TEST #1
STA 4853
March 3, 2014

Please read the following directions.

DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO

Directions

- This exam is **closed book** and **closed notes**.
- There are 31 questions. Three of them are "fill in the blank." The rest are multiple choice.
- Circle a **single** answer for each multiple choice question. Your choice should be made clearly.
- On the multiple choice questions, always **circle the correct response**. (Sometimes the question has an empty blank or a box, but this is **NOT** where the answer goes.)
- There is no penalty for guessing.
- The exam has 14 pages.
- Each question is worth equal credit.

The following information applies to the next 2 problems:

SAS PROC ARIMA gives a plot of the sample ACF along with a band. For an MA(4) process, which choices make the following statement true:

The spike in the sample ACF at will lie **inside** the band about of the time.

Problem 1. Choices for Box 1: (Circle the correct choice)

- **a**) lag 1
- **b**) lag 2
- **c**) lag 3
- **d**) lag 4
- **e**) lag 5

Problem 2. Choices for Box 2: (Circle the correct choice)

- **a**) 1%
- **b**) 2%
- **c**) 5%
- **d**) 10%
- **e**) 90%
- **f**) 95%
- **g**) 98%
- **h**) 99%

Problem 3. If b, c, and d are constants, and X and Y are independent random variables, then Var(bX + cY + d) =

- a) $b^2 \operatorname{Var}(X) + c^2 \operatorname{Var}(Y) + d$
- **b**) $b^2 \text{Var}(X) + c^2 \text{Var}(Y) + d^2$
- c) $b^2 \operatorname{Var}(X) + c^2 \operatorname{Var}(Y)$
- **d**) $b\operatorname{Var}(X) + c\operatorname{Var}(Y)$
- e) bVar(X) + cVar(Y) + d
- $f) bVar(X^2) + cVar(Y^2) + d$

Problem 4. The theoretical **Inverse ACF** (IACF) of an AR(p) process . . .

- a) is the same as the PACF of an MA(p) process.
- **b**) is the same as the **PACF** of an AR(p) process.
- c) is the same as the ACF of an AR(p) process.
- d) is the same as the IACF of an MA(p) process.
- e) is the same as the ACF of an MA(p) process.
- f) is the same as the IACF of an MA(q) process.

Problem 5. The equation

$$(1 - 0.5B + 0.4B^2 - 0.3B^3 - 0.2B^4)z_t = 2.5 + (1 - 0.4B + 0.8B^2)a_t$$

describes a _____ process. (Circle the correct response.)

- **a**) ARMA(5,3)
- **b**) ARMA(3,5)
- $\mathbf{c})$ ARMA(4,2)
- \mathbf{d}) ARMA(2,4)

- e) MA(6)
- **f**) AR(8)
- **g**) MA(8)
- **h**) AR(6)
- i) mean-centered

Problem 6. For estimating the parameters of an ARMA process, if the shocks a_t are independent and approximately normally distributed with mean zero and constant variance, the preferred method of estimation is ______. (Circle the correct response.)

a) OLS

b) ML

c) CLS

d) ULS

e) AIC

f) SBC

g) the default

Problem 7. A population of N individuals has heights X_1, X_2, \ldots, X_N . Suppose we measure the heights of a random sample of n individuals and compute the sample variance s_x^2 for this sample. The quantity s_x^2 is an estimate of the population variance σ_x^2 . Which of the following is a formula for the population variance σ_x^2 ?

$$\mathbf{a}) \ \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \text{ where } \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

b)
$$\frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_x)^2$$
 where $\mu_x = \frac{1}{N} \sum_{i=1}^{N} X_i$

c)
$$\frac{c(X,X)}{s_x s_x}$$
 where $s_x = \sqrt{s_x^2}$

d)
$$\frac{\operatorname{Cov}(X,X)}{\sigma_x \sigma_x}$$
 where $\sigma_x = \sqrt{\sigma_x^2}$

e)
$$\frac{\sigma_z^2}{1-\phi_1^2}$$
 where σ_a^2 is the random shock variance

f)
$$\sigma_a^2 \sum_{i=0}^{q-k} \psi_i \psi_{i+k}$$
 where σ_a^2 is the random shock variance

$$\mathbf{g}) \ \frac{\sum_{t=1}^{n-k} (X_t - \overline{X})(X_{t+k} - \overline{X})}{\sum_{t=1}^{n} (X_t - \overline{X})^2}$$

Problem 8. Suppose you know the values of a response variable Y and p covariates X_1, X_2, \ldots, X_p for each of the individuals in a random sample of size n. You wish to use SAS PROC REG to fit the regression of Y on X_1, X_2, \ldots, X_p . SAS PROC REG requires that the data be arranged in a SAS data set with ______.

