
Ph. D. Qualifying Exam
Thursday, August 25, 2005

Please submit solutions to at most seven problems. You have four hours. No one is
expected to answer all the problems correctly. Partial credit will be given. All problems
are worth an equal amount of credit.

Put your solution to each problem on a separate sheet of paper.

Applied Statistics

Problem 1. Consider the simple linear regression model:

yi = β0 + β1xi + ei , i = 1, . . . , n,

where {ei, i = 1, . . . , n} are i.i.d. N(0, σ2) variables. Let {β̂0, β̂1, σ̂
2} denote the least-

squares estimates of the unknown parameters {β0, β1, σ
2}

(a) What are the distributions of the least-squares estimates {β̂0, β̂1, σ̂
2}?

(b) In the model, suppose the predictor values are replaced by {cxi, i = 1, . . . , n}
where c is a non-zero constant. How are β̂0, β̂1, σ̂

2, R2 and the t-test of “H0 : β1 = 0”
affected by the change?

(c) Suppose the response values are replaced by {ayi, i = 1, . . . , n} where a is a non-
zero constant. How are β̂0, β̂1, σ̂

2, R2 and the t-test of “H0 : β1 = 0” affected by the
change?

Problem 2. In a generalized linear model, the response variable Yi is assumed to have
a density function with the form:

f(yi; θi, φ) = exp{[yiθi − b(θi)]/ai(φ) + c(yi, φ)}, i = 1, . . . , n.

Denote µi = E(Yi), µ = (µ1, . . . , µn)′, and y = (y1, . . . , yn)′. Let l(µ; y) be the log-
likelihood function. For a given model with p unknown parameters, let l(µ̂; y) denote the
maximum of the log-likelihood function.

(a) Suppose that {Yi, i = 1, . . . , n} are independent Poisson random variables. Show
that l(µ; y) reaches its maximum when µi = yi. Letting ai(φ) = φ/wi , write out
the scaled deviance 2[l(y; y)− l(µ̂; y)] in this case.

(b) Suppose that {niYi, i = 1, . . . , n} are independent with niYi ∼ Binomial(ni, πi).
Repeat the questions in Part (a).

1



Problem 3. Consider the following linear model for a one-way layout design:

Yij = µ + αi + εij, i = 1, . . . , k; j = 1, . . . , ni ,

where for each i, the random errors {εij, j = 1, . . . , ni} are assumed to be i.i.d. N(0, σ2
i ).

The sample variances for the k treatments are denoted by s2
i , i = 1, . . . , k.

(a) It is well known that

(ni − 1)s2
i =

ni∑
j=1

(Yij − Ȳi)
2 ∼ σ2

i χ
2
ni−1.

Based on this result, show that the distribution of log(s2
i ) can be approximated by

N(log(σ2
i ), 2(ni − 1)−1).

(b) In a one-way layout design with k = 10 and n1 = · · · = n10 = 6, the s2
i ’s and log(s2

i )’s
are given in the following table:

s2
i 0.56 0.82 0.45 1.02 0.34 0.77 0.52 0.88 0.31 1.20

log(s2
i ) −0.58 −0.20 −0.80 0.02 −1.08 −0.26 −0.65 −0.13 −1.17 0.18

Based on the result in part (a), perform a test on “H0 : σ2
1 = · · · = σ2

10” against the
alternative hypothesis “Ha : some of the variances are not equal.”

Probability

Problem 4.

(a) Suppose that P, Q are two probability measures on the same measurable space
(Ω,A). Suppose that P and Q are both absolutely continuous with respect to the
measure µ with densities (Radon-Nikodym derivatives) p and q, respectively. Thus
P (A) =

∫
A

p dµ and Q(A) =
∫

A
q dµ, for A ∈ A. Show that

sup
A∈A

|P (A)−Q(A)| = 1

2

∫
|p− q|dµ.

(b) Suppose that f0, f1, . . . are ≥ 0, defined on a sigma-finite measure space (Ω,A, µ),
and satisfy

∫
Ω

fn dµ = 1, for all n = 0, 1, 2, . . .. Suppose also that fn →a.e. f0 with
respect to µ. Use (a) above to show that

sup
A∈A

∣∣∣∣∫
A

fn dµ−
∫

A

f0 dµ

∣∣∣∣ → 0, as n →∞.
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Problem 5.

(a) Assume that X1, . . . , Xn, . . . are uncorrelated and that EX2
j ≤ M < ∞ for all j ≥ 1.

Let X̄n = 1
n

∑n
i=1 Xi. Show that

X̄n − EX̄n →L2
0, as n →∞.

(b) Assume now that X1, . . . , Xn, . . . are i.i.d. with E|X1| ≤ M < ∞ and EX1 = m.
Use Vitali’s theorem to show that

X̄n →L1
m, as n →∞.

Problem 6. The median of a distribution F on the real line is defined as the smallest
value m for which F (m) ≥ 1/2.

