Chapter 3

Common Families of Distributions

3.1 The pmf of X is f(2) = yr=x—7, £ = No, No +1,..., N1. Then

Ny 1 No—1
EX = _
;; Ni—Not1 Nl—No+1 <Zx ; )
B 1 Ni(N+1D)  (Np=D)(Np—1+ 1))
~ N;—Nog+1 2 2
N1+ Ny
—

Similarly, using the formula for 211\/ x2, we obtain

Ez? — 1 N1(N1+1)(2N1+1)—NO(NO_1)(2NO_1)>
Ni—Np+1 6
VarX = EX?2—-EX = (N;=No)(N;—No+2)
12 ’

3.2 Let X = number of defective parts in the sample. Then X ~ hypergeometric(N = 100, M, K)
where M = number of defectives in the lot and K = sample size.

a. If there are 6 or more defectives in the lot, then the probability that the lot is accepted
(X =0) is at most

6y (94 — e — _
P(X=0|M=100,N=6,K)=(fz)l}ég)z(mo K)loo(“;% K -5)

By trial and error we find P(X = 0) = .10056 for K = 31 and P(X = 0) = .09182 for
K = 32. So the sample size must be at least 32.

b. Now P(accept lot) = P(X = 0 or 1), and, for 6 or more defectives, the probability is at
most

94 6Y( 94
P(X=0o0r1|M=100,N =6,K) = (O)I(Sg‘) + (1)$gg'1) :
(%) (x)
By trial and error we find P(X = 0 or 1) =.10220 for K = 50 and P(X =0 or 1) = .09331

(G % for K = 51. So the sample size must be at least 51.

In the seven seconds for the event, no car must pass in the last three seconds, an event with
probability (1 — p)3. The only occurrence in the first four seconds, for which the pedestrian
does not wait the entire four seconds, is to have a car pass in the first second and no other
car pass. This has probability p(1 — p)®. Thus the probability of waiting exactly four seconds
before starting to cross is [1 — p(1 — p)3](1 — p)*.
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3.5 Let X = number of effective cases. If the new and old drugs are equally effective, then the

probability that the new drug is effective on a case is .8. If the cases are independent then X ~
binomial(100, .8), and

X (100
P(X >85) =) < . ).81.2100—“c = .1285.
=85

So, even if the new drug is no better than the old, the chance of 85 or more effective cases is
not too small. Hence, we cannot conclude the new drug is better. Note that using a normal
approximation to calculate this binomial probability yields P(X > 85) ~ P(Z > 1.125) =
.1303.

3.7 Let X ~ Poisson(\). We want P(X > 2) > .99, that is,
P(X <1)=e*+Xe™* < .01

Solving e~* + e~ = .01 by trial and error (numerical bisection method) yields A = 6.6384.

3.8 a. We want P(X > N) < .01 where X ~ binomial(1000,1/2). Since the 1000 customers choose
randomly, we take p = 1/2. We thus require

1000 x 1000—z
1
P(X>N)= E (10:50) <%> (1 - 5) < .01

z=N+1

1000 1000
(%) Z (100()) < .01
r=N+1 z

This last inequality can be used to solve for N, that is, IV is the smallest integer that satisfies
1000 1000
1 1000
<§> > ( ) < .0l
z=N+1 z
The solution is N = 537.

b. To use the normal approximation we take X ~ n(500, 250), where we used p = 1000(3) = 500
and o2 = 1000(3)(3) = 250.Then

which implies that

_ N —
P(X>N)=P<X 500 500) 01

>
V250 V250

thus,

N — 500
P{Z>—)<.01
( V250 )

where Z ~ n(0,1). From the normal table we get

N —
P(Z>233) ~ 0009 < .01 = N_500_y33
V250
= N ~537.

Therefore, each theater should have at least 537 seats, and the answer based on the approx-
imation equals the exact answer.
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We can think of each one of the 60 children entering kindergarten as 60 independent Bernoulli
trials with probability of success (a twin birth) of approximately %. The probability of having
5 or more successes approximates the probability of having 5 or more sets of twins entering

kindergarten. Then X ~ binomial(60, 55) and

P(X 2 5)=1-— i (63?) <%>’” (1 - 91—0>60;_z =.0006,

=0

which is small and may be rare enough to be newsworthy.

