
Ph. D. Qualifying Exam
Friday, August 22, 2008

Please submit solutions to at most seven problems. You have four hours. No
one is expected to answer all the problems correctly. Partial credit will be given.
All problems are worth an equal amount of credit.

Put your solution to each problem on a separate sheet of paper.

Applied Statistics

Problem 1. Consider the following unbalanced random one-way model:

Yij = µ+ αi + εij, i = 1, . . . , k; j = 1, . . . , ni,

where {αi, i = 1, . . . , k} are iid N(0, σ2
α), {εij, i = 1, . . . , k; j = 1, . . . , ni} are iid

N(0, σ2
ε ), and the αi’s and εij’s are independent. Define

SSA =
k∑
i=1

ni(ȳi· − ȳ··)2 =
k∑
i=1

y2
i·
ni
− y2

··∑k
i=1 ni

,

SSE =
k∑
i=1

ni∑
j=1

(yij − ȳi·)2,

where

yi· =

ni∑
j=1

yij, ȳi· =
yi·
ni

; y·· =
k∑
i=1

ni∑
j=1

yij, ȳ·· =
y··∑k
i=1 ni

.

(a) Find the expectations and variances of yi· and y··. What are the distributions
of yi· and y··?

(b) Find the expectation of SSA.

(c) What is the distribution of SSE? Find the expectation and variance of SSE.

Problem 2. Consider the linear regression model:

Y = Xβ + ξ,

where Y = (y1, . . . , yn)′, ξ = (ξ1, . . . , ξn)′, β = (β1, . . . , βp)
′, and X is an n × p

full-rank matrix. {ξi, i = 1, . . . , n} are assumed to be iid N(0, σ2) variables. The
least squares estimate of σ2 is given by

σ̂2 =
1

n− p
[Y ′(I −H)Y ] ,

where H is the projection matrix H = X(X ′X)−1X ′.
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(a) Suppose that A = (aij) and B = (bij) are two n × n matrices. Show that
trace(AB) = trace(BA) where trace(A) =

∑n
i=1 aii.

(b) Let Z = (Z1, . . . , Zn)′ be a random vector with E(Z) = µ and Cov(Z) = V .
Define Q = Z ′AZ. Using the result in (a), show that

E(Q) = trace(AV ) + µ′Aµ.

(c) Using the result in (b), find E(σ̂2). Is σ̂2 an unbiased estimate of σ2?

Problem 3. In a generalized linear model (GLM), the response variable Y is
assumed to have a density function with the exponential dispersion form:

f(y; θ, φ) = exp{[yθ − b(θ)]/a(φ) + c(y, φ)}.

Consider the gamma density

f(y;λ, β) =

{
βλ

Γ(λ)
yλ−1e−βy, y > 0,

0, y ≤ 0,

where β > 0 and λ > 0.

(a) Write the gamma density in the exponential dispersion form. Identify θ, b(θ),
a(φ), and c(y, φ) in terms of β and λ.

(b) Let l(θ, y) = [yθ− b(θ)]/a(φ) + c(y, φ). Derive the mean and variance of Y (in

the general case) from the relations E
(
∂l
∂θ

)
= 0 and E

(
∂2l
∂θ2

)
+ E

(
∂l
∂θ

)2
= 0.

What are the mean and variance when Y has the gamma density?

Problem 4.

(a) For the following autoregressive (AR) process in which {at} is a white noise
process, check the stationarity condition. Then calculate the autocorrelation
ρk for k = 0, 1, 2, 3 (hint: one root of the following polynomial is −2):

Xt + 2.1Xt−1 + 1.6Xt−2 + 0.4Xt−3 = at.

(b) For the following moving-average (MA) process in which {at} is a white noise
process, check the invertibility condition. Then calculate the autocorrelation
ρk for k = 0, 1, 2, 3:

Xt = 1 + at + 1.5at−1 + 0.6at−2.

2



Probability

Problem 5.

(a) Let A be a collection of sets on a space Ω. Show that A is a σ-field if and only
ifA is a π/λ system. (Carefully state the definitions of a σ-field and λ-systems.)

