Ph.D. Qualifying Exam Friday-Saturday, January 6-7, 2017

Put your solution to each problem on a separate sheet of paper.

Problem 1. (5106) Let $X_{1}, X_{2}, \cdots, X_{n}$ be a sequence of i.i.d. observations from a logistic distribution with the probability density function

$$
f(x \mid \theta)=\frac{\exp (-(x-\theta))}{(1+\exp (-(x-\theta)))^{2}}
$$

Our goal is to find the maximum likelihood estimate (MLE) of θ with the observations $\left\{X_{i}\right\}_{i=1}^{n}$.
(a) Derive an expression for the log-likelihood function

$$
l(\theta)=\sum_{i=1}^{n} \log \left(f\left(X_{i} \mid \theta\right)\right)
$$

such that the MLE is given by

$$
\hat{\theta}=\operatorname{argmax}_{\theta} l(\theta) .
$$

(b) Find the expressions for $\dot{l}(\theta)$ and $\ddot{l}(\theta)$, the first and second derivatives of l with respect to θ. Verify that $\ddot{l}(\theta)<0$.
(c) Write out the Newton-Raphson algorithm to find the root of $\dot{l}(\theta)$.

Problem 2. (5106) Let Y be a continuous random variable with probability density function:

$$
Y \sim \alpha_{1} f_{1}\left(y ; \mu_{1}, \sigma_{1}^{2}\right)+\alpha_{2} f_{2}\left(y ; \mu_{2}, \sigma_{2}^{2}\right),
$$

where f_{1} and f_{2} are two Gaussian density functions with means μ_{1}, μ_{2} and variances $\sigma_{1}^{2}, \sigma_{2}^{2}$, respectively. Also, $0 \leq \alpha_{1}, \alpha_{2} \leq 1$, such that $\alpha_{1}+\alpha_{2}=1$. Given n i.i.d. observations $\left\{Y_{i}\right\}_{i=1}^{n}$, our goal is to find the maximum likelihood estimate of

$$
\theta=\left(\alpha_{1}, \mu_{1}, \sigma_{1}, \alpha_{2}, \mu_{2}, \sigma_{2}\right)
$$

(a) Use the EM algorithm for iteratively estimating θ. Let $\theta^{(m)}$ be the current values of the unknown. Derive the mathematical formula to update for $\theta^{(m+1)}$.
(b) Let $L(\theta)$ denote the likelihood with parameter θ. Prove that

$$
L\left(\theta^{(m+1)}\right) \geq L\left(\theta^{(m)}\right)
$$

Problem 3. (5166) Consider the following linear model for a randomized block design:

$$
y_{t i}=\mu+\beta_{i}+\tau_{t}+\epsilon_{t i}, t=1, \ldots, k ; i=1, \ldots, n,
$$

where μ is an overall mean, τ_{t} is the effect of t th treatment, β_{i} is the effect of i th block, $\left\{\epsilon_{t i}: t=1, \ldots, k ; i=1, \ldots, n\right\}$ are assumed to be i.i.d. $N\left(0, \sigma^{2}\right)$.
(a) The least squares estimate of β_{i} is $\hat{\beta}_{i}=\bar{y}_{\cdot i}-\bar{y}_{. .}$. Find the expectation and variance of $\hat{\beta}_{i}$.
(b) Show the decomposition of variation for the experiment: $S_{D}=S_{B}+S_{T}+S_{R}$ where

- S_{D} : Total Variation of the observations,
- S_{B} : Sum of Squares for Blocks,
- S_{T} : Sum of Squares for Treatments,
- S_{R} : Sum of Squares for Experimental Errors.
(c) Find the expectation of S_{B}.

Problem 4. (5166) Consider the following unbalanced one-way random-effects model:

$$
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, k ; \quad j=1, \ldots, n_{i},
$$

where $\left\{\alpha_{i}, i=1, \ldots, k\right\}$ are i.i.d. $N\left(0, \sigma_{\alpha}^{2}\right),\left\{\epsilon_{i j}, i=1, \ldots, k ; j=1, \ldots, n_{i}\right\}$ are i.i.d. $N\left(0, \sigma_{\epsilon}^{2}\right)$, and the α_{i} 's and $\epsilon_{i j}$'s are independent. Define

$$
\mathrm{SSA}=\sum_{i=1}^{k} n_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}, \quad \mathrm{SSE}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2},
$$

where

$$
y_{i .}=\sum_{j=1}^{n_{i}} y_{i j}, \quad \bar{y}_{i}=\frac{y_{i .}}{n_{i}} ; \quad y_{. .}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{i j}, \quad \bar{y} . .=\frac{y_{. .}}{\sum_{i=1}^{k} n_{i}} .
$$