Let X be the number of elementary schools in New York state that have 5 or more sets
of twins entering kindergarten. Then the probability of interest is P(X > 1) where X ~
binomial(310,.0006). Therefore P(X > 1) =1— P(X = 0) = .1698.

Let X be the number of States that have 5 or more sets of twins entering kindergarten
during any of the last ten years. Then the probability of interest is P(X > 1) where X ~
binomial(500, .1698). Therefore P(X > 1) =1-P(X =0)=1-3.90 x 107* ~ 1.

(%) (k%)

(%)

K! ) MI(N—M)(N-K)!
2K —2)! M/N—p,Mso0,N—c0 NN (M—z)(N—M—(K—z))!

lim
M /N —p,M —00,N —00

In the limit, each of the factorial terms can be replaced by the approximation from Stirling’s
formula because, for example,

M! = (M/(V2r MM+ 2e=MY)\/om MM +1/2=M

and M!/(v/2rMM+1/2¢=M) _, 1. When this replacement is made, all the v/27 and expo-
nential terms cancel. Thus,

(910"

M/N—p,M—o00,N—o0 (%)
K MM+1/2(N__M)N—M+1/2(N__K)N—K-I—l/2
= l. M
(m) M/N—»p,A}IIE»oo,N—aoc NN+1/2(M_x)M—ﬂH-l/?(N_M_K+x)N—M—(K—w)+1/2

We can evaluate the limit by breaking the ratio into seven terms, each of which has a finite
limit we can evaluate. In some limits we use the fact that M — co, N — oo and M/N — p
imply N — M — oo. The first term (of the seven terms) is

Mo 1 , 1 1 .
) = Iy T T e (e eE O
(%575 (1+37)

A/}l—anoo(M—:L‘

Lemma 2.3.14 is used to get the penultimate equality. Similarly we get two more terms,

, N-M N=M-—
lim =e
N-M—oo \N — M — (K —z)

and

_ (N-K\" .
&5&(7) e
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Note, the product of these three limits is one. Three other terms are

M 1/2
limM—»oo(M_x>

N_M 1/2
lim =1
N—M—oo N—M——(K—.’L’)

|
—_

and

N—o00

_ 1/2
lim <N—NI£> =1.

The only term left is

lim (M —2)"(N =M — (K —2))" ™

M/N—p,M—00,N—oo (N - K)X
B i M—z\" N—M—(K—r))K—x
T M/Nop,MosoN—eo \N — K N-K

= p"(1-pf e

b. If in (a) we in addition have K — oo, p — 0, MK/N — pK — X, by the Poisson approxi-
mation to the binomial, we heuristically get

——(Af)((;fg_‘ﬂf) - <K>px(1 -p)fT - e—;!/\ -

c. Using Stirling’s formula as in (a), we get

()

lim
N
N,M,K—o0, 4 —0, 84 % (3)
_ K-z _K—
) e % K7e? M%e*(N—M)K k-2
= im JS—
N,M,K 00,4 -0, KM _,\ ! NEKeK

1 - KM\® (N - M\*®
B N,M,K—o0, M 0,84\ \ N N

1 Mir\ K
z! N,M, K00, 0, KM _, ) K

N
e—)\)\x

z!

3.12 Consider a sequence of Bernoulli trials with success probability p. Define X = number of
successes in first n trials and Y = number of failures before the rth success. Then X and Y
have the specified binomial and hypergeometric distributions, respectively. And we have

F,(r—1) = P(X<r-1)

= P(rth success on (n + 1)st or later trial)

Il

P(at least n 4+ 1 — r failures before the rth success)
PY>n—r+1)

= 1-PY <n-r)

1—Fy(n—r).



