TEST #1
STA 4853/5856
March 6, 2013

Please read the following directions.

DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO

Directions

- This exam is **closed book** and **closed notes**.
- The problems are all multiple choice or fill in the blank.
- Circle a **single** answer for each multiple choice question. Your choice should be made clearly.
- There is no penalty for guessing.
- In one problem, you need to know a fact about the normal distribution: $z_{\alpha/2}=1.96$ for $\alpha=.05$.
- \bullet The exam has 12 pages.
- Each multiple choice question and "fill in the blank" is worth equal credit. There are a total of 32 equally weighted items (since Problem 13 has two blanks to fill in).

Problem 1. You wish to apply the methods of ARIMA modeling to a time series. Suppose you observe that the variability of the series increases systematically with the level. What should you do?

- a) Try a transformation
- **b)** Try differencing at lag 1
- c) Try differencing at the seasonal lag
- d) Use a seasonal model
- e) Try fitting a trend
- f) None of the above

A time series has a stationary mean, but you observe that the variability increases steadily with time. Which of the following is likely to help?

- a) Try a transformation
- **b**) Try differencing at lag 1
- c) Try differencing at the seasonal lag
- d) Use a seasonal model
- e) Try fitting a trend
- **f**) None of the above

Suppose $\{z_t\}$ is an AR(2) process: Problem 3.

$$z_t = C + \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t$$

If you observe a realization z_1, z_2, \ldots, z_n where n is very large (say, a million), and fit a regression model

$$z_{t} = \beta_{0} + \beta_{1} z_{t-1} + \beta_{2} z_{t-2} + \beta_{3} z_{t-3} + \varepsilon_{t}$$

to this data, then the estimate of β_3 will be approximately equal to ...

- a) a_{t-3} b) C c) ϕ_1 d) ϕ_2 f) z_3 g) a_3 h) z_{t-3} i) 0

- $\mathbf{e}) \ \sigma_a$

- **j**) 1

Suppose $\{z_t\}$ is a stationary AR(2) process: Problem 4.

$$z_t = C + \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t$$

Which one of the following pairs of random variables are independent of each other?

- **a**) z_t and z_{t+1}
- **b**) z_t and a_t **c**) z_t and a_{t-1}
 - **d**) z_t and z_{t-2}
- e) z_t and a_{t-3} f) z_t and z_{t-1} g) z_t and a_{t+1} h) z_t and z_{t-3}

In the blank provided, write an equation expressing a purely seasonal ARIMA $(1,0,1)_8$ Problem 5. model.

For problems 6 to 9, fill in the blanks with numerical answers.

These problems all use the fragment of output given below obtained from fitting a regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ for a response variable Y on two covariates X_1 and X_2 .

Root MSE	10.00	R-Square	0.88
Dependent Mean	12.00	Adj R-Sq	0.87
Coeff Var	20.00		

Parameter Estimates							
Parameter Standard							
Variable	DF	Estimate	Error	t-value	$\Pr > t $		
Intercept	1	4.0	0.5	8.0	< .0001		
X1	1	3.0	2.0	1.5	.1369		
X2	1	1.0	2.5	0.4	.6900		

Problem 6.	Find a	95%	confidence	interval	for	β_1

the confidence interval is _____

Problem 7. Assuming the residuals are approximately normally distributed with mean zero, give a value A such that you would expect about 68% of the residuals to be between -A and +A.

A =

Consider a case with values:

Y	X_1	X_2
5.0	2.0	3.0

Problem 8. What is the **predicted value** (also known as fitted value) for this case?

predicted value=____

Problem 9. What is the **residual** for this case?

residual=____

Problem 10. For an AR(p) process,

- a) The theoretical PACF decays to zero, either exponentially or with a damped sine wave pattern or with both of these patterns.
- b) The theoretical ACF decays to zero, either exponentially or with a damped sine wave pattern or with both of these patterns.
- c) The theoretical ACF has a cutoff to zero after lag p.

Problem 11. A stationary AR(3) process can be re-written as a process.

