
Casella Berger Exercise 2.40 Adam Duncan

Prove:
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Let
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The RHS of the original expression is I0, which we repeatedly integrate by parts to obtain the terms in the
LHS sum:
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This is the k = x term of the sum plus I1. For i = 1, 2, ..., x− 1, integration by parts produces:
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For each i, this gives Ii+1 and the k = x− i term of the sum. Putting it all together after i = x− 1, we have
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which is the desired result.
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