Second Edition 3-5

3.13 For any X with support 0,1,..., we have the mean and variance of the 0—truncated Xr are
given by
EXr = gxP(XT =z) = gxi—g((—:—g
= P(X1> 0 ilxp (X =) P(X1> 0) zéxp (X=2) = P()I?)i 0"
In a similar way we get EX2 = 1—3—(%—5. Thus,
VarXe = P(iX: 0) (P()Ecvi 0)>2 '

a. For Poisson(\), P(X >0)=1-P(X =0)=1-— 5—33‘0 =1— e, therefore

e~ AT
P(XTZ.’L') = -:L‘_'-(—l——-—g—_)\) .’L'Z].,Q,...
EXr = M(l—e?)

Var Xy A2+ 0)/1—e ) = (V1 -e?)2
b. For negative binomial(r,p), P(X >0) =1-P(X =0)=1—("3")p"(1=p)° =1—p". Then

(=)

P(Xr=1) = T w=12.
r(1-p)
EXr = —=
’ p(l—p")
r(1—p) + (1 - p)? [ r(1-p) ]
VarXr = —
! ) p(1—p)?
314 a Yy 2, "ﬁggpf = 10;]0 Y :(i;—’l)—f =1, since the sum is the Taylor series for log p.

-1 | & -1 | & -1 [1 -1 [1-p
EX = — 1-p)*| = — 1-p)®~1 ==—[——1]=—<—>.
logp L=1< ?) ] log p L=O( 2 } logp [p logp \ p

BX? = L Saa-pr = SR S Ly

Thus

p?logp
Alternatively, the mgf can be calculated,
1 o0

- z  log(l+pet—et
M) = == 3 [1-p)]” = RelHEee)
logp &~ logp

and can be differentiated to obtain the moments.
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The moment generating function for the negative binomial is
P Y 1r1-p)(e'-1\’
1-(1—ple T 1-(1-ple
the term

r(1 —p)(et—-l) . )\(et—l)
1—(1 —p)e 1

=Met—1) asr—oo, p—landr(p—1)— A\

Thuts by Lemma 2.3.14, the negative binomial moment generating function converges to
e*e 1) the Poisson moment generating function.

a. Using integration by parts with, u = t* and dv = e~*dt, we obtain
[e e} 00 o0
Ma+1) = / tlatD=le=tgs — t"‘(—e_t)‘o — / at® Y (—e7)dt =0+ al'(a) = al'(a).
0 0

b. Making the change of variable z = v/2t, i.e., t = 22/2, we obtain

o0 o0 o0
[(1/2) = /0 t~V2etdt = /0 {26—2 122dz = \/5/0 e 2y = \@% = /7.

where the penultimate equality uses (3.3.14).

EXY = /Oox" L ¢ lem %Py = ! /oom(”Jr"‘)_le_’”/ﬁda:
o  [(a)B* L(a)B* Jo
Tttt pT(a)
()8 I(a)

Note, this formula is valid for all v > —a. The expectation does not exist for v < —a.
T
If Y ~ negative binomial(r, p), its moment generating function is My (¢) = (ﬁ;) , and,

T
from Theorem 2.3.15, M,y (t) = (#WT) . Now use L’Hoépital’s rule to calculate

I ( p ) y 1 1

im { ———— | = lim = )

p—0 \1—(1 —p)e?* ) =0 (p — 1)te’' +ert 1—t

so the moment generating function converges to (1 —¢)~", the moment generating function of
a gamma(r, 1).

Repeatedly apply the integration-by-parts formula

1 00 o wn—-le—-w 1 oo -2
n Zd — n z
r(n)L =T +I’(n—1)/x Z2d,

until the exponent on the second integral is zero. This will establish the formula. If X ~
gamma(a, 1) and Y ~ Poisson(z). The probabilistic relationship is P(X > z) = P(Y < a-—1).