- a) $MA(\infty)$
- **b**) AR(2)
- **c**) AR(1)
- **d**) MA(1)
- **e)** MA(2) **f)** MA(3)

Suppose EX = 3 and EY = 7. What is the value of E(2X + 3Y + 4)? (Give a Problem 12. numerical answer.)

$$E(2X+3Y+4) = \underline{\hspace{1cm}}$$

Problem 13. The ARMA process

$$z_t = \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t - \theta_1 a_{t-1}$$

can be written in backshift form as $\phi(B)z_t = \theta(B)a_t$. Write expressions for $\phi(B)$ and $\theta(B)$ in the blanks provided.

$$\phi(B) =$$

$$\theta(B) =$$

The ARMA process $\phi(B)z_t = \theta(B)a_t$ can also be written as $z_t = \psi(B)a_t$. What Problem 14. is $\psi(B)$?

- **a**) $\phi(B)/\theta(B)$ **b**) $(1-B)^d$ **c**) 1-B **d**) $\theta(B)+\phi(B)$

- e) $\theta(B)/\phi(B)$ f) $\theta(B) \phi(B)$ g) $(1-B)\phi(B)$ h) $(1-B)\theta(B)$

Suppose $\psi(B) = \sum_{k=0}^{\infty} \psi_k B^k$. The expression $\psi(B)a_t$ is equivalent to which of Problem 15. the following:

- a) $a_t \theta_1 a_{t-1} \cdots \theta_a a_{t-a}$
- **b**) $a_t + \theta_1 a_{t-1} + \cdots + \theta_a a_{t-a}$
- $\mathbf{c}) \ \sum_{k=0}^{\infty} \psi_{t-k} a_t$
- $\mathbf{d}) \sum_{k=0}^{\infty} \psi_{t+k} a_t$
- $e) \sum_{k=0}^{\infty} \psi_k a_{t-k}$
- $\mathbf{f}) \sum_{k=0}^{\infty} \psi_k a_{t+k}$

Problem 16. What is the formula for SBC (Schwarz's Bayesian Criterion)? (In the choices below, L is the likelihood, k is the number of parameters, and n is the number of residuals, the length of the series minus any observations lost due to differencing.)

a)
$$-2\ln(L) + 2k$$

b)
$$+2\ln(L) - 2k$$

c)
$$2L - 2k$$

d)
$$-2L - 2k$$

$$e) -2\ln(L) + k\ln(n)$$

f)
$$+2\ln(L) - k\ln(n)$$

Problem 17. The process generated by

$$z_t = 20.0 + 0.5z_{t-1} + a_t - 1.5\theta_1 a_{t-1} + 0.8a_{t-2}$$

is called a _____ process.

$$\mathbf{a}) \ \mathrm{ARIMA}(1,1,2) \quad \mathbf{b}) \ \mathrm{ARIMA}(2,1,1) \quad \mathbf{c}) \ \mathrm{ARMA}(1,2) \quad \mathbf{d}) \ \mathrm{ARMA}(2,1) \quad \mathbf{e}) \ \mathrm{MA}(2) \quad \mathbf{f}) \ \mathrm{AR}(1)$$

Problem 18. An MA(5) process is stationary

- a) if the roots of $\theta(B) = 0$ lie strictly outside the unit circle
- **b**) if $|\theta_1| < 1$
- **c**) if $|\theta_1| > 1$
- **d**) if $|\theta_2| < 1$ and $\theta_2 \pm \theta_1 < 1$
- **e**) if $|\theta_5| < 1$
- f) always
- \mathbf{g}) never

Problem 19. Suppose you have fit four different non-seasonal models to a time series, and all models have acceptable residual diagnostics with all their parameters significantly different from zero. The SBC values for these models are as follows:

	Model	SBC
Α	(0,0,1)	+109
В	(0,0,2)	+108
\mathbf{C}	(2,0,0)	+107
D	(1,0,0)	+106
Е	(1,0,1)	+105

Given only this information, which model is preferred?

