a gambler tossing a fair coin until he
achieves the goal or goes broke.

I did this 1,000,000 times.

The gambler achieved the goal 333,688 times.

Among these 333,688 times (in which the goal was achieved):

• 200,139 times started with H.

• 50,182 times started with TT .

Note that:
333, 688

1, 000, 000
= .333688

200, 139

333, 688
= .5997788

50, 182

333, 688
= .150386 (see code in mordor)