The moment generating function would be defined by % ffooo f:—;;dm. On (0,00), €'* > z, hence

e e} tx o0
/ ——e——gdm > / x 5dT = 00,
0 1+3;‘ 0 1+I

thus the moment generating function does not exist.
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3.22 a.
> e M\
E(X(X-1) = ) a(z-1) —
=0
M2 A2
= e lety=2x2—2
e /\;(x—Q)! (lety =2 —2)
e
— 6_)\)\2 Z ? — e—)\)\Qe/\ — )\2
y=0
EX?2 = M 4+EX = M4+
VarX = EX?2—(EX)? = AN +A-)? = A\
b.
= r+z—1 z
E(X(X-1)) = Z:cu—l)( )pru—p)
=0 z

[ee)

= Zr(r—l— 1)(Tii; 1);07"(1 —p)®

=2

2 o0

1- r+24+y—1

( 210) Z( y )pr+2<1_p)y
p ¥=0 Y

= r(r+1)

1— )2
= r(r—l)( p2p)’

where in the second equality we substituted y = = — 2, and in the third equality we use the
fact that we are summing over a negative binomial(r + 2, p) pmf. Thus,

VarX = EX(X —1)+EX — (EX)?

_ 2 _ 2 _ 2
p b b
_ r(l-p)
= R
c.
EX? = /O0 z? L 2% le=® By = L /00 o tle=%/ By
0 [(a)p> L(a)B* Jo
= ———1~—I‘(a+2)6°‘+2 = ala+1)32%

I(a)p~
VarX = EX?—(EX)? = a(la+1)8*-a?3 = ap%

d. (Use 3.3.18)

EX [lo+D)l(a+B) _ al(a)T'(a+06) _
I'(a+p+1) () (a+B)I'(a+B)I(«) at+p’
Ex? Fla+2)l(a+p) _ (a+ D)ol ()l (a+p) _ a(a+1)
T(a+6+2)(a) (a+B+1)(a+B)I(a+8)T () (a+8)(a+B+1)
VarX = BX?-(BX)? = o) o o® o

(a+B)(a+B+1)  (a+pB)? (a+8)*(a+B+1)
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e. The double exponential(u, o) pdf is symmetric about u. Thus, by Exercise 2.26, EX = u.
VarX = / (z — 'u)2__6—|w—ul/adx — / o227l ody
- 20 —oo 2

oo
o0
= 02/ 22e"*dz = o’T(3) = 202
0

3.23 a.
o -1 o 1
s ) L
5 T dx 7 T X Bab”
thus f(x) integrates to 1 .
b. EX" = B9, therefore
af
EX = ———
(1-p5)
2
EX2 = _O‘_ﬂ__
2-8)
2 2
VarX = %—— (aﬂ)2
2= (1-p)

c. If B8 < 2 the integral of the second moment is infinite.

3.24 a. fy(z) = %e"’/ﬁ, z>0.ForY = XV fy(y) = %e‘yv/ﬁm“l, y > 0. Using the transforma-
tion z =y /[, we calculate

Fy oo 5 [oo] n
EY" = —/ y eV /By = ﬁ"/'y/ e ?dz = /T <—+1> .
B Jo 0 v

_ 1 , — 42 2 _r2(l
Thus EY = /7T(2 + 1) and Vary = 5%/ [F (7+1) r (7+1)].
b. fu(z) = %e—x/ﬂ, z>0.For Y = (2X/3)'2, fy(y) = ye~¥’/2 y >0 . We now notice that

o
_ 2,-v%/2 0, var
EY /0 y“e dy 5

since \/%; ffooo yge‘yz/ 2 =1, the variance of a standard normal, and the integrand is sym-
metric. Use integration-by-parts to calculate the second moment

Ey2 - * 3 —y2/2 < —-y2/2 _
= y’e dy =2 ye dy = 2,
0 0

where we take u = y2, dv = ye~¥"/2. Thus VarY = 2(1 — r/4).
c. The gamma(a, b) density is

— 1 a—1_—z/b
fx(w) - Iﬂ(a)baaj € .