- **a**) A
- **b**) B
- **c**) C
- $\mathbf{d})$ D
- **e**) E
- f) not clear

On another time series, suppose you have fit four different seasonal models, and Problem 20. all models have acceptable residual diagnostics with all their parameters significantly different from zero. The AIC values for these models are as follows:

	Model	AIC
A	$(0,0,2)(1,0,0)_{12}$	-100
В	$(1,0,0)(1,0,0)_{12}$	-101
\mathbf{C}	$(0,0,2)(1,0,0)_{12} (1,0,0)(1,0,0)_{12} (1,1,0)(0,0,1)_{12}$	-102
D	$(1,0,0)(1,1,0)_{12}$	-104

Given only this information, which model is preferred?

a) A

b) B

c) C

d) D

e) not clear

Problem 21. The model

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - \Phi_1 B^6)z_t = C + a_t$$

is a special case of a ____ model.

a) AR(9)

b) AR(18)

 $\mathbf{c}) \ \mathrm{AR}(4) \qquad \qquad \mathbf{d}) \ \mathrm{AR}(6)$

 $\mathbf{e}) \operatorname{AR}(3)$

f) MA(9)

g) MA(18)

h) MA(4) **i**) MA(6)

j) MA(3)

For a stationary process $\{z_t\}$, let $\gamma_k = \text{Cov}(z_t, z_{t-k})$ for $k = 0, \pm 1, \pm 2, \ldots$ Which of the following statements is always true?

$$\mathbf{a}) \ \mu_z = \frac{C}{1 - \gamma_1 - \gamma_2 - \dots - \gamma_p}$$

b) $\gamma_k = \theta_1^k$

c) $\gamma_k = 0$ for k > q

 $\mathbf{d}) \ \gamma_k = \frac{\sigma_a^2}{1 - \phi_L^2}$

 $\mathbf{e}) \ \rho_k = \frac{\gamma_k}{\gamma_0}$

For any stationary ARMA(p,q) process, the value of ϕ_{kk} (the partial autocorre-Problem 23. lation at lag k) can be computed as a function of _____

a) $\phi_1, \phi_2, \dots, \phi_p$ b) $\theta_1, \theta_2, \dots, \theta_q$ c) $\rho_1, \rho_2, \dots, \rho_k$ d) ρ_k e) θ_k f) ϕ_k

Problem 24. The Ljung-Box statistic Q(m) is a test of the null hypothesis

a) $H_0: \rho_m = 0$

b) $H_0: \rho_1 = \rho_2 = \dots = \rho_m = 0$

c) $H_0: \rho_1 = 0$

d) $H_0: \rho_m = \rho_{m+1} = \rho_{m+2} = \cdots = 0$

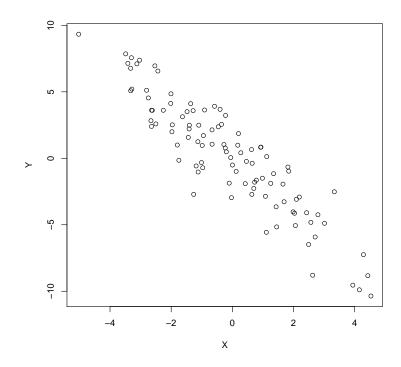
Problem 25. If the value of the Ljung-Box statistic Q(m) is large, the associated p-value will be _____

- a) close to 1
- **b**) close to 0
- c) close to -1
- \mathbf{d}) close to 0.5

Problem 26. The scatterplot below depicts a sample of size 100 from a population with correlation

- **a**) -10
- **b**) -2
- **c**) -1 **d**) -0.9
- e) -0.2

- **f**) 0
- $\mathbf{g}) +0.2$
- h) +0.9
- i) +1
- j) +2
- k) +10



A list of stationary processes is given below. Which of these processes will be Problem 27. the most difficult to distinguish from a non-stationary process based on the sample ACF?

- a) MA(1) with $\theta_1 = -0.5$
- **b**) MA(1) with $\theta_1 = 0.9$
- **c**) MA(1) with $\theta_1 = 0.5$
- **d**) AR(1) with $\phi_1 = -0.5$
- e) AR(1) with $\phi_1 = 0.9$
- **f**) AR(1) with $\phi_1 = 0.5$
- g) random shocks

Problem 28. Suppose a_1, a_2, a_3, \ldots is a random shock sequence. What is the value of

$$E[(\psi_0 a_3 + \psi_1 a_2 + \psi_2 a_1)^2]$$
?

