
Ph.D. Qualifying Exam
Thursday–Friday, January 2–3, 2020

• Begin your solution to each problem on a new sheet of paper.

• Statistics PhD students should do the 5106 problems.

• Biostatistics PhD students should do the 5198 problems.

• All students should do the 5166 and 5167 problems.

Problem 1. (5106) Let Y be a discrete random variable with nonnegative integer values.
For any y ∈ {0, 1, 2, · · · },

Prob(Y = y) = α1P1(y;λ1) + α2P2(y;λ2),

where P1 and P2 are two Poisson probability mass functions with means λ1 and λ2, respec-
tively. Also, 0 ≤ α1, α2 ≤ 1, such that α1 +α2 = 1. Given n i.i.d. observations {Yi}ni=1, our
goal is to find the maximum likelihood estimate of

θ = (α1, λ1, α2, λ2).

Use the EM algorithm for iteratively estimating θ. Let θ(m) be the estimated value at the
m-step. Derive the mathematical formula to update it for θ(m+1).

Problem 2. (5106) Consider a data set of observations {xn} where n = 1, · · · , N , and
xn is a Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected data.
Prove that the optimal linear projection for which the variance of the projected data is
maximized is defined by the M eigenvectors U1, · · · , UM of the data covariance matrix S
corresponding to the M largest eigenvalues λ1, · · · , λM .
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Problem 3. (5166) Consider the following linear model for a randomized block design:

yti = µ+ βi + τt + εti, t = 1, . . . , k; i = 1, . . . , n,

where µ is an overall mean, τt is the effect of tth treatment, βi is the effect of ith block,
{εti : t = 1, . . . , k; i = 1, . . . , n} are assumed to be i.i.d. N(0, σ2).

(a) The least squares estimate of τt is τ̂t = ȳt· − ȳ··. Find the expectation and variance of
τ̂t.

(b) Show the decomposition of variation for the experiment: SD = SB + ST + SR where

• SD: Total Variation of the observations,

• SB: Sum of Squares for Blocks,

• ST : Sum of Squares for Treatments,

• SR: Sum of Squares for Experimental Errors.

(c) Show that under the Null Hypothesis H0 : τt = 0 for t = 1, . . . , k, ST and SR are
independent.

Problem 4. (5166) Two treatments, A and B, are compared in an experimental design.
For each treatment, measurements are recorded successively in time. Suppose that the
measurements follow the models:

Xi(t) = µi + ξi(t), i = 1, 2;

where the processes {ξi(t), i = 1, 2; t = −1, 0, 1, . . . , } are generated by the models:

ξ1(t)− 0.8ξ1(t− 1) = a1(t), ξ2(t) = a2(t) + 2.5a2(t− 1),

where {ai(t), i = 1, 2; t = 0,±1,±2 . . . , } are i.i.d. N(0, σ2) variables.

Let X̄i =
∑n

t=1Xi(t)/n for i = 1, 2.

(a) Show that ξ1(t) =
∑∞

j=0(0.8)ja1(t− j) is a solution of the equation

ξ1(t)− 0.8ξ1(t− 1) = a1(t).

Is the process {ξ1(t), t = −1, 0, 1, . . . , } stationary?

(b) Based on the expression in (a) for ξ1(t), calculate autocorrelations

γk = Cov(ξ1(t), ξ1(t+ k))

for k ≥ 0. Show that γk = 0.8γk−1 for any k ≥ 0.

(c) What is the distribution of X̄2 ?
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Problem 5. (5167) Consider the following simple linear regression model of Y on X1:

Y = α + βX1 + e. (1)

Suppose n = 60, X̄1 = −3.3, Ȳ = 5.5, SXX = 100.0, SY Y = 123.4, and SXY = 88.8.

(a) Find the following: RSS, R2, α̂, β̂, σ̂2 ≡ v̂ar(e).

(b) Test the hypothesis (at level 0.05) that β = 1 versus β > 1.

(c) What assumptions are required for the test in part (b) (in addition to (1))?

(d) Find the 95% prediction interval for a new observation X?
1 = −2.

(e) Consider the following regression model,

Yi = µ+ εi, i = 1, . . . , n,

where var(εi) = σ2 for all i, and Corr(εi, εj) = ρ > 0 for i 6= j. Is the sample mean
Y =

∑n
i=1 Yi/n still the MLE for µ? What is the variance of Y ? Does the variance

go to zero when n→∞ in this case, and why?

Some R output that might be helpful.

> qt(c(0.95,0.975,0.99,0.995),57)

[1] 1.672029 2.002465 2.393568 2.664870

> qt(c(0.95,0.975,0.99,0.995),58)

[1] 1.671553 2.001717 2.392377 2.663287

> qt(c(0.95,0.975,0.99,0.995),59)

[1] 1.671093 2.000995 2.391229 2.661759
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Problem 6. (5167) Suppose we have univariate response Y and multivariate predictor
X ∈ Rp. We are interested in the following regression model,

Y = β0 + βTX + ε = β̃T X̃ + ε,

where β̃ = (β0, β
T )T ∈ Rp+1 and X̃ = (1, XT )T ∈ Rp+1. Let Yn ∈ Rn×1, Xn ∈ Rn×p and

X̃n = (1n, Xn) ∈ Rn×(p+1) be the data matrices, where 1n is a vector of ones. You may

use this result to answer the questions: Suppose M =

(
A B
BT C

)
is a m × m symmetric

positive definite matrix, then its inversion can be written as

M−1 =

(
A−1 − A−1BDBTA−1 −A−1BD

−DBTA−1 D

)
,

where D = (C −BTA−1B)−1.

