TEST #1 STA 4853 February 29, 2016

Name:

Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO

Directions

- This exam is **closed book** and **closed notes**.
- There are 32 questions.
- Circle a **single** answer for each multiple choice question. Your choice should be made clearly.
- On the multiple choice questions, always **circle the correct response**. (Sometimes the question has an empty blank or a box, but this is **NOT** where the answer goes.)
- There is no penalty for guessing.
- The exam has **15** pages.
- Each question is worth equal credit.

Problem 1. If you fit a regression model, and then plot the **residuals versus the fitted** (predicted) values, what do you expect to see **in this plot** (at least roughly) if the regression assumptions are valid?

- a) the residuals will follow (roughly) a straight line with positive slope
- **b**) the residuals will decay to zero gradually without a cutoff
- c) the residuals will display an approximate cutoff to zero after lag p
- d) The residuals form a band which remains centered at zero with a constant vertical width
- e) All (or nearly all) of the *p*-values of the residuals will fall in the band, most of them being well inside the band

Problem 2. If you fit a regression model with n observations (cases) and p covariates, a value of the leverage H is considered "large" if it _____

- **a**) is more than two times the standard error
- **b**) exceeds 2(p+1)/n
- c) falls outside the range from -3 to 3
- d) falls outside the range from -2 to 2
- e) is close to 1 or larger

Problem 3. Suppose you are given a time series z_1, z_2, \ldots, z_n which has been generated from an ARMA(2,1) process. If you use SAS PROC ARIMA to fit an ARMA(2,1) model to this series, SAS will compute **residuals** which ...

- **a**) are the errors in the parameter estimates
- **b**) give the deviations of the random shocks from their true values
- c) minimize the sum of squared parameter estimates
- d) are estimates of the errors in the parameter estimates
- e) minimize the AIC
- **f**) are estimates of the random shocks a_t
- **g**) give the distance between z_t and the regression line

Problem 4. An ARMA(p,q) process is stationary if and only if ______ satisfy the conditions required for a ______ process to be stationary. Circle the response below with the choices (separated by a semi-colon) which correctly fill in the two blanks.

- **a**) ϕ_1, \ldots, ϕ_p ; AR(p)
- **b**) $\theta_1, \ldots, \theta_q$; ARMA(q,p)
- c) ϕ_1, \ldots, ϕ_p ; MA(q)
- **d**) $\theta_1, \ldots, \theta_q$; MA(q)

Problem 5. For a stationary time series z_1, \ldots, z_n , suppose the scatterplot of z_t versus z_{t-4} looks like the plot given below. Then you know _____

a)
$$\rho_4 > 0$$
 b) $\rho_4 < 0$ **c**) $\mu_z > 0$ **d**) $\mu_z < 0$ **e**) $\phi_4 < 0$ **f**) $\phi_4 > 0$
g) $\phi_{44} < 0$ **h**) $\phi_{44} > 0$ **i**) $\sigma_z^2 < 0$ **j**) $C > 0$ **k**) $C < 0$

Problem 6. A mean-centered ARMA(2,4) process may be written in backshift notation as

$$\phi(B)\tilde{z}_t = \theta(B)a_t$$

where $\phi(B)$ is a backshift polynomial given by _____

 $\begin{array}{l} {\bf a}) \ \ \phi_1 B + \phi_2 B^2 \\ {\bf b}) \ \ \phi_1 B + \phi_2 B^2 \\ {\bf c}) \ \ 1 - \theta_1 B - \theta_2 B^2 - \theta_3 B^3 - \theta_4 B^4 \\ {\bf d}) \ \ \theta_1 B + \theta_2 B^2 + \theta_3 B^3 + \theta_4 B^4 \\ {\bf e}) \ \ 1 - \phi_1 B - \phi_2 B^2 \\ {\bf f}) \ \ 1 + \phi_1 B + \phi_2 B^2 \end{array}$

Problem 7. In the plots of the sample ACF and PACF, SAS displays a band marked at two standard errors $(\pm 2s(r_k) \text{ and } \pm 2s(\hat{\phi}_{kk}))$. For an MA(3) process, we expect nearly all the spikes in the ______ to lie within the band.