(a) Assume F (t) > 1/2 for each t > m. Show that for every ε > 0 there is a δ > 0 such
that |m(F )−m(G)| ≤ ε whenever supt |F (t)−G(t)| ≤ δ.
[Hint: Choose δ > 0 such that F (m− ε) < 1

2
− δ and F (m + ε) > 1

2
+ δ. ]

(b) Assume F (t) > 1/2 for each t > m. Let X1, . . . , Xn be an independent sample from
F . Let Fn(x) = 1

n

∑n
i=1 I{Xi≤x} be the empirical distribution function. Using part

(a), show that the sample median m(Fn) is strongly consistent.

(c) Assume that f(x) = F ′(x) exists and is continuous and positive at m. Show that the
standardized sample median

√
n(m(Fn)−m) is asymptotically normal and compute

the asymptotic variance.

Problem 7. Consider a Markov chain with 9 states arranged in a 3 by 3 rectangular
lattice. If the chain is in a particular state at time n, then at time n + 1 it moves to one
of the neighboring states to the north, south, east, or west, choosing among them with
equal probability. (The center state has 4 neighbors, edge states have 3 neighbors, and
corner states have only 2 neighbors.) Answer the following. Clearly state any results you
use in your answer.

(a) If the chain starts from the southwest corner, what is the expected length of time
until it returns to this state?

(b) If the chain starts from the southwest corner, what is the expected number of times
it will visit the center state before first visiting the northeast corner? (Your answer
may be given as a number or as a matrix expression. All matrices which appear in
your answer must be given explicitly.)
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Theoretical Statistics

Problem 8. Consider the linear model Yi = β0 +
∑p

j=1 βjXij + ei, where ei are i.i.d.

N(0, σ2). Let {Ŷi} denote the fitted values obtained by the least squares method.

(a) Show that
∑n

i=1 Yi =
∑n

i=1 Ŷi

(b) In particular, let p = 2, n = 4, Xi1 = 1, Xi2 = 0 for i = 1, 2, and Xi1 = 0, Xi2 = 1 for
i = 3, 4. Is β2 estimable? (Justify your answer.)

(c) Compute E
(∑n

i=1(Yi − Ŷi)Yi

)

Problem 9. Let X be a random variable whose distribution depends on a parameter
θ. Consider the three different families of distributions for X described below. The first
two are families of mass functions in which X ∈ {0, 1, 2} and 0 < θ < ∞. The third is
a finite family of density functions in which 0 < X < 1 and θ ∈ {0, 1, 2}. In each case
determine whether the family of distributions of X is complete. In other words, in each
case determine whether X is a complete statistic.

P (X = 0) P (X = 1) P (X = 2)
Family #1 c θ c 2θ c (1 + θ) for θ > 0
Family #2 c θ c θ2 c θ3 for θ > 0

Family #3 f(x | θ) = c xθ for 0 < x < 1 and θ ∈ {0, 1, 2}.

In the above table, c is a normalizing constant whose value depends on θ.

Problem 10. Let X1, X2 . . . , Xn be a random sample from a N(θ, σ2) distribution,
and suppose that the prior distribution on θ is N(µ, τ 2). Find the posterior distribution
of θ and give the mean and variance of this distribution.

[ Hint: You may find it useful to use the following fact: If f(y) is a probability density
function satisfying

f(y) ∝ e−
1
2
(ay2−2by) for −∞ < y < ∞,

then f is the density of a normal distribution with mean b/a and variance 1/a. ]
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Biostatistics

Problem 11. Assume that we are interested in drawing a random sample of size n to
examine a random variable X. We wish to test whether the mean in the population is
equal to some specified value, µ0, versus that it is less than this value, that is:

H0 : µ = µ0 vs Ha : µ < µ0

For our test, we want the values of the Type I and Type II errors to be .05 and .10
respectively, that is, α = 0.05 and β = 0.10 .

You may assume that X is normally distributed with variance σ2, and that σ2 is
known.

What is the minimum size of n to assure the correct levels of α and β? That is, derive
the formula for computing the sample size, based on the probability statements involved
and the assumption of normality.

Problem 12. If Y is a dichotomous random variable, and X is a continuous random
variable, then the logistic model specifies that:

Pr(Y = 1) =
exp(α + βX)

1 + exp(α + βX)

(a) Sketch out a derivation of how, given a sample of size n in which we have measured
Y and X, we would establish estimates of α and β.

(b) State two different ways we might test the hypothesis: H0 : β = 0

Problem 13. Consider the results of a diagnostic test, Y , used to classify disease
status (Y = 0 signifies that on the basis of the test we call people non-diseased, and
Y = 1 signifies that on the basis of the test results we call people diseased). We denote
disease state by D (D = 0 signifies non-diseased and D = 1 signifies diseased).

(a) Provide a definition of each of the following in terms of probabilities

1. TPF=True Positive Fraction

2. FPF=False Positive Fraction

3. PPV=Positive Predictive Value

4. NPV=Negative Predictive Value

(b) If we also denote ρ=the prevalence of disease in the population and τ = Pr(Y = 1),
then we can examine misclassification problems in terms of (TPF, FPF, ρ) or in
terms of (PPV, NPV, τ). Are these two parameterizations equivalent? If they are
not, provide a counter example. If they are, provide at least a sketch of a proof.
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