TEST #1 STA 4853 March 3, 2014

Name:

Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO

Directions

- This exam is **closed book** and **closed notes**.
- There are 31 questions. Three of them are "fill in the blank." The rest are multiple choice.
- Circle a **single** answer for each multiple choice question. Your choice should be made clearly.
- On the multiple choice questions, always **circle the correct response**. (Sometimes the question has an empty blank or a box, but this is **NOT** where the answer goes.)
- There is no penalty for guessing.
- The exam has **14** pages.
- Each question is worth equal credit.

The following information applies to the next 2 problems:

SAS PROC ARIMA gives a plot of the sample ACF along with a band. For an MA(4) process, which choices make the following statement true:

• •

f) \star 95%

h) 99%

g) 98%

The spike in the sample ACF at will lie **inside** the band about of the time.

d) 10%

Problem 1. Choices for Box 1: (Circle the correct choice)

c) 5%

\mathbf{a}) lag	1 b) lag 2	\mathbf{c}) lag 3	d) lag 4	\mathbf{e})* lag 5
Problem 2.	Choices for Box 2: (Circle	the correct cho	ice)	

Problem 3. If b, c, and d are constants, and X and Y are independent random variables, then Var(bX + cY + d) =

e) 90%

a) $b^2 \operatorname{Var}(X) + c^2 \operatorname{Var}(Y) + d$

b) 2%

- **b**) $b^2 \operatorname{Var}(X) + c^2 \operatorname{Var}(Y) + d^2$
- \mathbf{c})* b^2 Var $(X) + c^2$ Var(Y)
- **d**) $b\operatorname{Var}(X) + c\operatorname{Var}(Y)$

a) 1%

- e) $b\operatorname{Var}(X) + c\operatorname{Var}(Y) + d$
- f) $b\operatorname{Var}(X^2) + c\operatorname{Var}(Y^2) + d$

Problem 4. The theoretical **Inverse ACF** (IACF) of an AR(p) process ...

a) is the same as the **PACF** of an MA(p) process.

- **b**) is the same as the **PACF** of an AR(p) process.
- c) is the same as the ACF of an AR(p) process.
- **d**) is the same as the **IACF** of an MA(p) process.
- \mathbf{e}) \star is the same as the **ACF** of an **MA**(p) process.
 - **f**) is the same as the **IACF** of an $\mathbf{MA}(q)$ process.

Problem 5. The equation

$$(1 - 0.5B + 0.4B^2 - 0.3B^3 - 0.2B^4)z_t = 2.5 + (1 - 0.4B + 0.8B^2)a_t$$

describes a _____ process. (Circle the correct response.)

a) ARMA(5,3)b) ARMA(3,5)c) \star ARMA(4,2)d) ARMA(2,4)e) MA(6)f) AR(8)g) MA(8)h) AR(6)i) mean-centered

Problem 6. For estimating the parameters of an ARMA process, if the shocks a_t are independent and approximately normally distributed with mean zero and constant variance, the preferred method of estimation is ______. (Circle the correct response.)

a) OLS b) \star ML c) CLS d) ULS e) AIC f) SBC g) the default

Problem 7. A population of N individuals has heights X_1, X_2, \ldots, X_N . Suppose we measure the heights of a random sample of n individuals and compute the sample variance s_x^2 for this sample. The quantity s_x^2 is an estimate of the population variance σ_x^2 . Which of the following is a formula for the population variance σ_x^2 ?

$$\mathbf{a}) \quad \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \text{ where } \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\mathbf{b}) \star \quad \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_x)^2 \text{ where } \mu_x = \frac{1}{N} \sum_{i=1}^{N} X_i$$

$$\mathbf{c}) \quad \frac{c(X, X)}{s_x s_x} \text{ where } s_x = \sqrt{s_x^2}$$

$$\mathbf{d}) \quad \frac{\text{Cov}(X, X)}{\sigma_x \sigma_x} \text{ where } \sigma_x = \sqrt{\sigma_x^2}$$

$$\mathbf{e}) \quad \frac{\sigma_z^2}{1 - \phi_1^2} \text{ where } \sigma_a^2 \text{ is the random shock variance}$$

$$\mathbf{f}) \quad \sigma_a^2 \sum_{i=0}^{q-k} \psi_i \psi_{i+k} \text{ where } \sigma_a^2 \text{ is the random shock variance}$$

$$\mathbf{g}) \quad \frac{\sum_{t=1}^{n-k} (X_t - \overline{X})(X_{t+k} - \overline{X})}{\sum_{t=1}^{n} (X_t - \overline{X})^2}$$