- a) ACF at lags $4, 5, 6, 7, \ldots$
- **b**) ACF at lags $3, 4, 5, 6, 7, \ldots$
- c) PACF at lags $4, 5, 6, 7, \ldots$
- d) PACF at lags $3, 4, 5, 6, 7, \ldots$

The questions below involve the following situation:

Suppose we write an MA(5) process in the form

$$z_t = C + \psi_0 a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \psi_3 a_{t-3} + \psi_4 a_{t-4} + \psi_5 a_{t-5}$$

where $\psi_0 = 1$ and $\psi_i = -\theta_i$ for i = 1, 2, 3, 4, 5. Consider the following list of responses:

 $\mathbf{j})$

 \mathbf{k}

l)

 \mathbf{m})

Problem 8.	Which	of these r	esponses g	ives the va	lue of μ_z ?			
$\mathbf{a})$	$\mathbf{b})$	$\mathbf{c})$	$\mathbf{d})$	$\mathbf{e})$	$\mathbf{f})$	$\mathbf{g})$	\mathbf{h}	i)
$\mathbf{j})$	$\mathbf{k})$	l)	$\mathbf{m})$	$\mathbf{n})$	o)	$\mathbf{p})$	$\mathbf{q})$	$\mathbf{r})$
Problem 9.	Which	of these re	esponses g	ives the va	lue of σ_z^2 ?			
$\mathbf{a})$	$\mathbf{b})$	$\mathbf{c})$	$\mathbf{d})$	$\mathbf{e})$	$\mathbf{f})$	$\mathbf{g})$	\mathbf{h})	i)
$\mathbf{j})$	$\mathbf{k})$	l)	$\mathbf{m})$	$\mathbf{n})$	o)	$\mathbf{p})$	$\mathbf{q})$	$\mathbf{r})$
Problem 10.	Whic	h of these	responses	gives the v	value of γ_2	$= \operatorname{Cov}(z_t,$	$z_{t-2})?$	
$\mathbf{a})$	$\mathbf{b})$	$\mathbf{c})$	$\mathbf{d})$	$\mathbf{e})$	$\mathbf{f})$	$\mathbf{g})$	$\mathbf{h})$	i)

 \mathbf{n})

o)

 $\mathbf{p})$

 $\mathbf{q})$

 $\mathbf{r})$

Problem 11. Which of these responses gives the value of $\gamma_6 = \text{Cov}(z_t, z_{t-6})$?

$\mathbf{a})$	$\mathbf{b})$	$\mathbf{c})$	$\mathbf{d})$	$\mathbf{e})$	$\mathbf{f})$	$\mathbf{g})$	$\mathbf{h})$	$\mathbf{i})$
$\mathbf{j})$	$\mathbf{k})$	1)	$\mathbf{m})$	$\mathbf{n})$	o)	$\mathbf{p})$	$\mathbf{q})$	$\mathbf{r})$

Problem 12. After fitting a regression model, if the magnitude of the *t*-value t_i for the estimated regression coefficient $\hat{\beta}_i$ is **small**, then we ______ the null hypothesis $H_0: \beta_i = 0$ and conclude that the variable X_i is ______ in our model. Circle the response below with the choices (separated by a semi-colon) which correctly fill in the two blanks.

- a) reject; not needed
- **b**) reject; needed
- c) do **not** reject; **not** needed
- d) do **not** reject; needed

Problem 13. If a stationary ARMA(p,q) process with both p > 0 and q > 0 is written in $MA(\infty)$ form

$$\tilde{z}_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \psi_3 a_{t-3} + \dots ,$$

then the ψ -weights ψ_k will _____ as $k \to \infty$.

