
Ph.D. Qualifying Exam
Thursday–Friday, August 20–21, 2020

• Begin your solution to each problem on a new sheet of paper.

• Statistics PhD students should do the 5106 problems.

• Biostatistics PhD students should do the 5198 problems.

• All students should do the 5166 and 5167 problems.

Problem 1. (5106) Let x = (x1, . . . , xn) be a given binary, Markovian sequence. In
particular,

P (x1 = 0) = 0.5 , P (x1 = 1) = 0.5 ,

and
P (xi = xi−1) = p , P (xi = 1− xi−1) = 1− p , i = 2, . . . , n .

Let y = (y1, . . . , yn) be a noisy observation of x. That is,

yi = xi + ei,

with ei ∼ N(0, σ2), i = 1, . . . , n.
Assuming p and σ2 known, we can use the Maximum A Posteriori method to reconstruct

x from y in the following form:

x̂ = argmax{xi}

n∑
i=1

(−(yi − xi)2

2σ2
) +

n∑
i=2

log(1xi=xi−1
p+ 1xi 6=xi−1

(1− p))

Write out a pseudocode for a Dynamic Programming procedure to compute x̂ in the
computational order of n.

Problem 2. (5106) Consider a data set of observations {xn} where n = 1, . . . , N , and
xn is a Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected data.
Prove that the optimal linear projection for which the variance of the projected data is
maximized is defined by the M eigenvectors U1, . . . , UM of the data covariance matrix S
corresponding to the M largest eigenvalues λ1, . . . , λM .
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Problem 3. (5166) In a one-way layout experiment, consider the following linear model:

Yti = µ+ τt + εti, t = 1, . . . , k; i = 1, . . . , nt,

where µ is the overall mean and {τt, t = 1, . . . , k} are the effects of the treatments. The
random noise {εti, t = 1, . . . , k; i = 1, . . . , nt} follows the model:

εti = ati + θat,i−1,

where the ati’s are independent and identically distributed random variables with mean
zero and variance σ2.

(a) Let N =
∑k

t=1 nt, Ȳt· = n−1t
∑nt

i=1 Yti, and Ȳ = N−1
∑k

t=1

∑nt
i=1 Yti. Calculate the

expected values and variances of Ȳt· and Ȳ .

(b) Find Cov(Ȳt·, Ȳ ).

(c) Let ST =
∑k

t=1 nt(Ȳt· − Ȳ )2, SR =
∑k

t=1

∑nt
i=1(Yti − Ȳt·)2,

and SD =
∑k

t=1

∑nt
i=1(Yti − Ȳ )2. Show that SD = ST + SR.

Find the expected value of ST .

Problem 4. (5166) A study was conducted to determine whether the age of customers
is related to the type of movie he or she watches. A researcher went to a movie store
and observed all of the 450 movie rentals that took place during one day. These movie
rentals were categorized by customer age and movie type, and the results are displayed
in the contingency table given below. Assume that the cell frequencies in this table are
independent Poisson variables.

Age Documentary Comedy Mystery
12–20 13 49 38
21–40 34 86 60

41 and over 73 50 47

(a) Conditional on the total sample size being n = 450, what is the distribution of the
nine categories? Show your justifications. What are the mean and variance of each
cell frequency?

(b) Run a chi-square test of independence and draw your conclusion. Use α = 0.05.

(c) Run a chi-square test of “Comedy” versus “Mystery”. Use α = 0.05.

Note: A small chi-square table is given on page 7.
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Problem 5. (5167) Suppose we fit a regression of Y on (X,Z) with the true mean
function E(Y | X = x, Z = z) = 2 + 3x− 4z.

(a) If X and Z are independent, what are the expected results from fitting a simple
linear regression of Y on X? Assume that Var(Y |X = x, Z = z) = σ2 is constant.
(Hint: see how E(Y |X) and Var(Y |X) depend on Z.)

(b) Provide conditions under which the mean function for E(Y | X) is linear but has a
negative coefficient for X.

(c) Assume that (X,Z) is bivariate normal, with the five parameters (µx, µz, σ
2
x, σ

2
z , ρxz) =

(0, 1, 1, 22, 0.8). Derive the regression model parameters of X on Z.

(d) Suppose we collected data (Xi, Yi, Zi = 1), i = 1, . . . , n, and (Xi, Yi, Zi = 2), i =
n+ 1, . . . , 2n, and wanted to estimate the mean function E(Y | X = x, Z = z). If we
assume that Var(Y | X = x, Z = z) = 4z2, what would be the RSS of weighted least
squares and the solution from minimizing it?