Problem 8. Suppose you know the values of a response variable Y and p covariates X_1, X_2, \ldots, X_p for each of the individuals in a random sample of size n. You wish to use SAS PROC REG to fit the regression of Y on X_1, X_2, \ldots, X_p . SAS PROC REG requires that the data be arranged in a SAS data set with _____.

- **a**) p + 1 rows and n columns
- **b**) p rows and n columns
- c) n+1 rows and p columns
- **d**) n-1 rows and p columns
- **e**) \star *n* rows and *p* + 1 columns
 - **f**) p rows and n-1 columns

Problem 9. The sample autocorrelation at lag k is denoted r_k . Which of the following is the formula for $s(r_k)$, the approximate standard error of r_k ?

a)
$$\left(1+2\sum_{j=1}^{k-1}r_j^2\right)^{1/2}n^{+1/2}$$

b) $\left(1+\frac{1}{2}\sum_{j=1}^{k-1}r_j^2\right)^{-1/2}n^{+1/2}$
c) $\left(1+\frac{1}{2}\sum_{j=1}^{k-1}r_j\right)^{1/2}n^{-1/2}$
d) $\left(1+\frac{1}{2}\sum_{j=1}^{k-1}r_j\right)^{-1/2}n^{+1/2}$
e) $\left(1-\frac{1}{2}\sum_{j=1}^{k-1}r_j^2\right)^{-1/2}n^{+1/2}$
f) $\star \left(1+2\sum_{j=1}^{k-1}r_j^2\right)^{1/2}n^{-1/2}$
g) $\left(1-2\sum_{j=1}^{k-1}r_j^2\right)^{1/2}n^{-1/2}$

Problem 10. For a time series z_t , the expression $B^3 z_t$ means

a) z_{t+3} **b**) z_{3t} **c**) $3z_t$ **d**) $-3z_t$ **e**) $\star z_{t-3}$ **f**) $z_t + 3$ **g**) $z_t - 3$

Problem 11. For a stationary AR(1) process, it is always true that $\rho_3 = \dots$

a)
$$\phi_1 + \rho_2$$
 b) $\phi_1 - \rho_2$ **c**) $\phi_1^3 \rho_2$ **d**) $3\rho_1$ **e**) $\rho_1/3$ **f**) $\star \phi_1 \rho_2$ **g**) $\rho_2/3$

Problem 12. For a time series z_t , the expression $B^j B^k z_t$ is equal to

- **a**) $z_{t-j}z_{t-k}$
- **b**) z_{t+j+k}
- $\mathbf{c}) \star \ B^{j+k} z_t$
- **d**) $z_{t+j}z_{t+k}$
- $\mathbf{e}) \ B^j z_t B^k z_t$
- **f**) z_{jk}
- $\mathbf{g}) \ z_{t-jk}$

Problem 13. Which one of the following types of processes is always stationary, regardless of the values of its parameters? (In the responses below, assume that p, d and q are positive integers.)

 \mathbf{a} \star MA(q) \mathbf{b}) ARMA(p,q) \mathbf{c}) ARIMA(p,d,q) \mathbf{d}) random walk \mathbf{e}) AR(p)

The following information applies to the next two problems.

Suppose that $\{z_t\}$ is a stationary ARMA process and $\{a_t\}$ is the sequence of random shocks used to generate $\{z_t\}$.

