

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = 2$

but does not converge absolutely.

 $\int \frac{\sin \alpha}{\alpha} d\alpha = ?$

 $\lim_{x \to \infty} \int_{0}^{L} \frac{\sin x}{x} dx = \prod_{z \to 0}^{TT}$ but does not converge absolutely.

(exists) Eq(X) is well-defined only when $E[g(X)] < \infty$.

Examples where expected values do not exist.

Example $pmf f_{\chi}(\chi) = \frac{1}{\chi(\chi+1)}, \ \chi = 1, 2, 3, ...$ Check: Is this a pmf? $f_{\chi}(\chi) \ge 0$ for all χ (obvious). $\sum_{x \in \mathcal{X}} f_x(x) = \sum_{x=1}^{\infty} \frac{1}{x(x+1)}$ $= \frac{1}{x} - \frac{1}{x+1} \left(\begin{array}{c} \text{Telescoping} \\ \text{Sum} \end{array} \right)$ $= \lim_{K \to \infty} \sum_{\chi=1}^{K} \left(\frac{1}{\chi} - \frac{1}{\chi+1} \right)$ $= \lim_{K \to \infty} \left(1 - \frac{\bot}{K+1} \right) = 1.$ Yes, pmf.

Does EX exist?
EIXI =
$$\sum_{x \in \mathcal{X}} |x|f_{x}(x)$$

 $(g(x) = x \text{ in this example})$
 $= \sum_{x=1}^{\infty} x \cdot \frac{1}{x(x+1)} = \sum_{x=1}^{\infty} \frac{1}{x+1} = \infty$
 $(harmonic series)$
No. EX does not exist.
 $(or sometimes we say EX = \infty)$
Define $Y = (-1)^{X} X = \{x \text{ if } x \text{ even} \\ -x \text{ if } x \text{ odd} \}$
Does EY exist?
 $Y = g(X)$ with $g(x) = (-1)^{2}x$ so that
EY exists if $E |g(X)| < \infty$.
 $\sum_{x \in \mathcal{X}} |g(x)| f_{x}(x) = \sum_{x=1}^{\infty} x \cdot \frac{1}{x(x+1)} = \infty$
 $(same as above)$
No. EY does not exist.

Example: Cauchy distribution $pdf f_{X}(x) = \frac{1}{\pi} \frac{1}{1+x^{2}}, -\infty < x < \infty$ (is essentially same as t-distn. with 1 df.Does EX exist? Again g(x) = x. $E|X| = \int |x| f_{X}(x) dx = \int |x| \frac{1}{\pi} \frac{1}{1+\chi^{2}} dx$ Eyeball this to see it diverges (Book has formal argument. X has a closed form anti-derivative.) For large positive χ , $\frac{\chi}{1+\chi^2} \approx \frac{1}{\chi}$ and we know $\int_{C}^{\infty} \frac{1}{x} dx = \infty$ $= \log \chi \int_{-\infty}^{\infty}$ So EX does not exist.

Cauchy example continued

Cauchy pdf is symmetric about zero.

 $\begin{bmatrix} \underline{Law of Large Numbers} & If \times_{ig} \times_{2goog} \times n \\ is a large sample from a population with \\ random \\ mean \quad \mu = E \times_{ig} & \text{then } \overline{X} = \frac{1}{n} \sum_{i=1}^{n} \times_{ig} & \text{will} \\ be very close to \quad \mu (usually). \\ For the Cauchy distn, the LLN fails because \\ \end{bmatrix}$

For the Cauchy distributions into have a mean. the Cauchy distribution does not have a mean. (EX not defined.) For Cauchy distribution, $\overline{X} \stackrel{d}{=} X_1 \stackrel{II}{\longrightarrow}$ The Law of the Unconscious Statistician Suppose Y = g(X), X and Y have pdf's, and EY exists.

Then

$$EY = \int_{-\infty}^{\infty} yf_{Y}(y)dy = \int_{-\infty}^{\infty} g(x)f_{X}(x)dx = Eg(X)$$

That is, there are two ways to compute EY.