- a) p+1 rows and n columns
- **b**) p rows and n columns
- c) n+1 rows and p columns
- **d**) n-1 rows and p columns
- e) n rows and p+1 columns
- f) p rows and n-1 columns

The sample autocorrelation at lag k is denoted r_k . Which of the following is the formula for $s(r_k)$, the approximate standard error of r_k ?

a)
$$\left(1+2\sum_{j=1}^{k-1}r_j^2\right)^{1/2}n^{+1/2}$$

b)
$$\left(1 + \frac{1}{2} \sum_{j=1}^{k-1} r_j^2\right)^{-1/2} n^{+1/2}$$

c)
$$\left(1 + \frac{1}{2} \sum_{j=1}^{k-1} r_j\right)^{1/2} n^{-1/2}$$

$$\mathbf{d}) \left(1 + \frac{1}{2} \sum_{j=1}^{k-1} r_j \right)^{-1/2} n^{+1/2}$$

e)
$$\left(1 - \frac{1}{2} \sum_{j=1}^{k-1} r_j\right)^{-1/2} n^{+1/2}$$

f)
$$\left(1+2\sum_{j=1}^{k-1}r_j^2\right)^{1/2}n^{-1/2}$$

$$\mathbf{g}) \left(1 - 2\sum_{j=1}^{k-1} r_j^2\right)^{1/2} n^{-1/2}$$

Problem 10. For a time series z_t , the expression B^3z_t means

- **a**) z_{t+3} **b**) z_{3t} **c**) $3z_t$ **d**) $-3z_t$ **e**) z_{t-3} **f**) $z_t + 3$ **g**) $z_t 3$

For a stationary AR(1) process, it is always true that $\rho_3 = \dots$ Problem 11.

- a) $\phi_1 + \rho_2$
- **b**) $\phi_1 \rho_2$ **c**) $\phi_1^3 \rho_2$ **d**) $3\rho_1$ **e**) $\rho_1/3$ **f**) $\phi_1 \rho_2$

- **g**) $\rho_2/3$

For a time series z_t , the expression $B^j B^k z_t$ is equal to Problem 12.

- a) $z_{t-i}z_{t-k}$
- $\mathbf{b}) \ z_{t+i+k}$
- c) $B^{j+k}z_t$
- $\mathbf{d}) \ z_{t+j} z_{t+k}$
- $e) B^j z_t B^k z_t$
- \mathbf{f}) z_{ik}
- \mathbf{g}) z_{t-jk}

Problem 13. of the values of integers.)		following types of production the responses below,	· ·	* . •
$\mathbf{a}) \ \mathrm{MA}(q)$	$\mathbf{b}) \ \mathrm{ARMA}(p,q)$	c) $ARIMA(p, d, q)$	$\mathbf{d})$ random walk	$\mathbf{e}) \operatorname{AR}(p)$
	:C	os to the point two p	11	

The following information applies to the next two problems.

Suppose that $\{z_t\}$ is a stationary ARMA process and $\{a_t\}$ is the sequence of random shocks used to generate $\{z_t\}$.

Problem 14. When is $E(a_s a_t) = 0$?

b) never **c**) if s = t **d**) if $s \neq t$ **e**) only if s > t **f**) only if s < ta) always

Problem 15. When is $E(z_s a_t) = 0$?