Make the transformation y = 1/z with dz = —dy/y? to get

a+1
fr@) = fx(1/n)1/y*] = ﬁ <§) o 1/by.
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The first two moments are

1 * 1\ [(a—1)p! 1
EY = il -1/by =
T(a)b® / <y> ‘ T(a)b® (a—1)0
['(a — 2)bo—2 1
EY? = ,
T'(a)be (a—1)(a—2)b?
and SO VarY = (a—_l)r"%a——Q)bz_’

d. fo(z) = -f(3—/—21)—ﬁ3;77I3/2_le‘“’/ﬁ, z>0.For Y = (X/B8)Y?, fy(y) = %ygeﬂﬂ’ y>0.To

calculate the moments we use integration-by-parts with u = y2, dv = ye‘y2 to obtain

2 e, —y? _ 2 o —y? _ 1
Y=r<3/2>/o vy = r(s/z)/o ety = gy

and with v = y3,dv = ye™¥" to obtain

2 ° 2 3 *© 2 3
EY?= —— / vle Vdy = — / veVdy = ——xT
I'(3/2) Jo I'(3/2) Jo I'(3/2)
Using the fact that 2—\1/—;- I, y2e~¥" = 1, since it is the variance of a n(0, 2), symmetry yields
I y2e=v"dy = /7. Thus, Vary = 6 — 4/, using T'(3/2) = 1/7.
e. fz(x)=€e"*,2>0.ForY =a—vylogX, fy(y) = e—ea“r;yea_;g%, —00 < y < oco. Calculation
of EY and EY? cannot be done in closed form. If we define

L = / log ze~*dz, 122/ (logz)2%e~%dzx,
0 0

then EY = E(a — vlogz) = a — 71, and EY? = E(a — vylogz)? = o? — 2avI; + 7%15.The
constant I; = .5772157 is called Euler’s constant.

3.25 Note that if T is continuous then,

< < <T
P<T<t+sft<T) = LUSTStHOt<T)

Pt<T)
Pt <T <t+0)
N Pt<T)
Fr(t+6) — F1(t)
1-Fr(t)
Therefore from the definition of derivative,
_ 1 o Fr(t+ 5) — FT(t) _ Ff(t) _ fT(t)
hr(t) = 1— Fp(t) N %E,% ) ] — Fr(t) - l——FT(t)‘
Also, p
1
T (log[l — Fr(t)]) = —m(—fT(t)) = hr(t).

3.26 a. fr(t) = e "7 and Pr(t) = N Fem " Pdr = — e“w/ﬁlg =1—e"t/8, Thus,

() = I _ (/B 1

C1-Fr(t) 1-(1-eYP) B
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/8 v/B
b. fT(t) = %t’Y—le—t’Y/ﬁ,t >0 and FT(t) = fOt %x’)’—le—z"/ﬂdx — fot" e Udy = — e—ug =

1—e /8 where u = z7/P. Thus,

) A P

e—t/B B
(t-u)/8
c. Fr(t)= m and fr(t) = (1_;—(;“”)7)2 Thus,
—(t— 14e—(t—m)/B 1 1
(t)—- (t—)/B(1+e )? e EFT(t)'
Tte—G-m/B

3.27 a. The uniform pdf satisfies the inequalities of Exercise 2.27, hence is unimodal.
b. For the gamma(c, 8) pdf f(z), ignoring constants, dm (z) = il [B(a—1) — z], which
only has one sign change. Hence the pdf is unimodal with mode ﬁ(a —1).

c. For the n(u,0?) pdf f(z), ignoring constants, - f(z) = %‘#e‘(“”‘/ﬁ)2/2"2, which only has
one sign change. Hence the pdf is unimodal with mode p.
d. For the beta(a, 8) pdf f(z), ignoring constants,

. (x) =2%72(1 — a:)ﬁ“2 [(a—1) — z(a+6-2)],

a—1

which only has one sign change. Hence the pdf is unimodal with mode w153

3.28 a. (i) p known,

h(@) =1, c(0®) = m=l0)(0?), wi(0?)=—5z, ti(z)=(z—p?

