Ph.D. Qualifying Exam
 Monday-Tuesday, January 4-5, 2016

Put your solution to each problem on a separate sheet of paper.

Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter in the multinomial distribution:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sim M(n ; 0.4(1+\theta), 0.3 \theta, 0.6(1-2 \theta), 0.5 \theta)
$$

(a) Choose a variable for the missing data and use the EM algorithm for iteratively estimating θ. Let $\theta^{(m)}$ be the current value of the unknown. Derive the mathematical formula to update for $\theta^{(m+1)}$.
(b) Let $L(\theta)$ denote the likelihood with the parameter θ. Prove that

$$
L\left(\theta^{(m+1)}\right) \geq L\left(\theta^{(m)}\right)
$$

Problem 2. (5106) Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be a given binary, Markovian sequence. In particular,

$$
P\left(x_{1}=0\right)=0.5, P\left(x_{1}=1\right)=0.5
$$

and

$$
P\left(x_{i}=x_{i-1}\right)=p, P\left(x_{i}=1-x_{i-1}\right)=1-p,
$$

$i=2, \cdots, n$. Let $y=\left(y_{1}, \cdots, y_{n}\right)$ be a noisy observation of x. That is,

$$
y_{i}=x_{i}+e_{i},
$$

with $e_{i} \sim N\left(0, \sigma^{2}\right), i=1, \cdots, n$.
Assuming p and σ^{2} known, we can use the Maximum A Posteriori method to reconstruct x from y in the following form:

$$
\hat{x}=\operatorname{argmax}_{\left\{x_{i}\right\}} \sum_{i=1}^{n}\left(-\frac{\left(y_{i}-x_{i}\right)^{2}}{2 \sigma^{2}}\right)+\sum_{i=2}^{n} \log \left(1_{x_{i}=x_{i-1}} p+1_{x_{i} \neq x_{i-1}}(1-p)\right)
$$

Write out a pseudocode for a Dynamic Programming procedure to compute \hat{x} in the computational order of n.

Problem 3. (5166) Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be a sample generated from the model:

$$
X_{i}=\epsilon_{i}+\theta \epsilon_{i-1}
$$

where the ϵ_{i} 's are independent and identically distributed random variables with mean zero and variance σ^{2}. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
(a) Find the variance of \bar{X}.
(b) Let $s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$. Find $\mathrm{E}\left(s^{2}\right)$.
(c) Compare $\operatorname{Var}(\bar{X})$ with $\mathrm{E}\left(s^{2} / n\right)$ for $\theta=0, \theta>0$, and $\theta<0$.

Problem 4. (5166)
Consider a 2^{5-2} fractional factorial design with generators $4=12$ and $5=13$. After analyzing the results from the design the experimenter decided to perform a second 2^{5-2} design exactly the same as the first one but switching the signs of column 1 from "+" to"-" (a fold-over design).
(a) What are the advantages and disadvantages of a fractional factorial design compared with a full factorial design?
(b) What are the defining relation and design resolution of the first design? List the confounding patterns of all the two-factor interactions in the first design.
(c) What are the defining relation and design resolution of the combined design? List the confounding patterns of all the two-factor interactions in the combined design.

Problem 5. (5167) In a one-way layout random-effects experiment, consider the following linear model:

$$
Y_{t i}=\mu+\tau_{t}+\epsilon_{t i}, \quad t=1, \ldots, k ; \quad i=1, \ldots, n_{t},
$$

where μ is the overall mean, $\left\{\tau_{t}, t=1, \ldots, k\right\}$ are iid $N\left(0, \sigma_{\tau}^{2}\right),\left\{\epsilon_{t i}, t=1, \ldots, k ; i=\right.$ $\left.1, \ldots, n_{t}\right\}$ are iid $N\left(0, \sigma_{\epsilon}^{2}\right)$, and the τ_{t} 's and $\epsilon_{t i}$'s are independent.
(a) Let $N=\sum_{t=1}^{k} n_{t}, \bar{Y}_{t}=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} Y_{t i}$, and $\bar{Y}=\frac{1}{N} \sum_{t=1}^{k} \sum_{i=1}^{n_{t}} Y_{t i}$. Calculate the expected values and variances of \bar{Y}_{t}. and \bar{Y}.
(b) Find $\operatorname{Cov}\left(\bar{Y}_{t}, \bar{Y}\right)$.
(c) Let $S_{T}=\sum_{t=1}^{k} n_{t}\left(\bar{Y}_{t}-\bar{Y}\right)^{2}, S_{R}=\sum_{t=1}^{k} \sum_{i=1}^{n_{t}}\left(Y_{t i}-\bar{Y}_{t} .\right)^{2}$, and $S_{D}=\sum_{t=1}^{k} \sum_{i=1}^{n_{t}}\left(Y_{t i}-\bar{Y}\right)^{2}$. Show that $S_{D}=S_{T}+S_{R}$.
Find the expected values of S_{T} and S_{R}.

