
Ph. D. Qualifying Exam (Part II of Written Exam)
Tuesday, January 6, 1998

You have four hours. Do as many problems as you can. No one is expected to answer
all the problems correctly. Partial credit will be given. All problems are worth an equal
amount of credit.

Put your solution to each problem on a separate sheet of paper.

Problem 1. Let N be a positive integer-valued random variable with a finite third
moment. Let {Xn} be a sequence of random variables with uniformly bounded second
moments.

(a) Show that
∑∞

n=1 n2P (N ≥ n) < ∞.

(b) Using (a), show that
∑∞

n=1

√
P (N ≥ n) < ∞.

(c) Show that
∑N

n=1 Xn has a finite first moment. HINT: Apply the Cauchy–Schwarz
inequality.

Problem 2.

(a) State the Lévy continuity theorem involving a pointwise limit of characteristic func-
tions.

(b) Show that if ϕ(t) is a characteristic function, then so is |ϕ(t)|2.

(c) Suppose that the distribution function F is infinitely divisible. That is, for each
n ≥ 1 there is a distribution function Fn such that F coincides with the n-fold
convolution F ∗n

n . Show that the characteristic function of F never vanishes. HINT:
Apply (b) to the characteristic function of Fn and take limits.

Problem 3. Let X1, X2, . . . Xm be i.i.d. random variables with distribution N(0, σ2).
Let Y1, Y2, . . . , Yn be i.i.d. U [−2π, 2π] and be independent of the Xi’s.

Consider the kernel φ(x1; y1) = x1 sin(y1) and the two sample U -statistic UN =
1

mn

∑
1≤i≤m,1≤j≤n φ(Xi; Yj) where m+n = N and m

N
→ λ, 0 < λ < 1. Find the asymptotic

distribution of UN . (You may not find the U-statistics two-sample theory very useful for
this problem, so proceed directly)
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Problem 4. Let X1, X2, . . . , Xn be i.i.d. with density

f(x) =
exp(αx− β|x|)

C(α, β)
, −∞ < x < ∞,

where β > 0, |α| < β, and the normalizing constant is

C(α, β) =
1

β − α
+

1

β + α
.

(a) Give a complete sufficient statistic for θ = (α, β). (Prove your answer.)

(b) Suppose we know β = 1. What is the Cramer-Rao lower bound for the variance of
an unbiased estimator of α?

(c) Does there exist an unbiased estimator which achieves the lower bound you found
in the previous part?

Problem 5. Consider the linear model Y = Xβ + ε where ε ∼ N(0, σ2I), β =
(β1, β2, . . . , β6)

′, and X is the 12× 6 matrix given below:

1 1 1 1 0 0
1 1 −1 1 0 0
1 −1 1 1 0 0
1 −1 −1 1 0 0
1 1 1 0 1 0
1 1 −1 0 1 0
1 −1 1 0 1 0
1 −1 −1 0 1 0
1 1 1 0 0 1
1 1 −1 0 0 1
1 −1 1 0 0 1
1 −1 −1 0 0 1


(a) Is the parameter β2 estimable? How about β6? (Prove your answers.)

(b) Suppose the data vector is Y = (8, 3, 4, 1, 9, 7, 2, 2, 7, 8, 6, 3)′. Compute the vector of
fitted values.
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Problem 6. Let Yi be observed from a distribution in the exponential family taking
the form

f(yi; θi, φ) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
, i = 1, . . . , n

for some specific functions ai(·), b(·), and c(·).

(a) Show that E(Yi) = b′(θi) and Var(Yi) = b′′(θi)ai(φ).

(b) Write E(Yi) = µi, and assume g(µi) =
∑p

j=1 xi,jβj, i = 1, . . . , n, for some positive in-
teger p and monotonic differentiable function g (i.e. in matrix notation, g(µ) = Xβ,
where g(µ) = (g(µ1), . . . , g(µn))T is n× 1, X = (xi,j) is n× p and β = (β1, . . . , βp)

T

is p× 1)). Let `i = log f(yi; θi, φ). Show that

∂`i

∂βj

=
(Yi − b′(θi))

Var(Yi)

xi,j

g′(µi)
, i = 1, . . . , n, j = 1, . . . , p.

Problem 7.

(a) Suppose you have a 24 factorial design in E, F, G, H. Show that you can introduce
four other factors a, b, c, and d by confounding such that

(i) the new factors a, b, c, and d are not confounded with two-factor interactions
of E, F, G, H.

(ii) an interaction between a new factor and an original factor is confounded with
two-factor interactions of the original factors and two-factor interactions of the
new factors.

(iii) two-factor interactions of the original factors are not confounded with each
other.

(iv) two-factor interactions of the new factors are not confounded with each other.

(b) In the design constructed above, if you had four out of eight factors which you
thought were most likely to be significant, which letters would you assign them to?
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Problem 8. Three treatments, A, B, and C, are compared in an experimental design.
For each treatment, measurements are recorded successively in time. Suppose that the
measurements follow the model:

Xi(t) = µi + εi(t) + θεi(t− 1),

where {εi(t) : i = 1, 2, 3; t = 0, 1, . . . , n} are independent and identically distributed
random variables with mean zero and variance σ2. Let X̄i =

∑n
t=1 Xi(t)/n and X̄ =∑3

i=1

∑n
t=1 Xi(t)/(3n).

(a) Calculate the means and variances of X̄i and X̄.

(b) Let s2 =
∑3

i=1

∑n
t=1(Xi(t) − X̄i)

2/[3(n − 1)]. Calculate the mean value E(s2). Find
the range of θ for which s2 over-estimates σ2.

(c) How do you test the null hypothesis H0 : µ1 = µ2 = µ3 in this experiment? What
cautions should you make about the conclusions in your analysis?

Problem 9. Consider the linear regression model Y = Xβ + ε where X is an
n × p full-rank matrix and ε ∼ N(0, σ2In). Let ˆ(Y ) be the least squares fitted values,
H = X(X ′X)−1X ′ the hat matrix, and hi the ith diagonal element of H. Moreover,
let σ̂2 =

∑n
i=1(Yi − Ŷi)

2/(n − p) and σ̂2
(i) be the least squares estimate of σ2 in which

case i is not used in the modeling. The following three types of residuals may be used
for model diagnostics: the ordinary residuals ε̂i = Yi − Ŷi, the standardized residuals
ri = ε̂i/(σ̂

√
1− hi), and the studentized residuals ti = ε̂i/(σ̂(i)

√
1− hi).

(a) Find the mean values of ε̂i, ri, and ti. What are the (exact or approximate) distri-
butions of ε̂i, ri, and ti?

(b) For checking the normality assumption on ε, what kind of plots will you use and
which type of residuals will you use? Why?

(c) Plots of residuals versus fitted values may be used for checking the adequacy of your
fitted model. Which type of residuals will you use for this purpose? Why?
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