(a) Write down the ordinary least squares estimates for β̃, β0 and β using the given
notation.

(b) Let X and S be the sample mean and sample covariance of X. Show that

(X̃T
n X̃n)−1 =

(
n−1 + (n− 1)−1X

T
S−1X −(n− 1)−1X

T
S−1

−(n− 1)−1S−1X (n− 1)−1S−1

)

(c) Suppose we want to estimate the inverse of covariance matrix denoted as Θ ≡
{Cov(X)}−1 ∈ Rp×p. When p is very large, directly computing the inversion of the
sample covariance matrix S is not practical. When Θ is sparse, the graphical lasso
method uses a regression “trick” to obtain the sparse estimator of the inverse covari-
ance. The algorithm updates one column at a time for Θ. To see this, we decompose
Θ as

Θ =

(
Θ11 θ12

θT12 θ22

)
,

where θ12 ∈ R(p−1)×1. Suppose Θ̂ = S−1, show that θ̂12/θ̂22 is the least squares
regression coefficient estimator of Xp regressed on (X1, . . . , Xp−1). Discuss how to

obtain Θ̂ when the sample covariance is not positive definite due to small-n-large-p
(hint: use lasso regression).

4



Begin your solution to each problem on a new sheet of paper.

Problem 9. (5326) Answer the following. The parts are not related.

(a) Define Y = tanX where X is uniformly distributed on the interval (−π/2, π/2). Find
the cumulative distribution function (cdf) and the density (pdf) of Y .

Note:
d

du
tan−1(u) =

1

1 + u2

(b) Let Z have the Cauchy density given by

fZ(z) =
1

π(1 + z2)
, −∞ < z <∞.

Show that Z
d
= 1/Z, that is, Z and 1/Z have the same distribution.

(c) Find the density (pdf) of the ratio S/T where S, T are i.i.d. N(0, 1) (standard normal).

Problem 10. (5326) An urn contains R red balls and G green balls. Balls are drawn at
random from this urn until a red ball is drawn. What is the probability that more than k
draws are required? (Assume k ≥ 1 is some given integer.) Answer this question in each
of the following situations. Simplify your answers.

(a) Draws are done WITH replacement.

(b) Draws are done withOUT replacement. (In this case assume that 1 ≤ k ≤ G.)

(c) The urn is a Polya urn: after a ball is drawn, it is returned to the urn and another
ball of the same color is added to the urn.
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The following table will be useful for solving the STA 5327 problems.
Name Notation density f(x) µ = E(X) Var(X)

Normal N(µ, σ2) 1√
2πσ

e
−(x−µ)2

2σ2 , −∞ < x <∞ µ σ2

Problem 11. (5327) Consider independent observations (Xi, Yi), i = 1, . . . , n, where

P (Yi = k) = πk , Xi | Yi = k ∼ N(µk, σ
2),

with Yi ∈ {1, 2}, 0 < π1, π2 < 1, π1 + π2 = 1, µk ∈ R, σ2 > 0.

(a) Construct consistent estimators for π1, π2, µ1, µ2 and σ2. Which of them (if any) are
biased?

(b) Verify that (Xi, Yi) satisfies the following equation:

log
P (Yi = 2 | Xi = x)

P (Yi = 1 | Xi = x)
= β0 + βx.

Derive the explicit expressions of β0 and β.

(c) Find a consistent estimate for β0. Prove the consistency.

Problem 12. (5327) Consider independent observations Xi, i = 1, . . . , n, where Xi ∼
N(µ, 1) with |µ| ≤ 1.

(a) Let X̄ be the sample mean. Is X̄ admissible? Give a rigorous proof to your conclusion.

(b) Find the likelihood ratio test for

H0 : µ = 0 vs. H1 : µ 6= 0, |µ| ≤ 1.

(c) If n is very large, is the knowledge of |µ| ≤ 1 important for testing the hypothesis in
part (b)?
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Problem 13. (6346) Answer the following.

(a) Give the definition of a submartingale.

(b) State Doob’s decomposition theorem and prove that the decomposition is unique.

(c) Suppose Xn is a submartingale and its Doob decomposition is Xn = X0 + Yn + An
where Yn is the martingale. Show E(An) <∞.

Problem 14. (6346) Let E1, E2, . . . be a sequence of events and µ a probability measure.

(a) Show that µ (
⋃∞
i=1 Ei) ≤

∑∞
i=1 µ(Ei).

(b) If µ(Ei) = 0 for all i, prove that µ (
⋃∞
i=1Ei) = 0.

(c) If µ(Ei) = 1 for all i, prove that µ (
⋂∞
i=1Ei) = 1.

(d) If Ei ⊂ Ei+1, prove that µ(limi→∞Ei) = limi→∞ µ(Ei).
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