Example: Suppose X has pdf

$$f_{X}(x) = 2\chi$$
 for $0 < \chi < 1$.
Then $E \log X = \int_{0}^{1} (\log \chi) 2\chi \, d\chi = -\frac{1}{2}$.
(use integration by parts)

Alternatively,

$$Y = \log X$$
 has range $Y = (-\infty, 0)$
and pdf $f_Y(Y) = f_Y(e^Y) \frac{d}{dy} e^Y = 2e^Y \cdot e^Y$
for $y < 0$.
Thus $EY = \int_{-\infty}^{0} Y \cdot 2e^{2Y} dy = -\frac{1}{2}$.
(again, integrate by parts)

Important Special Cases of Expected Value

Eq(X)Expected Value g(x) = 0 or 1 $g(x) = x^{k}$ $g(x) = e^{tx}$ Probabilities Moments Moment generating functions (mgf's)

Probabilities as Expected Values

Notation:

Indicator functions are functions which take on only the values 0 or 1. For A < R define the function $I_{\Lambda}(\chi) = \begin{cases} I & \text{for } \chi \in A \\ O & \text{for } \chi \notin A. \end{cases}$ Example $\int [x] = \begin{cases} 1 & \text{for } a < x \le b \\ 0 & \text{otherwise.} \end{cases}$ $I_{\Delta}(\cdot)$ is a function. Indicator random variables are random variables which take on only the values 0 or 1. For BCIDI (Bisan event) define the r.v. $I_{B} = \begin{cases} 1 & \text{if } B \text{ occurs} \\ 0 & \text{otherwise.} \end{cases}$ IR is a random variable.

Indicator Random Variables (continued)

Recall that rv's are functions defined on the sample space Ω . Thus, a more formal definition of indicator rv is:

$$I_B(\omega) = \begin{cases} 1 & \text{if } \omega \in B \\ 0 & \text{if } \omega \notin B \end{cases}$$

Fact: For $B \subset \Omega$, $P(B) = EI_B$.

Proof: Let $Z = I_B$. Z is a discrete rv with pmf given by

$$egin{array}{c|c} z & f_Z(z) \ 1 & P(B) \ 0 & 1 - P(B) \end{array}$$

so that $EZ = \sum_{z} zf_{Z}(z) = 1 \cdot P(B) + 0 \cdot (1 - P(B)) = P(B).$

Fact: $I_{B^c} = 1 - I_B$. Proof: $1 - I_B(\omega) = \begin{cases} 1 - 1 & \omega \in B \\ 1 - 0 & \omega \notin B \end{cases} = \begin{cases} 0 & \omega \notin B^c \\ 1 & \omega \in B^c \end{cases} = I_{B^c}(\omega)$.

Fact:
$$I_{ABB} = I_A \cdot I_B$$
 (and similarly)
 $I_{ABDC} = I_A \cdot I_B \cdot I_C$
etc.
Proof: $I_A \cdot I_B = 1$
iff $I_A = 1$ and $I_B = 1$
iff A occurs and B occurs
iff A A B occurs
iff $I_{ABB} = 1$
Properties of Indicator RV's
 $P(B) = E I_B$
 $I_{BC} = 1 - I_B$
 $I_{ABB} = I_A \cdot I_B$ (and similarly for more
events)

<u>Application</u>: Show that $P(A \cap B^c \cap C^c) = P(A) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C).$

Argument: $P(AnB^{c}nc^{c}) = E(I_{AnB^{c}nc^{c}})$. $I_{AB^{c}DC^{c}} = I_{A} \cdot I_{B^{c}} \cdot I_{C^{c}}$ $= I_{A} \cdot (I - I_{B}) \cdot (I - I_{C})$ $= I_A - I_A I_B - I_A I_C + I_A I_B I_C$ = IA - IANB - IANC + IANBAC. Now take expectations on both sides $P(A \cap B^{c} \cap C^{c}) = E(I_{A} - I_{A \cap B}^{-} - I_{A \cap C}^{+} + I_{A \cap B \cap C})$ = EIA - EIANB - EIANC + EIANBAC $= P(A) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C)$.

Moments (of a r.v. X) $\mu_{k}' = E(X^{k}) = \text{the } k^{\text{th}} \text{ moment}$ (about zero). $\mu = \mu' = EX = \text{the mean of } X$. $M_{k} = E[(X - \omega)^{k}] = the k^{th} central moment$ (the Kth moment about the mean). $\sigma^2 = \mu_2 = E(X - \mu)^2 = \text{the variance of } X$ = Var X.