- **a**) cutoff to zero after lag p
- **b**) cutoff to zero after lag q
- c) eventually decay to zero
- d) not converge to zero
- e) increase in magnitude
- f) will have no values inside the unit circle
- g) will have a constant variance

Problem 14. As you add more covariates to a regression model, the value of *R*-squared always

- a) increases
- **b**) decreases
- c) eventually decays to zero
- d) becomes more accurate
- e) becomes less accurate
- f) becomes statistically significant
- **g**) becomes statistically insignificant

Problem 15. The backshift expression $(4 + 2B^2 + 3B^5)Z_t$ is equal to _____

a) $4Z_t + 2Z_{t+1}^2 + 3Z_{t+2}^5$ b) $4Z_t^4 + 2Z_{t-2}^2 + 3Z_{t-5}^3$ c) $4Z_t^4 + 2Z_{t+2}^2 + 3Z_{t+5}^3$ d) $4Z_t + 2Z_{t-2} + 3Z_{t-5}$ e) $4Z_t + 2Z_{t+2} + 3Z_{t+5}^5$ f) $4Z_t + 2Z_t^2 + 3Z_t^5$ g) $4Z_t + 2Z_{t-1}^2 + 3Z_{t-2}^5$

Problem 16. The backshift expression $B(C + \phi_1 z_{t-1} + a_t - \theta_1 a_{t-1})$ is equal to ______

 $\begin{array}{ll} \mathbf{a}) & C_{t+1} + \phi_2 z_t + a_{t+1} - \theta_2 a_t \\ \mathbf{b}) & C + \phi_2 z_{t-2} + a_{t-1} - \theta_2 a_{t-2} \\ \mathbf{c}) & 0 + \phi_1 z_{t-2} + a_{t-1} - \theta_1 a_{t-2} \\ \mathbf{d}) & 0 + \phi_0 z_{t-2} + a_{t-1} - \theta_0 a_{t-2} \\ \mathbf{e}) & 0 + \phi_2 z_{t+1} + a_{t+1} - \theta_2 a_{t+2} \\ \mathbf{f}) & C + \phi_1 z_{t-2} + a_{t-1} - \theta_1 a_{t-2} \\ \mathbf{g}) & C_{t-1} + \phi_0 z_{t-2} + a_{t-1} - \theta_0 a_{t-2} \end{array}$

Problem 17. Which of the following is a correct expression for the **population correlation** between X and Y?

$$\mathbf{a}) \ \frac{\operatorname{Cov}(X,Y)^2}{\sigma_x^2 \sigma_y^2} \\ \mathbf{b}) \ \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y}) \\ \mathbf{c}) \ \frac{1}{N} \sum_{i=1}^N (X_i - \mu_x)^2 (Y_i - \mu_y)^2 \\ \mathbf{d}) \ E(X - \overline{X})(Y - \overline{Y}) \\ \mathbf{e}) \ \frac{E(X - \mu_x)(Y - \mu_y)}{\sigma_x \sigma_y} \\ \mathbf{f}) \ \frac{c(X,Y)}{s_x s_y}$$

Problem 18. If a series z_1, z_2, \ldots, z_n is non-stationary in some way, examination of the sample ACF of the **entire** series may be helpful in detecting that the series _____

- a) does not have a constant variance
- **b**) does **not** have a constant mean
- c) does **not** have a constant ACF
- d) is weakly stationary but **not** strictly stationary
- e) has a large mean
- **f**) has a large variance

Problem 19. An ARMA process is constructed from a sequence of random shocks a_t which are ______ random variables.

a) autocorrelatedb) skewedc) independent $N(0, \sigma_a^2)$ d) serially correlatede) non-stationaryf) increasingg) positiveh) negatively correlated

Problem 20. In SAS PROC ARIMA, the letters CLS refer to a _____.

- a) test for serial correlation
- **b**) test for normality of the residuals
- c) method of forecasting
- d) test for stationarity based on least squares
- e) method of parameter estimation
- \mathbf{f}) test for correlation based on least squares

Problem 21. Suppose we use SAS to fit two different ARMA models (call them #1 and #2) to a stationary time series $z_1, z_2, \ldots, z_{999}, z_{1000}$. Both models fit the data about equally well (that is, their likelihood values are very close), but Model #2 is much more complicated than Model #1 (that is, #2 has more parameters than #1). If you compare the AIC and SBC values for these models, which **one** of the following statements would you expect to be true?