Problem 6. (5167) Consider the linear regression model with p predictors:

$$
Y=X \boldsymbol{\beta}+\boldsymbol{e},
$$

where $Y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, \boldsymbol{e}=\left(e_{1}, \ldots, e_{n}\right)^{\prime}$ with $e_{1}, e_{2}, \ldots, e_{n}$ iid $N\left(0, \sigma^{2}\right), \boldsymbol{\beta}=$ $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\prime}$, and X is an $n \times(p+1)$ full-rank matrix. Let $\hat{\boldsymbol{\beta}}$ be the least squares estimate of $\boldsymbol{\beta}$.
(a) Define $\hat{Y}=X \hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{e}}=Y-\hat{Y}$. Find the distribution of $\hat{\boldsymbol{e}}$.
(b) Let $\mathbf{1}=(1,1, \cdots, 1)^{\prime}$, a column of ones with length n. Define

$$
S S_{\text {reg }}=(\hat{Y}-\bar{Y} \mathbf{1})^{\prime}(\hat{Y}-\bar{Y} \mathbf{1}) .
$$

Find the distribution of $S S_{\text {reg }}$ under $H_{0}: \boldsymbol{\beta}=0$.
(c) Show that the statistic

$$
F=\frac{S S_{r e g} / p}{\hat{e}^{\prime} \hat{\boldsymbol{e}} /(n-p-1)}
$$

has an F-distribution under $H_{0}: \boldsymbol{\beta}=0$.

Put your solution to each problem on a separate sheet of paper.

Problem 7. (5326) An urn contains R red balls and G green balls. Ed draws out K balls one by one, randomly and withOUT replacement. Whenever Ed draws two red balls in a row he wins a dollar. To be precise, Ed receives a dollar after the $i^{\text {th }}$ draw if he draws red balls on draws $i-1$ and i. Note that under these rules, if Ed draw 3 red balls in a row he receives 2 dollars; if he draws 4 red balls in a row he receives 3 dollars, etc. Let X be the amount of Ed's total winnings.
(a) Find $E X$.
(b) Find $\operatorname{Var}(X)$.

Problem 8. (5326) Consider the Gambler's Ruin problem: a gambler is betting on the tosses of a fair coin, winning $\$ 1$ when it comes up heads and losing $\$ 1$ when it comes up tails. The gambler has an initial fortune of z dollars and a goal of g dollars, i.e., starting with z dollars, he continues playing until he reaches g dollars or goes broke (loses all his money).
(a) Let $\psi(z)$ denote the probability of reaching the goal g as a function of the initial fortune z. Use the Law of Total Probability to find an equation that $\psi(z)$ must satisfy. Then find $\psi(z)$ by obtaining a solution of this equation which satisfies $\psi(0)=0$ and $\psi(g)=1$.
(b) Given that the gambler reached the goal, what is the probability that his first six tosses had a total of four heads and two tails? (Use your answer to part (a). To avoid complications, assume $6 \leq z \leq g-6$ so that the gambler makes at least six tosses.)

Problem 9. (5327) Let X_{i} be independently distributed as Poisson $\left(\beta N_{i}\right)$ for $i=1,2, \ldots, n$ where β is an unknown positive number and $N_{1}, N_{2}, \ldots, N_{n}$ are known positive constants.
(a) Find the maximum likelihood estimate (MLE) of β. Call it T_{1}.
(b) Show that T_{1} is unbiased for β.
(c) Observe that $T_{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{X_{i}}{N_{i}}$ is also an unbiased estimator of β. Which one of T_{1} and T_{2} has smaller variance? Prove your claim.

Problem 10. (5327) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d from a distribution with pdf given by

$$
f(x \mid \theta)=\left\{\begin{array}{l}
\theta^{-c} c x^{c-1} e^{-(x / \theta)^{c}}, \text { if } x>0 \\
0, \text { otherwise },
\end{array}\right.
$$

where $c>0$ is a known constant and $\theta>0$ is the unknown parameter.
(a) Find a complete sufficient statistic for θ.
(b) Find the minimum variance unbiased estimator (MVUE) for θ. (Hint: Find an unbiased statistic by taking a suitable power of the complete sufficient statistic.)
(c) Find the most powerful (MP) test of size α for testing

$$
H_{0}: \theta=\theta_{0}, \quad \text { vs } \quad H_{1}: \theta=\theta_{1},
$$

where $0<\theta_{0}<\theta_{1}$ are known constants.

Problem 11. (6346) Suppose $\left(\Omega, \mathcal{F}_{0}, \mu\right)$ is a probability space, \mathcal{F} is a σ-field with $\mathcal{F} \subset \mathcal{F}_{0}, X: \Omega \rightarrow \mathbb{R}$ is measurable with respect to \mathcal{F}_{0}, and $\mathbb{E}|X|<\infty$.
(a) Define conditional expectation, $\mathbb{E}(X \mid \mathcal{F})$.
(b) Let $Y=I_{A}$ and $X=I_{B}$ for some $A, B \in \mathcal{F}_{0}$ with $0<\mu(A)<1$. Let $\mathcal{G}=\sigma(Y)$. Find $\mathbb{E}(X \mid \mathcal{G})$.
(c) What happens if A and B are the same set?

Problem 12. (6346) Let $B(t)$ be standard Brownian motion.
(a) Show that the joint density of $B\left(t_{1}\right)=X_{1}, B\left(t_{2}\right)=X_{2}, \ldots, B\left(t_{n}\right)=X_{n}$ where $0<t_{1}<\cdots<t_{n}$ is a product of univariate normal densities.
(b) Find $E[B(t) \mid B(s)], 0 \leq s \leq t$.
(c) Define $X(t)=B(1 / t), t>0$, and $X(0)=0$. Describe the process $X(t)$ in terms of its mean and covariance. Is $X(t)$ Brownian motion? Is it a Gaussian process?