Existence of Moments

General definition says: EX K exists (is well defined) if $E|X|^{k} < \infty$. Note: If X is a bounded r.v., then all moments exist. Proof: Uses general fact that $if P(a \leq q(x) \leq b) = 1,$ then $Eg(\tilde{X})$ exists and $a \leq E_q(X) \leq b$. If X is bounded, then X is bounded for all K = 1, 2, 3, ... so that EXK exists. In particular, if X is bounded between - 2 and 2, then X is bounded between - ak and ak. <u>Comment</u>: If X is <u>unbounded</u>, then EX^K may of may not exist. Work is required.

Uses of Moments

· Descriptive Statistics mean m, variance o 2 (standardized) skewness = $\frac{\mu_3}{\sigma^3}$ (standardized) kurtosis = 14 - 3 The skewness and kurtosis help describe the shape of a distribution. • Probability Inequalities (Bounds) Markov's inequality If $P(X \ge 0) = 1$, then $P(X \ge y) \le \frac{EX}{y}$ for y > 0. Chebyshev's inequality $P(|X-\mu| \ge t\sigma) \le \frac{1}{+2}$ for $t \ge 1$. · Characterization of distributions Example: If the moments of X agree with the moments of a normal distn, then X must have a normal distn.

$$\underline{\mathsf{Example}} : (\mathsf{Moments of a discrete distn.}) \\
 \underline{\mathsf{The Binomial Distribution}} \\
 Suppose \\
 Coin with prob. π of heads.
 Toss it n times (tosses independent).
 Define $X = \#$ of heads.
 Then $X \sim \mathsf{Binomial}(n_{2}\pi)$ with $pmf f_{X}(x) = \binom{n}{x}\pi^{x}(1-\pi)^{n-x}, x = 0, 1, ..., n$.
Moments
 $\mathsf{E} X^{\mathsf{K}}$ is well-defined for $\mathsf{k} = 1, 2, 3, ...$
 since $\mathscr{K} = \{0, 1, ..., n\}$ is finite.
 $\mathsf{E} X^{\mathsf{K}} = \sum_{x \in \mathscr{K}} \chi^{\mathsf{K}} f_{x}(x) = \sum_{x=0}^{n} \chi^{\mathsf{K}} \binom{n}{x} \pi^{x}(1-\pi)^{n-x}$
 Take $\mathsf{k} = 1$. Note that $\chi \binom{n}{x} = \chi \frac{n!}{\chi!(n-\chi)!}$
 $= \frac{n (n-1)!}{(\chi-1)!(n-\chi)!} = n\binom{n-1}{\chi-1}$
 for $\chi = 1, 2, ..., n$.$$

Thus
$$\chi \begin{pmatrix} n \\ \chi \end{pmatrix} = \begin{cases} 0 & \text{for } \chi = 0 \\ n \begin{pmatrix} n-1 \\ \chi - 1 \end{pmatrix} & \text{for } \chi = 1, \dots, n \end{cases}$$

so that $E X = \sum_{\substack{\alpha=0 \\ \alpha \neq 0}}^{n} \chi \binom{n}{\alpha} \pi^{\chi} (1-\pi)^{n-\chi}$ $= 0 + \sum_{\substack{\alpha=1 \\ \alpha \neq 1}}^{n} n \binom{n-1}{\chi-1} \pi^{\chi} (1-\pi)^{n-\chi}$ = $n \pi \sum_{\chi=1}^{n} {\binom{n-1}{\chi-1}} \pi^{\chi-1} (1-\pi)^{n-\chi}$ (Note that n-x = (n-1) - (x-1). Terms in sum are similar to Binomial pmf. Make the substitution y = x-1. $= n\pi \sum_{n=1}^{n-1} (n-1) \pi \chi (1-\pi)^{n-1-\chi}$

 $= n\pi \cdot 1 = n\pi$

Computation of EX^2

The text gives a direct calculation. Here is an alternative approach. Note that $\chi(\chi-1)\binom{n}{\chi} = \begin{cases} 0 & \text{for } \chi = 0, 1 \\ n(n-1)\binom{n-2}{\chi-2} & \text{for} \\ \chi = 2, \dots, n \end{cases}$

since

$$\chi(\chi-1)\binom{n}{\chi} = \frac{\chi(\chi-1)n!}{\chi!(n-\chi)!} = \frac{n(n-1)(n-2)!}{(\chi-2)!(n-\chi)!}$$

 $= n(n-1)\binom{n-2}{\chi-2}$ for $2 \le \chi \le n$.