Problem 14. When is $E(a_s a_t) = 0$?

a) always **b**) never **c**) if s = t **d**) \star if $s \neq t$ **e**) only if s > t **f**) only if s < t

Problem 15. When is $E(z_s a_t) = 0$? a) always b) never c) if s = t d) if $s \neq t$ e) if s > t f)* if s < t

Problem 16. Suppose you have used SAS to estimate (fit) several models which all have acceptable residual diagnostics. Which of the following is the name of a statistic or test you can use to compare and choose among them?

a) OLS b) \star AIC c) Durbin-Watson d) Ljung-Box Q e) t-value f) Cook's D

Problem 17. The expression ∇z_t means ...

a) $z_{t-1} - z_t$ **b**) $z_{t+1} - z_t$ **c**) $\star z_t - z_{t-1}$ **d**) $z_t - z_{t+1}$ **e**) $(B-1)z_t$ **f**) $(1+B)z_t$

Problem 18. If z_t is an ARIMA(0,2,1) process, then $\nabla^2 z_t$ is a _____ process. (Circle the correct response)

 \mathbf{a})* MA(1) \mathbf{b}) MA(3) \mathbf{c}) AR(2) \mathbf{d}) AR(3) \mathbf{e}) random shock \mathbf{f}) random walk \mathbf{g}) ARIMA(2,2,1) \mathbf{h}) ARIMA(0,2,3) \mathbf{i}) ARMA(2,1) \mathbf{j}) ARMA(1,2)

Problem 19. Which one of the following types of processes has no transient initial phase; it reaches its stationary behavior immediately. (In the responses below, assume that p, d and q are positive integers.)

a) ARMA(p,q) b) AR(p) c) \star MA(q)

The following information applies to the next three problems.

A process is generated by

$$z_t = C + \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t - \theta_1 a_{t-1}.$$

Problem 20. What kind of process is this?

a) ARMA(1,1)b) \star ARMA(2,1)c) ARMA(1,2)d) AR(1)e) AR(2)f) AR(3)g) MA(1)h) MA(2)i) MA(3)

Problem 21. What are the requirements for this process to be stationary?

$$\begin{array}{l} \mathbf{a}) \ |\phi_2| < 1 \,, \ \phi_2 + \phi_1 < 1 \,, \ \phi_2 - \phi_1 < 1 \,, \ |\theta_1| < 1 \\ \mathbf{b}) \ |\phi_1| < 1 \,, \ \phi_1 + \phi_2 < 1 \,, \ \phi_1 - \phi_2 < 1 \,, \ |\theta_1| < 1 \\ \mathbf{c}) \star \ |\phi_2| < 1 \,, \ \phi_2 + \phi_1 < 1 \,, \ \phi_2 - \phi_1 < 1 \\ \mathbf{d}) \ |\phi_1| < 1 \,, \ \phi_1 + \phi_2 < 1 \,, \ \phi_1 - \phi_2 < 1 \\ \mathbf{e}) \ |\phi_1| < 1 \,, \ |\theta_1| < 1 \\ \mathbf{f}) \ |\phi_2| < 1 \,, \ |\theta_1| < 1 \\ \mathbf{g}) \ |\phi_1| < 1 \\ \mathbf{h}) \ |\theta_1| < 1 \end{array}$$

Problem 22. When the process is stationary, what is its mean μ_z ?

$$\mathbf{a}) \star \frac{C}{1 - \phi_1 - \phi_2} \\ \mathbf{b}) \frac{\sigma_a^2}{1 - \phi_1^2 - \phi_2^2} \\ \mathbf{c}) \frac{C}{1 - \phi_1} \\ \mathbf{d}) \frac{\sigma_a^2}{1 - \phi_1^2} \\ \mathbf{e}) \frac{C}{1 - \theta_1} \\ \mathbf{f}) \frac{\sigma_a^2}{1 - \theta_1^2} \\ \mathbf{g}) C$$

The following information applies to the next two problems.

The values of X and Y were observed for random samples of size n = 200 from four different populations (numbered 1, 2, 3, 4), and are displayed in the scatter plots given below.