- a) $\psi_0^2 a_3^2 + \psi_1^2 a_2^2 + \psi_2^2 a_1^2$
- **b**) $\sigma_a^2(\psi_0\psi_1 + \psi_1\psi_2)$
- c) $\sigma_a^2(\psi_0^2 + \psi_1^2 + \psi_2^2)$
- **d**) $\sigma_a(\psi_0 + \psi_1 + \psi_2)$
- e) $\sigma_a(\psi_0\psi_1+\psi_1\psi_2)$
- **f**) $\sigma_z(\psi_0 + \psi_1 + \psi_2)$
- **g**) $\sigma_z(\psi_0\psi_1 + \psi_1\psi_2)$

The following three pages (pages 9 to 11) give output (produced by the IDENTIFY statement in PROC ARIMA) for a series z_t and its first and second differences. Using this output, select a reasonable ARIMA(p, d, q) model for this series. Specify your answer in the next two questions.

What value of d should be used? Problem 29.

- **a**) d = 0
- **b**) d = 1 **c**) d = 2 **d**) d = 3

Problem 30. What values of p and q should be used?

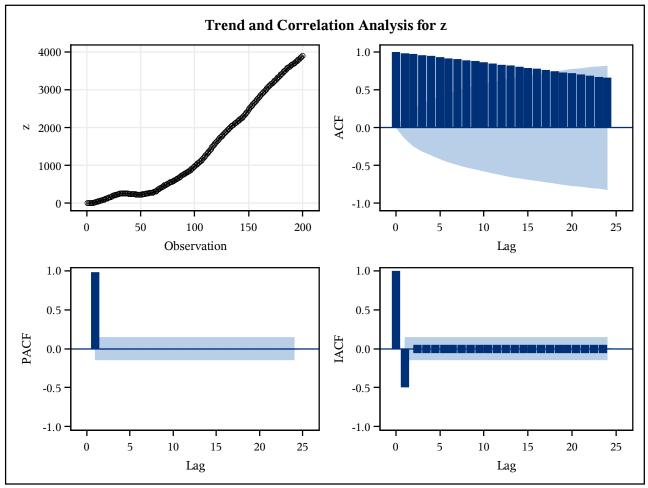
The last page of the exam (page 12) gives the sample ACF and PACF of a monthly time series $\{y_t\}$. The time series plot is not given but appears to be stationary. Select a plausible ARIMA $(p, d, q)(P, D, Q)_{12}$ model for this series.

- a) $(1,0,0)(0,0,1)_{12}$
- **b**) $(1,0,0)(1,0,0)_{12}$
- $(0,0,1)(0,0,1)_{12}$
- **d**) $(0,0,1)(1,0,0)_{12}$
- e) $(1,1,0)(1,0,0)_{12}$
- \mathbf{f}) $(0,0,1)(0,1,1)_{12}$
- \mathbf{g}) $(1,1,0)(0,1,1)_{12}$

The ARIMA Procedure

Name of Variable = z				
Mean of Working Series	1420.536			
Standard Deviation	1251.21			
Number of Observations	200			

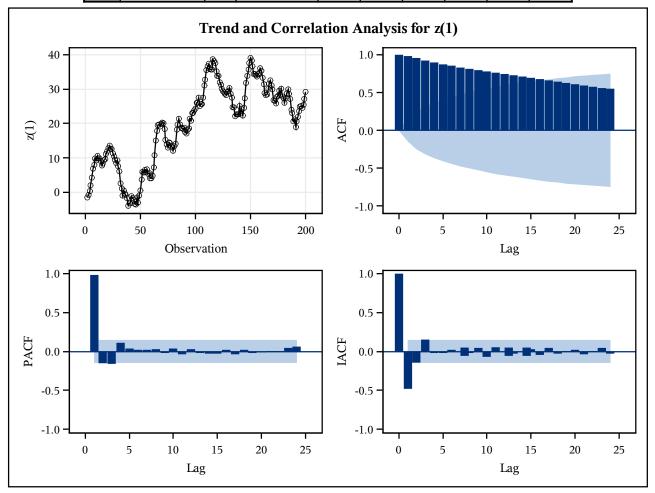
	Autocorrelation Check for White Noise								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	1120.89	6	<.0001	0.987	0.973	0.960	0.946	0.933	0.919
12	2084.34	12	<.0001	0.905	0.891	0.877	0.863	0.849	0.834
18	2891.39	18	<.0001	0.820	0.806	0.791	0.776	0.762	0.747
24	3548.84	24	<.0001	0.732	0.718	0.703	0.688	0.673	0.659