Thus

$$E \times (X-1) = \sum_{\alpha=0}^{n} \chi(\alpha-1) \binom{n}{\alpha} \pi^{\alpha} (1-\pi)^{n-\alpha}$$

$$= 0 + \sum_{\alpha=2}^{n} n(n-1) \binom{n-2}{\alpha-2} \pi^{\alpha} (1-\pi)^{n-\alpha}$$

$$= n(n-1) \pi^{2} \sum_{\alpha=2}^{n} \binom{n-2}{\alpha-2} \pi^{\alpha-2} (1-\pi)^{n-\alpha}$$
Let $y = \alpha-2$. Note $n-\alpha = (n-2)-(\alpha-2)$.

$$= n(n-1) \pi^{2} \sum_{y=0}^{n-2} \binom{n-2}{y} \pi^{y} (1-\pi)^{n-2-y}$$
Binomial $(n-2,\pi)$ pmf

=
$$n(n-1)\pi^2 = E \times (X-1)$$
.
Since $X^2 = X(X-1) + X$ we have
 $E \times^2 = E \times (X-1) + E \times$
= $n(n-1)\pi^2 + n\pi$.
Similarly, using
 $x(x-1)(x-2)\binom{n}{x} = n(n-1)(n-2)\binom{n-3}{x-3}$
for $x=3,...,n$
= 0 for $x=0,1,2$
we can show
 $E \times (X-1)(X-2) = n(n-1)(n-2)\pi^3$
and use this to find $E \times^3$.
Since
 $X^3 = X(X-1)(X-2) + 3X(X-1) + X$
we have
 $E \times^3 = E \times (X-1)(X-2) + 3E \times (X-1) + EX$
= $n(n-1)(n-2)\pi^3 + 3n(n-1)\pi^2 + n\pi$
And so forth.

Moments for Continuous Distns.

The Gamma Distr.

Note:

•••

For
$$0 < \alpha < 1$$
, $\lim_{x \neq 0} f_{x}(x) = \infty$.
For $\alpha = 1$, $\lim_{x \neq 0} f_{x}(x) = \frac{1}{\beta} > 0$.
For $\alpha > 1$, $\lim_{x \neq 0} f_{x}(x) = 0$.
The Gamma function
For $\alpha > 0$ define $\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-\chi} dx$.
Then
 $\Gamma(\alpha) = (\alpha - 1)!$ for $\alpha = 1, 2, 3, ...$
 $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ for all α .
 $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
 $\Gamma(\frac{3}{2}) = \Gamma(\frac{1}{2} + 1) = \frac{1}{2}\Gamma(\frac{1}{2}) = \frac{1}{2}\sqrt{\pi}$
 $\Gamma(\frac{5}{2}) = \Gamma(\frac{3}{2} + 1) = \frac{3}{2}\Gamma(\frac{3}{2}) = \frac{3}{2} \cdot \frac{1}{2}\sqrt{\pi}$
etc.

Moments of the Gamma distn. If $X \sim Gamma(\alpha, \beta)$, then $E X^{k} = \int_{-\infty}^{\infty} \chi^{k} f(x) dx$ $= \int_{0}^{\infty} \chi^{\kappa} \cdot \frac{\chi^{\alpha-1}e^{-\chi/\beta}d\chi}{R^{\alpha}\Gamma(\alpha)}d\chi$ $= \beta^{K} \frac{\Gamma(\alpha+K)}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{\chi^{(\alpha+K)-1} e^{-\chi/\beta}}{\beta^{\alpha+K} \Gamma(\alpha+K)} d\chi$ pdf of Gamma (a+k, B) $= \beta^{n} \frac{1!(\alpha + K)}{r!(\alpha)}$ $= \beta^{\kappa} (\alpha + k - 1) (\alpha + k - 2) \cdots \alpha \Gamma(\alpha)$ Ma) (by repeated use of $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$) = $\beta^{k}(\alpha+k-1)(\alpha+k-2)\cdots \alpha$ Note: $EX = \beta \alpha$, $EX^2 = \beta^2 (\alpha + 1) \alpha$, etc. (k=1) (k=2)