> **b**) never **c**) if s = t **d**) if $s \neq t$ **e**) if s > t **f**) if s < ta) always

Problem 16. Suppose you have used SAS to estimate (fit) several models which all have acceptable residual diagnostics. Which of the following is the name of a statistic or test you can use to compare and choose among them?

b) AIC c) Durbin-Watson d) Ljung-Box Q e) t-value f) Cook's D a) OLS

Problem 17. The expression ∇z_t means ...

a)
$$z_{t-1} - z_t$$
 b) $z_{t+1} - z_t$ c) $z_t - z_{t-1}$ d) $z_t - z_{t+1}$ e) $(B-1)z_t$ f) $(1+B)z_t$

If z_t is an ARIMA(0,2,1) process, then $\nabla^2 z_t$ is a _____ process. (Circle the Problem 18. correct response)

- **a**) MA(1) **b)** MA(3) **c)** AR(2)**d**) AR(3) e) random shock
- f) random walk **g**) ARIMA(2,2,1) **h**) ARIMA(0,2,3) **i**) ARMA(2,1) **j**) ARMA(1,2)

Problem 19. Which one of the following types of processes has no transient initial phase; it reaches its stationary behavior immediately. (In the responses below, assume that p, d and q are positive integers.)

$$\mathbf{a}) \ \mathrm{ARMA}(p,q) \qquad \qquad \mathbf{b}) \ \mathrm{AR}(p) \qquad \qquad \mathbf{c}) \ \mathrm{MA}(q)$$

The following information applies to the next three problems.

A process is generated by

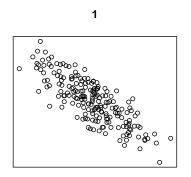
$$z_t = C + \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t - \theta_1 a_{t-1}.$$

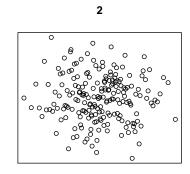
Problem 20. What kind of process is this?

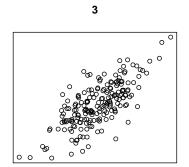
- $\mathbf{a})$ ARMA(1,1)
- **b**) ARMA(2,1) **c**) ARMA(1,2)
- \mathbf{d}) AR(1)

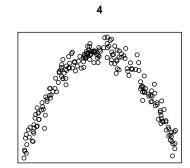
- $\mathbf{e})$ AR(2)
- **f**) AR(3)
- $\mathbf{g}) MA(1)$
- **h**) MA(2)
- i) MA(3)

Problem 21. What are the requirements for this process to be stationary?


- a) $|\phi_2| < 1$, $\phi_2 + \phi_1 < 1$, $\phi_2 \phi_1 < 1$, $|\theta_1| < 1$
- **b**) $|\phi_1| < 1$, $\phi_1 + \phi_2 < 1$, $\phi_1 \phi_2 < 1$, $|\theta_1| < 1$
- c) $|\phi_2| < 1$, $\phi_2 + \phi_1 < 1$, $\phi_2 \phi_1 < 1$
- **d**) $|\phi_1| < 1$, $\phi_1 + \phi_2 < 1$, $\phi_1 \phi_2 < 1$
- e) $|\phi_1| < 1$, $|\theta_1| < 1$
- **f**) $|\phi_2| < 1$, $|\theta_1| < 1$
- **g**) $|\phi_1| < 1$
- **h**) $|\theta_1| < 1$


Problem 22. When the process is stationary, what is its mean μ_z ?


- a) $\frac{C}{1 \phi_1 \phi_2}$
- **b**) $\frac{\sigma_a^2}{1 \phi_1^2 \phi_2^2}$
- c) $\frac{C}{1-\phi_1}$
- **d**) $\frac{\sigma_a^2}{1 \phi_1^2}$
- $e) \frac{C}{1-\theta_1}$
- $\mathbf{f}) \ \frac{\sigma_a^2}{1-\theta_1^2}$
- \mathbf{g}) C


The following information applies to the next two problems.

The values of X and Y were observed for random samples of size n=200 from four different populations (numbered 1, 2, 3, 4), and are displayed in the scatter plots given below.

Problem 23. In two of the populations, X and Y are **un**correlated. Which two are these?