Note: In the responses, the subscript denotes the model number; AIC is Akaike's Information Criterion; SBC is Schwarz's Bayesian Criterion (also called BIC); and \approx means "approximately equal".

- **a**) $AIC_1 < AIC_2$ and $SBC_1 < SBC_2$
- **b**) $AIC_1 < AIC_2$ and $SBC_1 > SBC_2$
- c) $AIC_1 > AIC_2$ and $SBC_1 < SBC_2$
- **d**) $AIC_1 > AIC_2$ and $SBC_1 > SBC_2$
- e) $AIC_1 \approx AIC_2$ and $SBC_1 \approx SBC_2$
- **f**) $AIC_1 \approx SBC_1$ and $AIC_2 \approx SBC_2$
- **g**) $AIC_1 > SBC_1$ and $AIC_2 > SBC_2$

Suppose $\{Y_t\}$ and $\{X_t\}$ are time series, and you fit a regression model $Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$.

Problem 22. If the regression residuals exhibit strong serial correlation, then the time series plot of the residuals (the residuals plotted in time order) might resemble one of the following plots. Which one?

Problem 23. Continuing in the same situation as the previous question: For β_1 , the SAS output will display values for all of the following: an estimate, a standard error, a *t*-value, and a *p*-value. If the residuals exhibit strong serial correlation, one of these values is probably still reasonable, but the others could be way off. Which of the values is probably reasonable?

a) estimate b) standard error c) t-value d) p-value

Problem 24. Which one of the following is a true relationship between the autocorrelations (ρ_k) and autocovariances (γ_k) ?

a)
$$\gamma_k = \frac{\rho_k}{\rho_0}$$
b) $\rho_k = \frac{\gamma_k}{\gamma_0}$ c) $\rho_k = \gamma_1^k$ d) $\gamma_k = \rho_1^k$ e) $\rho_k = \gamma_1 \rho_{k-1}$ f) $\gamma_k = \rho_1 \gamma_{k-1}$

Problem 25. The autocorrelations for a stationary AR(1) process obey the recursion

a)
$$\rho_k = \phi_1 \rho_{k+1} + a_k$$

b) $\rho_k = C + \phi_1 \rho_{k-1} + a_k$
c) $\rho_k = \phi_1 \rho_{k-1}$
d) $\tilde{\rho}_k = \phi_1 \tilde{\rho}_{k-1} + a_k$
e) $\rho_k = \phi_1 (\rho_1 + \dots + \rho_{k-1})$
f) $\rho_k = \frac{C}{1 - \rho_1 - \dots - \rho_{k-1}}$
g) $\rho_k = \frac{\sigma_a^2}{1 - \rho_1^2 - \dots - \rho_{k-1}^2}$

Suppose that, based on a random sample of **400** observations, you fit a regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ for a response variable Y on two covariates X_1 and X_2 . Use the information in the table below to answer the next two questions.

Parameter Estimates								
		Parameter	Standard					
Variable	DF	Estimate	Error	<i>t</i> -value	$\Pr > t $			
Intercept	1	4.0	0.5		< .0001			
X1	1	40.0	10.0		< .0001			
X2	1	24.0	16.0		.1336			

Problem 26. The *t*-value entries in the table have been left blank. What is the *t*-value for the X1 row of the table?

a) 2.0 **b**) 0.5 **c**) 1.5 **d**) 4.0 **e**) 16.0 **f**) .25 **g**) .0625

Problem 27. Assuming all the regression assumptions are valid, compute an approximate 95% confidence interval for β_1 .

a) $(8.04, 11.96)$	b) $(-68.4, 88.4)$	\mathbf{c}) (39.02, 40.98)	$\mathbf{d}) \ (6.08, \ 13.92)$
e) (38.04, 41.96)	f) $(20.4, 59.6)$	\mathbf{g}) (39.951, 40.049)	h) $(9.804, 10.196)$

In the remaining problems, you are asked to use the SAS output in the following five pages to classify five time series (z1, z2, z3, z4, z5) into the following categories:

- RS (random shocks)
- AR(1)
- AR(2)
- AR(3)
- MA(1)
- MA(2)
- MA(3)
- NCV (Series with non-constant variance)
- NCM (Series with non-constant mean)

No category is used more than once. All except the last two categories are stationary series.