(b) Let P and Q be two probability measures on (R,B) with

P (−∞, x] = Q(−∞, x] for all x ∈ R.

Show that P (B) = Q(B) for all B ∈ B, the collection of all Borel sets on R.
(Carefully state what result on π/λ systems you use.)

Problem 6.

(a) Let X1, X2, . . . be i.i.d. with EXi = 0 and E|Xi| <∞, i = 1, 2, · · · . Show that

1. the sequences Xi and Yi := Xi1{|Xi| ≤ i}, i = 1, 2, . . . are tail equivalent
and

2.

∣∣∣∣∣ 1n
n∑
i=1

EYi

∣∣∣∣∣→ 0 as n→∞.

(b) Let Sn be a Binomial random variable with parameters n and pn and Var(Sn)→
∞ as n→∞. Show that

Sn − ESn√
Var(Sn)

converges in distribution to a standard normal random variable as n → ∞
by writing Sn as a sum of independent random variables and verifying Lya-
pounov’s condition.

Problem 7. Let X1, X2, . . . be i.i.d. with common distribution N(1, 1). Let
Vn = 1

n

∑n
1 Xi and Mn = median of {X1, . . . , Xn} be the mean and median based

on the first n random variables.

(a) Write down the limiting distributions of
√
n(Vn − 1) and

√
n(Mn − 1).
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(b) Let

Tn =

{
Vn if |Vn| ≤ n−

1
4

Mn if |Vn| > n−
1
4

in other words,

Tn = VnI(|Vn| ≤ n−
1
4 ) +MnI(|Vn| > n−

1
4 ).

Obtain the limiting distribution of
√
n(Tn − 1). Hint: First compute the limit

of E(I(|Vn| ≤ n−
1
4 )) = P (|Vn| ≤ n−

1
4 ).

Problem 8. A clumsy climber is on a ladder with 6 rungs. At any time, he is
either on the ground (state 0) or on one of the 6 rungs (states 1 to 6). Let i denote
his current state, and suppose that his state at the next time is determined by the
following rule: If 1 ≤ i ≤ 5, he either steps up one rung, stays where he is, steps
down one rung, or falls to the ground, with probabilities .4, .3, .2, .1, respectively.
If i = 0, he steps up one rung (with probability 1), and if i = 6, he steps down one
rung (with probability 1). Note that, if i = 1, he ends up on the ground (either by
“stepping” or by “falling”) with probability .3. Let Xn denote the climber’s state
at time n.

(a) Write down the transition probability matrix for this Markov chain.

In the remaining parts, write out matrix expressions for your answers. Any
matrices appearing in your answers should be written out explicitly.

(b) Suppose the climber is currently on rung i where i ≥ 1. What is his expected
number of visits to rung j (where j ≥ 1) before visiting the ground (state 0)?

(c) Let τ be the first time (after time zero) that the climber reaches either the
ground (state 0) or the top of the ladder (state 6). That is, τ = inf{n ≥ 1 :
Xn ∈ {0, 6} }. Assuming 1 ≤ i, j ≤ 5 and m > 0, evaluate the following:

Ei

m∑
k=0

I(Xk = j, τ > k) (Note that the sum is only up to m.)

(d) If the climber starts from the ground (state 0), what is the probability he will
reach the top of the ladder (state 6) before ever returning to the ground?
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Theoretical Statistics

Problem 9. Suppose we observe X1, . . . , Xn iid from the density f(x | θ) =
1
2
e−|x−θ| where θ is unknown.

(a) Find a minimal sufficient statistic for θ.

(b) Is the statistic you found above complete?

(c) What would be your answers to (a) and (b) if instead f(x | θ) = 1
2β
e−|x−α|/β

where θ = (α, β) is unknown?

Problem 10. Suppose that we have two independent random samples: X1, . . . , Xn

are exponential(θ) and Y1, . . . , Ym are exponential(µ).

(a) Find the likelihood ratio test (LRT) of H0 : θ = µ versus H1 : θ 6= µ.

