Ph. D. Qualifying Exam
 Tuesday, January 3, 2012

Put your solution to each problem on a separate sheet of paper.

Problem 1. Applied Statistics (STA5166)

(Note: Need a Chi-Square table for this problem.)

A study was conducted to determine whether the age of customers is related to the type of movie he or she watches. A sample is shown in the following table.

Age	Documentary	Comedy	Mystery
$12-20$	24	19	18
$21-40$	35	46	58
41 and over	23	60	49

(a) Given that the total sample size $n=332$ is fixed, what is the distribution of the nine categories? What are the mean value and variance of each cell frequency? Run a chi-square test of independence and draw your conclusion. Use $\alpha=0.05$.
(b) Run a chi-square test of "Comedy" verse "Mystery". Use $\alpha=0.05$.

Problem 2. Applied Statistics (STA5166)

In a complete factorial experiment, consider the following random-effects model:

$$
\begin{aligned}
Y_{i j k}= & \mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{i j k}, \\
& i=1, \ldots, a ; \quad j=1, \ldots, b ; \quad k=1, \ldots, r
\end{aligned}
$$

where μ is the overall mean, the random effects α_{i}, β_{j}, and $(\alpha \beta)_{i j}$ are assumed to be independent and normally distributed with means of zero and variances $\sigma_{\alpha}^{2}, \sigma_{\beta}^{2}$, and $\sigma_{\alpha \beta}^{2}$, respectively. The random errors $\left\{\epsilon_{i j k}\right\}$ are assumed to be independent and normally distributed with mean zero and variance σ^{2}. Furthermore, $\left.\left\{\alpha_{i}\right\},\left\{\beta_{j}\right\},\{\alpha \beta)_{i j}\right\}$, and $\left\{\epsilon_{i j k}\right\}$ are assumed to be independent of one another.

Define

$$
S S(A B)=r \sum_{i=1}^{a} \sum_{j=1}^{b}\left(Y_{i j .}-\bar{Y}_{i . .}-\bar{Y}_{\cdot j .}+\bar{Y}_{. . .}\right)^{2}
$$

and

$$
S S E=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r}\left(Y_{i j k}-\bar{Y}_{i j} .\right)^{2} .
$$

(a) What are the distributions of $\bar{Y}_{i j}, \bar{Y}_{i .}$, and $\bar{Y}_{\cdot j}$? Find the covariance $\operatorname{Cov}\left(\bar{Y}_{i j}, \bar{Y}_{u v .}\right)$.
(b) Calculate the mean values of $S S(A B)$ and $S S E$. Find unbiased estimates for the variances $\sigma_{\alpha \beta}^{2}$ and σ^{2} based on the observations $\left\{Y_{i j k}, \quad i=1, \ldots, a ; j=1, \ldots, b ; k=1, \ldots, r\right\}$.

Problem 3. Applied Statistics (STA5167)
Consider the linear regression model:

$$
Y=X \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where $Y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, \boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$, and X is an $n \times p$ full-rank matrix. $\left\{\epsilon_{i}, i=1, \ldots, n\right\}$ are assumed to be iid $N\left(0, \sigma^{2}\right)$ variables. Let $\hat{\boldsymbol{\beta}}$ be the least squares estimate of $\boldsymbol{\beta}$.
(a) If $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)^{\prime}$ has a multivariate normal distribution with mean zero and nonsingular covariance matrix $V=\operatorname{Cov}(\boldsymbol{\xi})$, and if A is a $n \times n$ symmetric matrix with rank r, show that $\boldsymbol{\xi}^{\prime} A \boldsymbol{\xi}$ has a χ^{2} distribution with $d f=r$ if $A V$ is idempotent. (Hint: If $A V$ is idempotent and $V=C^{\prime} C$ where C is nonsigular, then $B=C A C^{\prime}$ is idempotent with rank r).
(b) Using the result in (a), find the distribution of $(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\left(X^{\prime} X\right)(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$.

Problem 4. Applied Statistics (STA5167)
Consider the linear regression model:

$$
Y=X \boldsymbol{\beta}+\boldsymbol{\xi}
$$

where $Y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, \boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$ and X is an $n \times p$ full-rank matrix. The process $\left\{\xi_{i}\right\}$ is generated by the model:

$$
\xi_{i}+0.5 \xi_{i-1}=a_{i},
$$

where $\left\{a_{i}, i=0, \pm 1, \pm 2 \ldots,\right\}$ are iid $N\left(0, \sigma^{2}\right)$ variables.
(a) Show that $\xi_{i}=\sum_{j=0}^{\infty}(-0.5)^{j} a_{i-j}$ is a solution of the equation $\xi_{i}-0.5 \xi_{i-1}=a_{i}$.
(b) Based on the expression in (a) for ξ_{i}, calculate autocorrelations $\gamma_{k}=\operatorname{Cov}\left(\xi_{i}, \xi_{i+k}\right)$ for $k \geq 0$. Show that $\gamma_{k}=-0.5 \gamma_{k-1}$ for any $k \geq 0$.
(c) How do you estimate $\boldsymbol{\beta}$ in this setting? Discuss the properties of your estimate such as mean, covariance matrix, and distribution of $\hat{\boldsymbol{\beta}}$. Compare your estimate with the least squares estimate of $\boldsymbol{\beta}$.

Problem 5. Advanced Probability and Inference (STA6346)
Let $N(t)$ be a homogeneous Poisson process with rate λ. Find $E[N(t) N(s)]$ for $s \neq t$.