Problem 23. In two of the populations, X and Y are uncorrelated. Which two are these?
a) 1, 2
b) 1, 3
c) 1, 4
d) 2, 3
e)★ 2, 4
f) 3, 4

Problem 24. In one of the populations, X and Y are independent. Which is it?

a) 1 b)★ 2 c) 3 d) 4

For a time series z_t of length n = 10,000, we used OLS to estimate the coefficients in four different regression models:

$$\begin{array}{l} z_t \text{ on } z_{t-1} \\ z_t \text{ on } z_{t-1}, z_{t-2} \\ z_t \text{ on } z_{t-1}, z_{t-2}, z_{t-3} \\ z_t \text{ on } z_{t-1}, z_{t-2}, z_{t-3}, z_{t-4} \end{array}$$

Excerpts from the regression output are given below. In this output the lagged variables are named zlag1, zlag2, zlag3, zlag4.

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.00060091	0.02325	0.03	0.9794
zlag1	1	0.49999	0.00866	57.72	<.0001
		Parameter	Estimates		
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.00114	0.02202	0.05	0.9588
zlag1	1	0.66005	0.00947	69.68	<.0001
zlag2	1	-0.32022	0.00947	-33.80	<.0001
		Parameter	Estimates		
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.00090301	0.02137	0.04	0.9663
zlag1	- 1	0.73775	0.00971	76.01	<.0001
zlag2	1	-0.48000	0.01121	-42.84	<.0001
zlag3	1	0.24193	0.00970	24.93	<.0001
		Parameter	Estimates		
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.00087067	0.02096	0.04	0.9669
zlag1	1	0.78472	0.00981	79.96	<.0001
zlag2	1	-0.57316	0.01196	-47.91	<.0001
zlag3	1	0.38507	0.01196	32.20	<.0001
zlag4	1	-0.19413	0.00981	-19.78	<.0001

Use the output above to determine estimates of the first three partial autocorrelations: $\hat{\phi}_{11}$, $\hat{\phi}_{22}$, $\hat{\phi}_{33}$ (i.e. the first three values in the PACF). Write your answers (to **five** decimal places) in the blanks given below.

Problem 25. $\hat{\phi}_{11} = \underline{0.49999}$ Problem 26. $\hat{\phi}_{22} = \underline{-0.32022}$ Problem 27. $\hat{\phi}_{33} = \underline{0.24193}$

Problem 28. On the **next page** of this exam is a panel of graphs containing regression diagnostics. These were obtained from a regression of a response variable Y on three covariates X_1, X_2, X_3 . Based on these graphs, which one of the following statements is true?

- **a**) There is 1 case with an unusual response value.
- **b**) \star There is 1 case which has a large influence on the estimated parameters and predicted values.
 - c) There is 1 case with unusual covariate values
- d) There are 3 cases with unusual response values.
- e) There are 3 cases which have a large influence on the estimated parameters and predicted values.
- f) There are 3 cases with unusual covariate values.

Problem 29. On the **page after the next** is a single page of output (produced by the IDENTIFY statement in PROC ARIMA) for a series z_t . Using this output, select a reasonable ARMA model for this series from the list below. (Circle the correct response.)

\mathbf{a}) \star ARMA(1,1)	b) $ARMA(1,0)$	\mathbf{c}) ARMA(2,0)
$\mathbf{d}) \ \mathrm{ARMA}(0,1)$	e) $ARMA(0,2)$	\mathbf{f}) random shocks

The **last three** pages of the exam give output (produced by the IDENTIFY statement in PROC ARIMA) for a series z_t and its first and second differences. Using this output, select a reasonable ARIMA(p, d, q) model for this series. Specify your answer in the next two questions.

Problem 30. What value of *d* should be used?

a) d = 0 **b**)* d = 1 **c**) d = 2 **d**) d = 3

Problem 31. What values of p and q should be used?

- **a**) p = 1, q = 1 **b**) p = 2, q = 2 **c**) p = 0, q = 2 **d**) p = 0, q = 3
- **e**) p = 1, q = 0 **f**)* p = 2, q = 0 **g**) p = 3, q = 0 **h**) p = 0, q = 1