(a) Find $\operatorname{Cov}\left(y_{i j}, y_{i^{\prime} j^{\prime}}\right)$. What is the distribution of $\bar{y} . . ?$
(b) Show that SSA $=\sum_{i=1}^{k} \frac{y_{i .}^{2}}{n_{i}}-\frac{y_{. .}^{2}}{\sum_{i=1}^{k} n_{i}}$. Show that SSA and SSE are independent.
(c) Find unbiased estimates for the variances σ_{α}^{2} and σ_{ϵ}^{2}.

Problem 5. (5167) Suppose that $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is a sample from a bivariate normal distribution, i.e.,

$$
\binom{x_{i}}{y_{i}} \sim N\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right), i=1, \cdots, n .
$$

(a) Show that the conditional distribution of y_{i} given x_{i} is normal and

$$
y_{i} \left\lvert\, x_{i} \sim N\left(\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{i}-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)\right., i=1, \cdots, n .
$$

(b) Define

$$
\begin{equation*}
\beta_{1}=\rho \frac{\sigma_{2}}{\sigma_{1}}, \quad \beta_{0}=\mu_{2}-\beta_{1} \mu_{1}, \quad \sigma^{2}=\sigma_{2}^{2}\left(1-\rho^{2}\right) \tag{1}
\end{equation*}
$$

Then y_{i} given x_{i} follows the simple regression model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \cdots, n
$$

where $\left\{\epsilon_{i}, i=1, \cdots, n\right\}$ are i.i.d. $N\left(0, \sigma^{2}\right)$. The moment estimates of β_{0}, β_{1}, and σ^{2}, denoted by $\tilde{\beta}_{0}, \tilde{\beta}_{1}$, and $\tilde{\sigma}^{2}$, respectively, are obtained by simply substituting the sample means (\bar{x} and \bar{y}), sample variances ($\hat{\sigma}_{1}^{2}$ and $\hat{\sigma}_{2}^{2}$), and sample correlation $\hat{\rho}$ into (1). Are the moment estimates the same as the least squares estimates $\hat{\beta}_{0}, \hat{\beta}_{1}$, and $\hat{\sigma}^{2}$?

Problem 6. (5167) Consider the linear regression model:

$$
Y=X \boldsymbol{\beta}+\boldsymbol{\xi}
$$

where $Y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, \boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$ and X is an $n \times p$ full-rank matrix. The process $\left\{\xi_{i}\right\}$ is generated by the moving-average model:

$$
\xi_{i}=\epsilon_{i}-\theta_{1} \epsilon_{i-1}-\theta_{2} \epsilon_{i-2}
$$

where $\left\{\epsilon_{i}, i=-1,0,1, \ldots, n\right\}$ are i.i.d. $N\left(0, \sigma^{2}\right)$ variables.
(a) Calculate the variance-covariance matrix of $\boldsymbol{\xi}$. Describe how to use the least squares method, the weighted least squares method, and the maximum likelihood method to estimate the coefficients $\boldsymbol{\beta}$ in the model. Give details of the three procedures.
(b) Suppose that $\theta_{1}=0.5$ and $\theta_{2}=-2$. Let $\hat{\boldsymbol{\beta}}$ be the weighted least squares estimate of $\boldsymbol{\beta}$. Give the expression of $\hat{\boldsymbol{\beta}}$ in this case. Define $\hat{Y}=X \hat{\boldsymbol{\beta}}$, and $\hat{\boldsymbol{\xi}}=Y-\hat{Y}$. Are \hat{Y} and $\hat{\boldsymbol{\xi}}$ independent? Show your reasons.

Put your solution to each problem on a separate sheet of paper.