The ARIMA Procedure

Name of Variable = z	
Period(s) of Differencing	1
Mean of Working Series	19.6022
Standard Deviation	11.7548
Number of Observations	199
Observation(s) eliminated by differencing	1

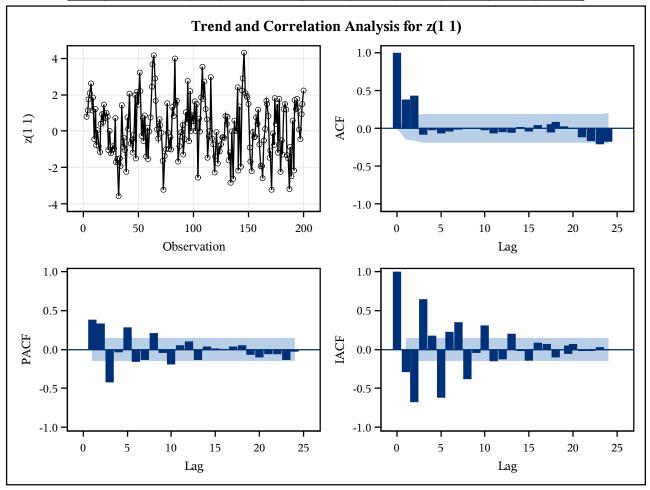
	Autocorrelation Check for White Noise								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	1030.80	6	<.0001	0.981	0.957	0.927	0.900	0.875	0.853
12	1819.30	12	<.0001	0.832	0.814	0.796	0.780	0.763	0.747
18	2435.18	18	<.0001	0.730	0.713	0.695	0.677	0.659	0.642
24	2898.56	24	<.0001	0.624	0.607	0.591	0.575	0.562	0.551



The ARIMA Procedure

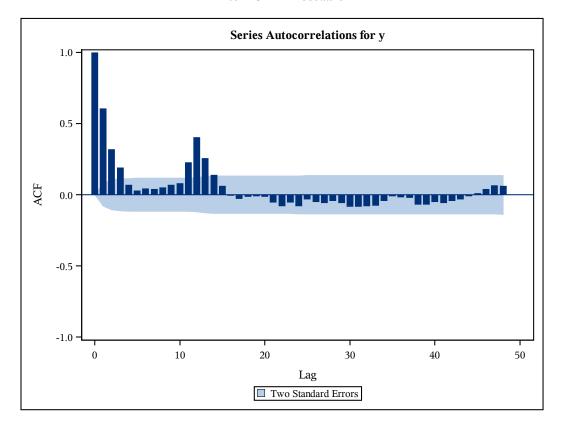
Name of Variable = z						
Period(s) of Differencing	1,1					
Mean of Working Series	0.155902					
Standard Deviation	1.551766					
Number of Observations	198					
Observation(s) eliminated by differencing	2					

Autocorrelation Check for White Noise											
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations							
6	69.21	6	<.0001	0.379	0.431	-0.087	-0.029	-0.064	-0.041		
12	70.80	12	<.0001	-0.017	-0.004	-0.010	-0.021	-0.066	-0.048		
18	73.73	18	<.0001	-0.057	0.015	-0.039	0.040	-0.003	0.083		
24	100.61	24	<.0001	0.025	-0.012	-0.115	-0.166	-0.215	-0.177		



3

The ARIMA Procedure



Identify Monthly Series (Output for Last Problem)

The ARIMA Procedure