Problem 6. (5167) Consider a heteroscedastic linear model with data consisting of n
independent copies of (Y,X,W ), where Y ∈ R1, X ∈ Rp, and W > 0 is a weight with
expectation one:

Y = µ+ βTX + ε/
√
W,

where ε is independent of (X,W ), and E(ε) = 0 and Var(ε) = σ2.

(a) Discuss why we can assume E(W ) = 1 without loss of generality.

(b) Describe the estimation procedure for the parameters µ, β and σ2.

(c) Provide a likelihood justification for the previous step. (Hint: by assuming ε ∼
Normal)

(d) If X | W ∼ N(µx,W
−1Σ), what would be a good estimator for Σ?
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Begin your solution to each problem on a new sheet of paper.

Problem 9. (5326) Let (X, Y ) have a uniform distribution inside the circle of radius 2
about the origin, that is, (X, Y ) has joint density

f(x, y) =

{
C if x2 + y2 ≤ 4

0 otherwise.

for some constant C. Answer the following. Justfy your answers.

(a) Find fX(x), the marginal density of X.

(b) Find E(Y |X = x) for −2 < x < 2.

(c) Are X and Y independent?

(d) Find Corr(X, Y ), the correlation between X and Y .

(e) Find Corr(X2, Y 2), the correlation between X2 and Y 2.

(Hint: For non-negative integers r, s, the quantity EX2rY 2s may be expressed (after
some manipulations) as a Beta integral. Another possibility is to use polar coordi-
nates.)

Problem 10. (5326) An urn contains R red balls, G green balls, and B blue balls. A
player randomly selects 9 balls, doing this one by one and withOUT replacement. The
player wins a dollar every time he selects three red balls in a row. (Assume R ≥ 3 and
R + G + B ≥ 9.) To be more precise, a player receives a dollar after the i-th draw, if
he selected red balls on draws i − 2, i − 1, and i. Note that under these rules, a player
drawing 4 red balls in a row receives a total of 2 dollars; a player drawing 5 red balls in a
row receives a total of 3 dollars, etc. Let X be the player’s total winnings.

(a) Find EX.

(b) Find EX2.

4



The following table will be useful for solving the STA 5327 problems.

Name Notation f(x) E(X) Var(X)

Normal N(µ, σ2)
1√
2πσ

e
−(x−µ)2

2σ2 , −∞ < x <∞ µ σ2

Problem 11. (5327) Consider the probability density function:

fν(x;µ, σ2) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)σ

(
1 +

(x− µ)2

νσ2

)− ν+1
2

, for x ∈ R,

where ν > 2 is a known constant, µ ∈ R and σ2 > 0 are unknown parameters, and Γ(·) is
the Gamma function. We observe i.i.d. observations X1, . . . , Xn ∼ fν(x;µ, σ2).

(a) Find an equation system that the maximum likelihood estimator of (µ, σ2) must
satisfy. (But you do not need to solve the equation system.)

(b) Let (µ̂, σ̂2) be the maximum likelihood estimator of (µ, σ2). Determine whether µ̂
and σ̂2 are asymptotically independent.

Problem 12. (5327) Consider X1, . . . , Xn i.i.d from 1
2
N(µ, 1)+ 1

2
N(−µ, 1), where µ ≥ 0.

(a) Find the method of moments estimator of µ. Discuss when it exists.

(b) Design a test for the following hypotheses with Type I error at 0.05:

H0 : µ = 0 vs. H1 : µ > 0.
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Problem 13. (6346) Let Xn be a martingale with respect to Fn = σ(X1, X2, . . . , Xn).
Suppose Xn ∈ L2 and S and T are bounded stopping times with S ≤ T .

(a) Give the definition of a martingale.

(b) Give the definitions of a stopping time and a bounded stopping time.

(c) Show XS and XT are in L2.

(d) Show E[(XT −XS)2|FS] = E[X2
T −X2

S|FS].

Problem 14. (6346) For the problems below, you may assume that Xn and X are
random variables with all moments finite.

(a) Define convergence in probability.

(b) Define convergence in Lp.

(c) Prove or give a counterexample: Xn
Lp−→ X ⇒ Xn

P−→ X for finite p.

(d) Prove or give a counterexample: Xn
P−→ X ⇒ Xn

Lp−→ X for finite p.
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