Problem 7. (5326) Suppose that a Geiger counter is turned on at time zero and that clicks on this Geiger counter occur according to a Poisson process with a rate of λ clicks per second.
(a) Let S_{t} denote the random number of clicks during the time interval $(0, t)$. State a formula for $P\left(S_{t}=k\right)$ valid for nonnegative integers k. (No proof is needed. Just state the answer.)
(b) Let $T_{1}<T_{2}<T_{3}<\cdots$ be the times of the first click, second click, third click, \ldots, and $X_{1}=T_{1}, X_{2}=T_{2}-T_{1}, X_{3}=T_{3}-T_{2}, \ldots$ be the times between clicks (the interarrival times). What is the joint distribution of $X_{1}, X_{2}, X_{3}, \ldots$? In particular, give an explicit formula for the joint density of $\left(X_{1}, X_{2}, X_{3}\right)$. (No proof is needed. Just state the answers.)
(c) Use the facts in parts (a) and (b) or any other approach to prove that

$$
\int_{t}^{\infty} \frac{\lambda^{r}}{\Gamma(r)} z^{r-1} e^{-\lambda z} d z=\sum_{y=0}^{r-1} \frac{(\lambda t)^{y} e^{-\lambda t}}{y!}, \quad r=1,2,3, \ldots
$$

where $\lambda>0$ and $t>0$. Give a detailed argument.
(d) Let S_{t} be as defined in (a) for any value of t. Find $P\left(S_{2} \leq 1, S_{5} \leq 2, S_{10}=3\right)$.

Problem 8. (5326) Suppose the random variables (X, Y) have the joint density

$$
f(x, y)=x^{2} y e^{-x(y+1)} \quad \text { for } x>0, y>0 \quad \text { (and } f(x, y)=0 \text { otherwise). }
$$

Answer the following. Carefully specify the support of any density or joint density.
(a) Find the marginal density of Y.
(b) Find the joint density of (U, V) where $U=X(Y+1)$ and $V=X$.
(c) Find the density of $U=X(Y+1)$.

Problem 9. (5327) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. from a distribution with pdf given by

$$
f(x \mid \theta)= \begin{cases}\theta^{-1} x^{(1-\theta) / \theta} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$ is the unknown parameter.
(a) Show that $T=-2 \sum_{i=1}^{n} \log \left(X_{i}\right)$ is a minimal sufficient statistic for θ.
(b) Find the distribution of $Y=-2 \log X_{1}$.
(c) Using Basu's theorem or otherwise, find $\mathbb{E}[Y \mid T]$, the conditional expectation of the random variable Y given T.

Problem 10. (5327) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed Poisson (λ) random variables for an unknown parameter $\lambda>0$. Instead of observing the random variables X_{i}, we only observe the events $X_{i}=0$ or $X_{i}>0$ for $i=1, \ldots, n$.
(a) Find the maximum likelihood estimate (MLE) of λ and discuss when the MLE is not finite.
(b) Compute the probability that the MLE is not finite based on a sample of size n, assuming that the true value of λ is $\lambda_{0}>0$.

Problem 11. (6346) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. A statement about elements $\omega \in \Omega$ is true locally almost everywhere (μ) if
i. the statement is true for all $\omega \in A$, where $A \in \mathcal{F}$, and
ii. $\mu\left(A^{\prime} \cap F\right)=0$ for any $F \in \mathcal{F}$ with $\mu(F)<\infty$.
(Note: A^{\prime} is the complement of A.)
(a) Show that if something is true almost everywhere (μ) then it is true locally almost everywhere (μ).
(b) If μ is σ-finite, show that if something is true locally almost everywhere (μ) then it is true almost everywhere (μ).

Problem 12. (6346) Let $(\Omega=[0,1], \mathcal{F}=\mathcal{B}[0,1], \mu)$ be a probability space where μ is Lebesgue measure on $[0,1]$ and $\mathcal{B}[0,1]$ is the restriction of the Borel σ-field to $[0,1]$. Let X_{n} be a sequence of random variables given by

$$
X_{n}(\omega)= \begin{cases}n^{2}, & \omega \in[0,1 / n] \\ 0, & \omega \in(1 / n, 1]\end{cases}
$$

(a) Show that $X_{n} \xrightarrow{P} X$ by using the definition of convergence in probability, and give X.
(b) Show that $X_{n} \rightarrow X$ a.s. for the same X as in part (a).
(c) Prove or disprove: For $p \geq 1, X_{n} \xrightarrow{L^{p}} X$ for the same X as in parts (a) and (b).