(b) Show that the test in part (a) can be based on the statistic

T =

∑
Xi∑

Xi +
∑
Yi
.

(c) Find the distribution of T when H0 is true.

Problem 11.
For the exponential family, the density function may be written:

f(y, θ) = exp{a(y)b(θ) + c(θ) + d(y)} (1)

(a) Find
∂

∂θ
f(y, θ) .

(b) Use this result to find E(a(Y )) where Y has density f(y, θ).

(c) Find the score function in terms of the functions a(y), b(θ), c(θ), d(y) and their
derivatives.

(d) Show that the expected value of the score function is 0.
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Problem 12. The data matrix x for a random sample of size n = 4 from a

bivariate normal distribution is given by x =

(
2 1
2 3
1 2
3 2

)
.

(a) Describe and sketch a 95% confidence region for the mean vector µ of this
distribution. (Use the attached table.)

(b) Test µ = (3.5 2.5)T at level α = 0.05.

Problem 13. For i = 1, . . . , n exchangeable subjects/observations, the CPO
(conditional predictive ordinate) of the observation/subject i is given by the cross-
validated probability:

CPOi = Eθ [fi(yi,obs | θ) | ỹ−i,obs] =

∫
Θ

fi(yi,obs | θ)p(θ | ỹ−i,obs) dθ

where ỹ−i,obs is the observed data vector minus the i-th observation, fi(yi,obs | θ) is
the sampling density of observation i evaluated at the observed value yi,obs, and
p(θ | ỹobs) ∝ π(θ)

∏n
j=1 fj(yj,obs | θ) is the posterior density given the observed data

ỹobs. An important measure of influence of the i-th observation on the posterior of
θ is the K-L distance

KL(p, p−i) =

∫
Θ

[
log

{
p(θ | ỹobs)
p(θ | ỹ−i,obs)

}]
p(θ | ỹobs) dθ .

(a) Show that

(CPOi)
−1 = Eθ

[
{fi(yi,obs | θ)}−1 | ỹobs

]
=

∫
Θ

{fi(yi,obs | θ)}−1p(θ | ỹobs) dθ .

(b) How can you approximate CPOi if you have N (large number) of samples from
the full posterior p(θ | ỹobs)?

(c) Show that

KL(p, p−i) = log

[∫
Θ

{fi(yi,obs | θ)}−1p(θ | ỹobs) dθ
]
+

∫
Θ

[log{fi(yi,obs | θ)}] p(θ | ỹobs) dθ

(d) What is the relationship between CPOi and KL(p, p−i)?
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Biostatistics

Problem 14. Assume that one has a random sample of n observations (xi, yi)
for i = 1, . . . , n where

xi =


1
xi1
xi2
...
xip

 and yi =

{
0 if the observation is not an event

1 if the observation is an event

Suppose you fit a logistic model to the data and derive β̂, the maximum likelihood
estimator of β = (β0, β1, β2, . . . , βp)

′ (the true vector of parameters for the logistic
model). Let

p̂i =
1

1 + exp{−β̂
′
xi}

denote the estimated probability that the ith individual develops disease. Show that
in this case, the following must be true:

n∑
i=1

(yi − p̂i) = 0

That is, the expected number of cases must equal the observed number of cases.

Problem 15. Assume that an investigator wants to do a clinical trial testing the
difference between two normal means. She is willing to assume:

• σ2 is the variance, assumed equal for the two groups.

• ∆ = µ1−µ2 is the minimum difference that she thinks is clinically important.

• She is willing to accept a type I error of α.

Because of cost considerations, the total sample size n = n1+n2 is fixed. (Here n1

and n2 are the number to be randomized to the first and second group, respectively.)

What are the values of n1 and n2 that maximize the power of the study?
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Problem 16.

(a) When considering a sample with k age groups the data are:

Age Group # at Risk # Events Rate= # Events
# at Risk

1 n1 d1 r1

2 n2 d2 r2
...

...
...