(ii) o2 known,
1 z? u? x
f(zlp) = —\/—é_;; exp ("*2;2‘> exp (—@) exp (H;) )

h(z) = exp (%) , c(p) = \/21_ exp (70%2) ;o wi(p) =p, ti(z) =%,
b. (i) « known,

f(z|B) =

he)=fa e >0, cf)=Fs, wB) =3} n()=-v
(ii) B known,

fzla) = e-w/,@r(al)ﬁa exp((a — 1) log z),

h(z) =e /P 2 >0, cla)= ml)—ﬁ—a wi(e) =a—1, ti(z)=Ilogz.
(iii) «, B unknown,

(@la,8) = Fravm expl(a— Dlogz = 3),

h(z) = Iigso0y(z), c(a,B) = F(ama, wi(a) =a—1, ti(z) =logz,
U)Q(Oé,ﬁ) = _1//87 t2( )
c.(i) a known, h(z) = 2oy (:v), c(B) = B(a ol wl(ﬁ) =p-1, ti(z)=log(l —x).
(ii) B known, h(z) = (1 — 2)# o 1(2), cla)= B(a,ﬂ)’ wi(z) =a—-1, ti(z) =logz.
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Exercises 3.4 and 3.6

[3.4 (a)] Here we are sampling from the keys with replacement so that each
trial has probability 1/n of success. Thus the number of trials until the first
success has a Geometric(p = 1/n) distribution with mean 1/p = n.

[3.4(b)] Now we are sampling without replacement. This is equivalent to
arranging the keys in a random order and trying them one by one. The
correct key is equally likely to be in any of the positions 1,2,...,n. Thus
the number of keys we must try has a discrete uniform distribution on the
numbers 1,2,...,n which has a mean of (n + 1)/2.

[3.6] Assuming the insects respond independently to the insecticide, the
number of surviving insects X has a Binomial(n = 2000,p = .01) distribu-
tion. A reasonable approximation to this is the Poisson(A = 2000 x .01 = 20)
distribution. The Normal(y = np = 20, 0% = np(1 — p) = 19.8) distribution
(with a continuity correction) might also be fairly good.

The probability P(X < 100) is just the sum over the Binomial(n =
2000,p = .01) pmf from z = 0 to z = 99. The probability will be very close
to 1. The normal approximation to this probability is ®((99.5—20)/+/19.8) =
B(17.8663) ~ 1.



Addition to the Solution of 3.11(a) /f”’

The proof in the general case (in the handwritten solutions) is easier to
understand if you first prove the special case where z = 2 and K = 5.

P(X =2| N, M,5)
(5)("3")
(%)

M! (N=M)!
_ 2(M=2)!  3(N_M-3)!
- NI
51(N—5)!

5\M(M —1)- (N =M)(N =M —1)(N - M —2)
<2> N(N —1)(N —2)(N = 3)(N — 4)

_ [(B\M(M-1) (N-M)(N—M—1)(N—M—2)
= <2) NN-1) * (N —2)(N —3)(N —4)
— (3o ax@-n-a-p-0-»)
= (g)pZ(l— )’
since % M—lg___>
N'N—1 P
and

N-M N-M-1 N-M-2
N-2’ N-3 '’ N-4
as N = oo, M = o0, and M/N — p.

—1-p
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{8.20] (b) Tr)/ Y:g(X) = X< with ¢ >0
and see what hagpens.

‘FY (4) = E((g—'(%)) ]0.% 3"(50 , for y>O0

where 8-)((&):: %l/c
i - o ('/C)-‘
016(5 W= =% > 0
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- — 7 ]cor >0
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Nofe L o 1 _
BA () 2V {5 \ 37
Thus Y=¥%XZ has the above Gamma distn.
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3.27 Comment: A density f(z) will be unimodal if its derivative f’(z) has
one sign change, going from + to —. It will also be unimodal (with
mode at the left endpoint of the support) if the derivative is always
negative. It will be unimodal (with mode at the right endpoint of the
support) if the derivative is always positive.

3.27(b) The solution in the manual is only correct for @ > 1. For 0 < a < 1,
the density is unimodal with mode at zero.

3.27(d) The solution is correct if both > 1 and > 1. If both o < 1 and
(3 < 1, then the density is not unimodal; the density has two peaks (at
x=0and z=1). If @ <1and > 1, then it is unimodal with mode
at t =0. If « > 1 and 3 < 1, then it is unimodal with mode at x = 1.
If o = 3 =1, then the density is uniform; it is unimodal and any value
x € [0, 1] can be taken as the mode.



