
Ph. D. Qualifying Exam
Tuesday, August 20, 2002

Please submit solutions to at most seven problems. You have four hours. No one is
expected to answer all the problems correctly. Partial credit will be given. All problems
are worth an equal amount of credit.

Put your solution to each problem on a separate sheet of paper.

Problem 1. In a complete factorial experiment, consider the following mixed-effects
model:

Yij = µ + αi + βj + εij, i = 1, . . . , a; j = 1, . . . , b,

where µ is the overall mean, αi is the fixed effect corresponding to the ith level of factor
A, and βj is the random effect due to the jth level of factor B. The βj’s are iid N(0, σ2

β)
variables and the εij’s are iid N(0, σ2

ε ) variables. Furthermore, {βj} and {εij} are assumed
to be independent. Let MSA and MSB denote the mean squares for factors A and B,
respectively, and let MSE be the mean square for error.

(a) What are the differences between a random-effect design and a fixed-effect design?
What hypotheses do you test in the mixed-effects model?

(b) Calculate the expected values E(MSA) and E(MSB).

Problem 2. Consider the linear regression model:

Y = Xβ + ξ,

where Y = (y1, . . . , yn)′, ξ = (ξ1, . . . , ξn)′, β = (β1, . . . , βp)
′ and X is an n × p full-rank

matrix. The process {ξi} is generated by the autoregressive model:

ξi + θξi−1 = εi,

where {εi, i = 0,±1,±2 . . . , } are iid N(0, σ2) variables.

(a) Show that {ξi, i = 1, 2, . . . , } is a second-order stationary process when |θ| < 1.
Calculate the autocovariance function γk = Cov(ξi, ξi+k).

(b) How do you estimate β in this setting? Why do you choose this method? Discuss
the properties of your estimate such as mean, covariance matrix, and distribution of
β̂.
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Problem 3. A 25−2 design is defined by 4 = 12 and 5 = 13.

(a) Find the defining relation and resolution of this design. What are the advantages
and disadvantages of this kind of design compared with complete factorial designs?

(b) After the experiment, factor 5 turns out to be inert. It is assumed that all two-factor
interactions involving factor 5 and all higher order interactions are negligible. In
addition to estimating the four main effects, there are still three degrees of freedom
left. What two-factor interactions can be estimated with these three degrees of
freedom?

Problem 4. Let Y1, . . . , Yn be independent random variables such that Yi ∼ Binomial(m, πi)
where 0 < πi < 1. Let Y =

∑n
i=1 Yi.

(a) Show that, given π1, . . . , πn, E(Y ) = nmπ̄ and Var(Y ) = nmπ̄(1− π̄)−m(n−1)k(π).
Give the expression for k(π) in terms of π1, . . . , πn.

(b) Assume that π1, . . . , πn are independent random variables with common mean π
and common variance τ 2π(1 − π). Show that, unconditionally, E(Y ) = nmπ and
Var(Y ) = nmπ(1− π)[1 + (m− 1)τ 2].

Problem 5.

(a) Define the notion of product measurability.

(b) Let f : Ω → R be a measurable function, where (Ω,F) is a measurable space. Show
that the set

Graph(f) = {(ω, f(ω)): ω ∈ Ω}
is product measurable in a suitable sense. Hint: the graph of f is the inverse image
under (ω, y) 7→ (f(ω), y) of a certain Borel measurable subset of R2.

Problem 6.

(a) State Markov’s inequality.

(b) State Hölder’s inequality and use it to derive Lyapounov’s inequality.

(c) What can you say about a random variable X such that E|X|n → 0 as n →∞?

(d) Does there exist a random variable X for which E|X|n = 1/n for all n ≥ 2?
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Problem 7. Let X1, . . . , Xn be i.i.d random variables with pdf 1 on [0,1] (i.e. uniform)
and let Y1, . . . , Ym be i.i.d. with pdf 2x on [0, 1], and let the X’s be independent of the
Y ’s. Let φ(x; y) = I(x ≤ y) and let φ∗(x; y) = φ(x; y)− 2

3
. Let N = n+m and let n

N
→ λ

where 0 < λ < 1. Define

UN =
1

nm

n∑
i=1

m∑
j=1

φ∗(Xi; Yj) ,

the two-sample U -statistic based on φ∗. State any requisite result on such U -statistics
and obtain the asymptotic distribution of UN .

Problem 8. Let X1, X2, . . . be random variables lying in [0, 1]. Let F0 be the σ-field
containing the empty set and the whole space, and let Fn = σ(X1, . . . , Xn), the smallest
σ-field generated by X1, . . . , Xn. Show that the series

∞∑
i=1

Xi

and the series
∞∑
i=1

E(Xi|Fi−1)

converge or diverge together, with probability one.

Problem 9. Suppose Y ∼ (Xβ, σ2I) where X has less than full rank. Let M denote
the orthogonal projection matrix onto the range of X. Prove the following: If d′Y is an
unbiased estimate of `′β, then (Md)′Y is the BLUE of `′β.

Problem 10. Let X1, X2, . . . , Xn be iid Uniform(θ, 2θ) where θ > 0.

(a) Find a sufficient statistic for θ. (Your statistic should also be minimal, but you are
not required to show this.)

(b) Show that the statistic you found in part (a) is not complete.

Problem 11. Suppose that the observed failure times of ball bearings Y1, . . . , Yn are a
random sample from the lognormal distribution with p.d.f.

f(y) =
1

y
√

2π
exp{−(log y − µ)2/2} for y > 0

where the parameter µ is unknown.
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(a) Find the MLE of the mean failure time (i.e., E(Y )) of the ball bearings and its
asymptotic distribution.

[Note: In your calculations, you may find it useful to recall the mgf of the Normal
distribution: if X ∼ N(µ, σ2), then EetX = eµt+σ2t2/2 .]

(b) Another natural estimator of the mean failure time would be the average of the Y ′s:
Ȳn = 1

n

∑n
i=1 Yi. Is this estimator a good estimator relative to the MLE?

(c) Find E(Ȳn | X̄n) where we define X̄n = 1
n

∑n
i=1 Xi with Xi = log Yi .
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