...
k nk dk rk

Total n d r

Show that the crude rate, r, can be decomposed as:

r =
k∑
i=1

piri

Where pi = ni/n is the proportion of people in the ith age-group.

(b) For two sample data, the data may be viewed as:

Age Group # at Risk # Events Rate= # Events
# at Risk

Sample 1
1 n11 d11 r11

2 n21 d21 r21
...

...
...

...
k nk1 dk1 rk1

Total n1 d1 r1

Sample 2
1 n12 d12 r12

2 n22 d22 r22
...

...
...

...
k nk2 dk2 rk2

Total n2 d2 r2

Decompose the difference, r1 − r2 into two sums, the first involving the differ-
ence in age specific rates, ri1 − ri2, and the second involving differences in the
proportion of individuals in the different age groups, pi1 − pi2

(c) Comment on what this means and suggest a way how we might deal with this.
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Problem 17. Let the survival time T > 0 be an integer-valued (discrete) random
variable with finite mean residual lifetime µk = E[T −k |T > k] and discrete hazard
rate hk = P [T = k |T ≥ k] for k = 0, 1, 2, . . .

(a) Show that µ0 − (1− h1)µ1 = 1.

Hint: One approach is to write down the terms in the sums for µ0 and µ1 in
two rows, multiply each term of µ1 by (1− h1), and subtract the rows.

(b) Can you generalize the result of (a) to µk − (1− hk+1)µk+1?

(c) Use the results of (a) and (b) to show that the Geometric distribution is the
only discrete distribution with constant mean residual lifetime.

(d) Show that the exponential distribution is the only continuous distribution for
which the mean residual lifetime r(t) is constant for all t > 0.

Computational Statistics

Problem 18. Let x and y be two continuous random variables such that the
marginal probability density of x is N(a0, σ

2
0) and the conditional probability density

of y given x is N(bx, σ2
1).

(a) We know that the posterior density P (x|y) is also Gaussian. Derive an expres-
sion for its mean.

(b) We can use this result to form the “update step” in the Kalman filter as follows.
Let the predictive density of a process xt, given all the previous observations
(y1, y2, . . . , yt−1), be Gaussian with mean µt|t−1 and variance σ2

t|t−1. What is the

mean of the posterior density of xt given the updated data (y1, y2, . . . , yt−1, yt)?
We can assume that the conditional density of yt, given xt, is Gaussian with
mean bxt and variance ν2.

Assume all quantities to be scalar in this problem.
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Problem 19. Consider a multinomial distribution parameterized by θ according
to:

(x1, x2, x3, x4) ∼M(n; 0.5 + 0.25θ, 0.25(1− θ), 0.25(1− θ), 0.25θ) .

Our goal is to develop an EM algorithm for estimating θ from the given values of
x1, . . . , x4.

(a) Define two new random variables y1 and y2 such that x1 = y1 + y2, where
(y1, y2) ∼ M(x1; 0.5/T, 0.25θ/T ) with T = 0.5 + 0.25θ. Set the complete
data to be y = (y1, y2, x2, x3, x4). The vector y has multinomial distribution
according to:

y ∼M(n; 0.5, 0.25θ, 0.25(1− θ), 0.25(1− θ), 0.25θ) .

What is the log-likelihood of the complete data?

(b) Here we will derive an EM algorithm to estimate θ.

1. E-Step: First, what is the expected value of the log-likelihood of the com-
plete data with respect to the density function f(y1, y2|θm, x1, x2, x3, x4)?
Call that function: Q(θ|θm, y). (Drop terms that do not depend on θ)

2. M-Step: Next, solve for

θm+1 = argmax
θ

Q(θ|θm, y).

(Hint 1: For a multinomial random variable x ≡ (x1, x2, . . . , xk) ∼M(n; p1, p2, . . . , pk)),
the likelihood function is given by:

f(x|p1, p2, . . . , pk) ∝ px1
1 p

x2
2 . . . pxkk .

(Hint 2: You can use the fact that E[y2|θm, x1, x2, x3, x4] = θm
2+θm

x1 .)

10