Problem 6. Advanced Probability and Inference (STA6346)
Let X_{1}, X_{2}, \ldots be the positions of a random walk on the integers starting from 0 . That is, X_{1} is the position of the random walk after the first step, X_{2} is the position after the second step, and so on. Let $P_{i, i+1}=p \in(0,1)$ be the probability the walk moves from i to $i+1$ for any integer i.
(a) Find $E\left(X_{n}\right)$.
(b) For what values of p is X_{1}, X_{2}, \ldots a martingale? Prove your answer. You may assume that $E\left|X_{i}\right|$ is finite.
(c) Create a new process Y_{n} from $X_{1}, X_{2}, \ldots, X_{n}$ such that $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a martingale for ANY fixed $p \in(0,1)$.

Problem 7. Advanced Probability and Inference (STA6346)
Suppose μ, ν and λ are three σ-finite measures on a measureable space (Ω, \mathcal{F}).
(a) Find $\frac{d \mu}{d \mu}$.
(b) Suppose all three measures are absolutely continuous to each other. Show $\frac{d \mu}{d \nu}=\left[\frac{d \nu}{d \mu}\right]^{-1}$.

Problem 8. Computational Methods in Statistics I (STA5106)
Let H be an $n \times n$ householder matrix given by

$$
H=I_{n}-2 \frac{v v^{T}}{v^{T} v},
$$

for any non-zero n-length column vector $v(\neq 0)$. Show that H is a symmetric, orthogonal, and reflection matrix. That is, H satisfies i) $H=H^{T}$, ii) $H H^{T}=I_{n}$, iii) $\operatorname{det}(H)=-1$.

Problem 9. Computational Methods in Statistics I (STA5106)

Derive an EM algorithm to find the maximum likelihood estimate of θ where θ is a parameter in the multinomial distribution:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sim M(n ; 0.2 \theta, 0.2(2+\theta), 0.6(1-2 \theta), 0.8 \theta)
$$

Choose a variable for the missing data and derive the EM algorithm for iteratively estimating θ.

Problem 10. Distribution Theory and Inference (STA5326)
A small nation has 2,000,000 inhabitants. The people live in 1,001 communities. 1,000 of these communities are small villages, each with a population of 1,000 people. The last community is a single large city with a population of $1,000,000$. In each village 90% of the residents are farmers. In the city only 5% of the residents are farmers (who must walk to the countryside to till their fields).

Consider two different methods of sampling a person from this nation. (In the following, when we say that something is done "at random", we mean that all the possibilities are equally likely.)

Method \#1: Choose a person at random from census records which list all 2,000,000 people.
Method \#2: Choose a community at random, and then choose a person at random from this community.

Answer the following.
(a) Suppose a person is sampled using Method \#1. Given that this person is not a farmer, what is the probability he/she lives in the city?
(b) Answer the question in (a) if the sampling is done using Method $\# 2$.
(c) Suppose we sample people one by one by repeated independent use of Method \#1, and continue until we have sampled exactly 2 farmers. Let X be the total number of people sampled in this process. Find $P(X>k)$ for $k \geq 2$.
(d) Answer the question in (c) if the sampling is done by repeated independent use of Method \#2.
[Note: In parts (c) and (d) it is possible to choose the same person more than once. In part (d) it is possible to choose the same community more than once.]

Problem 11. Distribution Theory and Inference (STA5326)
Suppose that (X, Y) has the joint density

$$
f(x, y)= \begin{cases}\frac{\sqrt{3}}{\pi} \exp \left\{-\left(x^{2}-x y+y^{2}\right)\right\} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Find the following by direct calculation.
(a) The marginal density of X.
(b) The conditional density of Y given $X=x$.
(c) The density of $Z=\frac{Y}{X}$.

Problem 12. Statistical Inference (STA5327)
Suppose we observe data X_{1}, \ldots, X_{n} which is a random sample from the density

$$
f(x \mid \theta)=\theta x^{\theta-1} e^{-x^{\theta}}, \quad x>0, \theta>0
$$

(a) Find the MOM (method of moments) estimator of θ. [Your answer may be written in terms of Γ^{-1}, the inverse of the gamma function defined by $\Gamma(a) \equiv \int_{0}^{\infty} x^{a-1} e^{-x} d x$.]
(b) Find an ancillary statistic. [Hint: Consider the density of $\log \left(X_{i}\right)$.]
(c) Give a detailed statement of the most powerful test of level α for

$$
H_{0}: \theta=1 \quad \text { versus } \quad H_{1}: \theta=2 .
$$

[Do not try to find the critical value explicitly, but state the condition it must satisfy.]

Problem 13. Statistical Inference (STA5327)

Suppose we observe X_{1}, \ldots, X_{n} i.i.d. from the density

$$
\begin{gathered}
f(x \mid \alpha)=\frac{c(\alpha) x^{\alpha}}{1+x^{2}}, \quad 0<x<\infty,-1<\alpha<1 \\
\text { where } \quad c(\alpha)=\frac{2}{\pi} \cos \left(\frac{\pi \alpha}{2}\right) .
\end{gathered}
$$

Answer the following. Justify your answers.
(a) Find a complete sufficient statistic for α.
(b) Find the MLE for α.
(c) Is there a function of α, say $g(\alpha)$, for which there exists an unbiased estimator whose variance attains the Cramér-Rao Lower Bound? If so, find it. If not, show why not.
(d) Let T denote the complete sufficient statistic found in part (a). Is there a function of α, say $h(\alpha)$, for which there are two different unbiased estimators which are functions of T ? Answer 'Yes' or 'No' and prove your answer.