- **a**) 1, 2
- **b**) 1, 3
- **c**) 1, 4
- **d**) 2, 3
- **e**) 2, 4
- **f**) 3, 4

Problem 24. In one of the populations, X and Y are independent. Which is it?

a) 1

- **b**) 2
- **c**) 3

d) 4

For a time series z_t of length n=10,000, we used OLS to estimate the coefficients in four different regression models:

$$\begin{aligned} &z_t \text{ on } z_{t-1} \\ &z_t \text{ on } z_{t-1}, z_{t-2} \\ &z_t \text{ on } z_{t-1}, z_{t-2}, z_{t-3} \\ &z_t \text{ on } z_{t-1}, z_{t-2}, z_{t-3}, z_{t-4} \end{aligned}$$

Excerpts from the regression output are given below. In this output the lagged variables are named zlag1, zlag2, zlag3, zlag4.

Parameter	Fatimates
rarameter	L'or illiareo

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
T+	4	0.00060001	0 00305	0.02	0.0704
Intercept	1	0.00060091	0.02325	0.03	0.9794
zlag1	1	0.49999	0.00866	57.72	<.0001
		Parameter	Estimates		
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.00114	0.02202	0.05	0.9588
zlag1	1	0.66005	0.00947	69.68	<.0001
zlag2	1	-0.32022	0.00947	-33.80	<.0001
21462	-	0.02022	0.0001	33.33	1.0001
		Parameter	Estimates		
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.00090301	0.02137	0.04	0.9663
zlag1	1	0.73775	0.00971	76.01	<.0001
zlag2	1	-0.48000	0.01121	-42.84	<.0001
zlag3	1	0.24193	0.00970	24.93	<.0001
		Parameter	Estimates		
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Variable	DI	Ботшаос	HIIOI	o varac	11 7 0
Intercept	1	0.00087067	0.02096	0.04	0.9669
zlag1	1	0.78472	0.00981	79.96	<.0001
zlag2	1	-0.57316	0.01196	-47.91	<.0001
zlag3	1	0.38507	0.01196	32.20	<.0001
zlag4	1	-0.19413	0.00981	-19.78	<.0001

Use the output above to determine estimates of the first three partial autocorrelations: $\hat{\phi}_{11}$, $\hat{\phi}_{22}$, $\hat{\phi}_{33}$ (i.e. the first three values in the PACF). Write your answers (to **five** decimal places) in the blanks given below.

Problem 25. $\hat{\phi}_{11} =$ ______

Problem 26. $\hat{\phi}_{22} =$ ______

 $\hat{\phi}_{33} =$ ______ Problem 27.

Problem 28. On the **next page** of this exam is a panel of graphs containing regression diagnostics. These were obtained from a regression of a response variable Y on three covariates X_1, X_2, X_3 . Based on these graphs, which one of the following statements is true?

- a) There is 1 case with an unusual response value.
- b) There is 1 case which has a large influence on the estimated parameters and predicted values.
- c) There is 1 case with unusual covariate values
- d) There are 3 cases with unusual response values.
- e) There are 3 cases which have a large influence on the estimated parameters and predicted values.
- f) There are 3 cases with unusual covariate values.

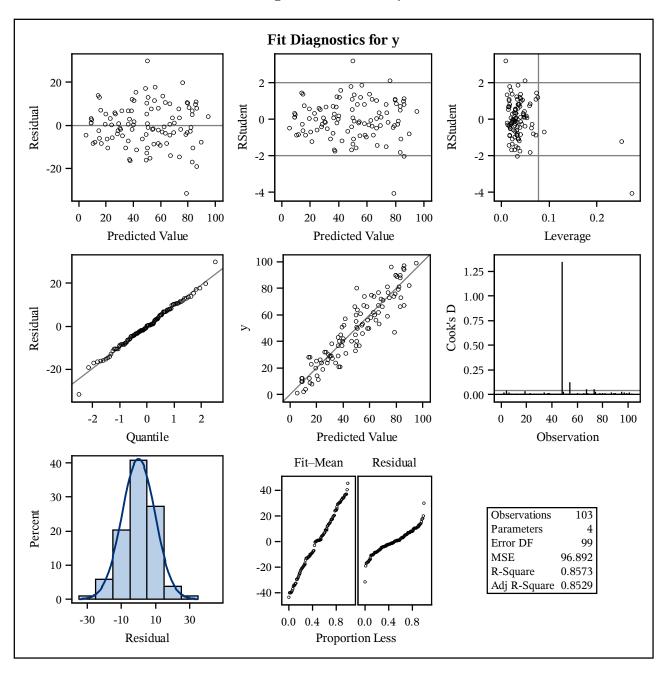
Problem 29. On the page after the next is a single page of output (produced by the IDENTIFY statement in PROC ARIMA) for a series z_t . Using this output, select a reasonable ARMA model for this series from the list below. (Circle the correct response.)

- \mathbf{a}) ARMA(1,1)
- **b**) ARMA(1.0)
- c) ARMA(2.0)

- \mathbf{d}) ARMA(0,1)
- \mathbf{e}) ARMA(0,2)
- f) random shocks

The last three pages of the exam give output (produced by the IDENTIFY statement in PROC ARIMA) for a series z_t and its first and second differences. Using this output, select a reasonable ARIMA(p, d, q) model for this series. Specify your answer in the next two questions.

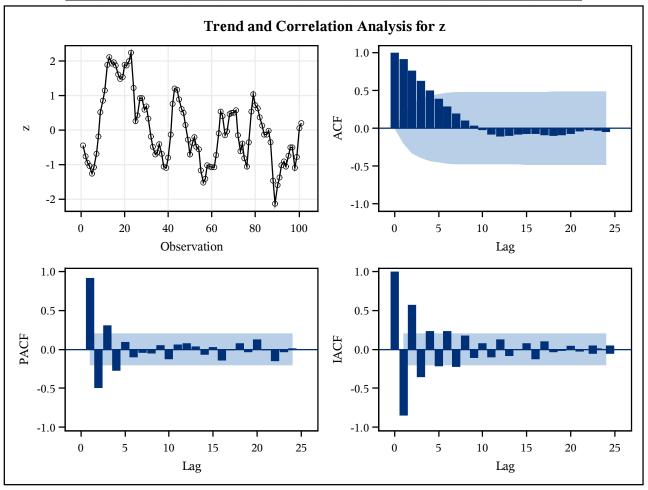
What value of d should be used? Problem 30.


- **a**) d = 0 **b**) d = 1 **c**) d = 2
- **d**) d = 3

Problem 31. What values of p and q should be used?

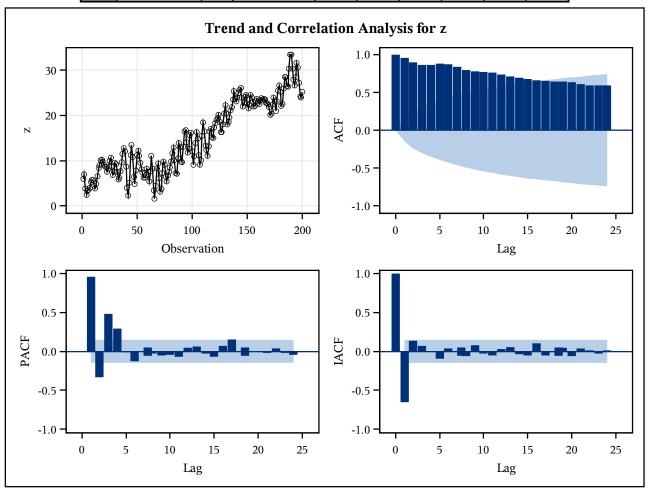
- **a**) p = 1, q = 1 **b**) p = 2, q = 2 **c**) p = 0, q = 2 **d**) p = 0, q = 3

- **e**) p = 1, q = 0 **f**) p = 2, q = 0 **g**) p = 3, q = 0 **h**) p = 0, q = 1


The REG Procedure Model: MODEL1 Dependent Variable: y

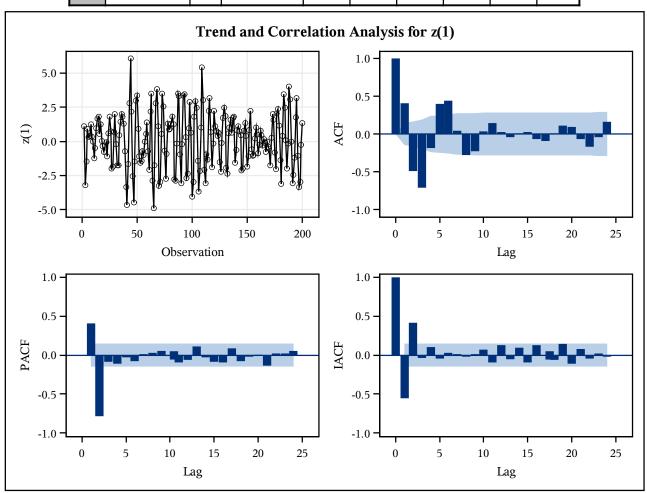
The ARIMA Procedure

Name of Variable = z						
Mean of Working Series	-9.9E-6					
Standard Deviation	0.995022					
Number of Observations	101					


Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	242.44	6	<.0001	0.917	0.760	0.624	0.504	0.391	0.289
12	250.07	12	<.0001	0.194	0.104	0.031	-0.028	-0.080	-0.106
18	256.08	18	<.0001	-0.100	-0.086	-0.078	-0.079	-0.094	-0.104
24	258.68	24	<.0001	-0.096	-0.072	-0.040	-0.021	-0.031	-0.054

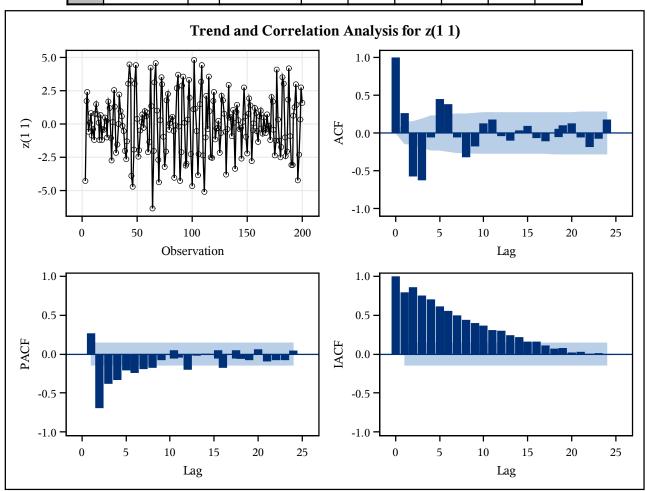
The ARIMA Procedure

Name of Variable = z						
Mean of Working Series	15.01998					
Standard Deviation	7.921258					
Number of Observations	200					


	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	979.62	6	<.0001	0.961	0.897	0.862	0.868	0.883	0.873	
12	1756.06	12	<.0001	0.837	0.800	0.780	0.773	0.759	0.735	
18	2356.08	18	<.0001	0.713	0.698	0.682	0.664	0.651	0.646	
24	2862.99	24	<.0001	0.642	0.632	0.613	0.597	0.591	0.590	

The ARIMA Procedure

Name of Variable = z					
Period(s) of Differencing	1				
Mean of Working Series	0.097254				
Standard Deviation	1.997401				
Number of Observations	199				
Observation(s) eliminated by differencing	1				


	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	263.96	6	<.0001	0.410	-0.487	-0.706	-0.188	0.396	0.443	
12	296.21	12	<.0001	0.045	-0.280	-0.224	0.038	0.143	0.029	
18	299.79	18	<.0001	-0.039	0.013	0.026	-0.071	-0.095	0.006	
24	318.37	24	<.0001	0.109	0.095	-0.069	-0.166	-0.045	0.164	

The ARIMA Procedure

Name of Variable = z					
Period(s) of Differencing	1,1				
Mean of Working Series	0.001253				
Standard Deviation	2.172606				
Number of Observations	198				
Observation(s) eliminated by differencing	2				

Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	232.86	6	<.0001	0.267	-0.573	-0.629	-0.058	0.451	0.378
12	272.04	12	<.0001	-0.056	-0.322	-0.173	0.128	0.181	-0.041
18	279.49	18	<.0001	-0.097	0.037	0.090	-0.064	-0.107	0.003
24	302.93	24	<.0001	0.103	0.124	-0.059	-0.189	-0.075	0.182