Problem	28.	What	is	z1?						
$\mathbf{a})$	RS f)	MA(2)	b)	AR(1)	$\mathbf{g})$	c) MA(3)	AR(2)	h)	d) AR(3) NCV	e) MA(1)i) NCM
Problem	29.	What	is is	z2?						
a)	RS f)	MA(2)	b)	AR(1)	$\mathbf{g})$	c) MA(3)	AR(2)	$\mathbf{h})$	d) AR(3) NCV	e) MA(1)i) NCM
Problem	30.	What	is	z3?						
$\mathbf{a})$	RS f)	MA(2)	b)	AR(1)	$\mathbf{g})$	c) MA(3)	AR(2)	$\mathbf{h})$	d) AR(3) NCV	e) MA(1)i) NCM
Problem	31.	What	is is	z4?						
$\mathbf{a})$	RS f)	MA(2)	b)	AR(1)	$\mathbf{g})$	c) MA(3)	AR(2)	$\mathbf{h})$	d) AR(3) NCV	e) MA(1)i) NCM
Problem	32.	What	is	z5?						
$\mathbf{a})$	RS f)	MA(2)	b)	AR(1)	$\mathbf{g})$	c) MA(3)	AR(2)	$\mathbf{h})$	d) AR(3) NCV	e) MA(1)i) NCM

Name of Variable = z1							
Mean of Working Series 5.60425							
Standard Deviation	2.154408						
Number of Observations	200						

	Autocorrelation Check for White Noise								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	98.59	6	<.0001	0.526	0.429	0.021	0.090	0.077	0.094
12	101.28	12	<.0001	0.067	-0.002	0.002	0.004	0.019	0.088
18	103.43	18	<.0001	-0.007	0.030	-0.086	-0.003	-0.024	-0.028
24	145.91	24	<.0001	-0.129	-0.245	-0.238	-0.201	-0.099	-0.070

Name of Variable = z2							
Mean of Working Series 6.							
Standard Deviation	1.646718						
Number of Observations	200						

	Autocorrelation Check for White Noise								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	158.76	6	<.0001	0.724	0.428	0.234	0.114	0.033	0.060
12	164.29	12	<.0001	0.076	0.039	0.030	-0.012	-0.072	-0.112
18	180.77	18	<.0001	-0.112	-0.152	-0.140	-0.108	-0.067	-0.064
24	270.30	24	<.0001	-0.134	-0.229	-0.316	-0.331	-0.283	-0.187

Name of Variable = z3						
Mean of Working Series	5.56885					
Standard Deviation	1.78934					
Number of Observations	200					

	Autocorrelation Check for White Noise								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	193.22	6	<.0001	0.525	0.483	0.462	0.332	0.212	0.259
12	241.64	12	<.0001	0.153	0.171	0.211	0.176	0.197	0.246
18	276.43	18	<.0001	0.221	0.185	0.123	0.144	0.156	0.127
24	279.51	24	<.0001	0.063	0.073	0.014	0.019	0.056	0.025

Name of Variable = z4							
Mean of Working Series 6.06635							
Standard Deviation	1.809634						
Number of Observations	200						

Autocorrelation Check for White Noise										
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	860.21	6	<.0001	0.964	0.917	0.864	0.806	0.747	0.684	
12	1175.94	12	<.0001	0.623	0.564	0.509	0.460	0.416	0.378	
18	1295.24	18	<.0001	0.346	0.321	0.301	0.287	0.277	0.270	
24	1395.45	24	<.0001	0.270	0.272	0.273	0.274	0.273	0.268	

Name of Variable = z5				
Mean of Working Series	5.00945			
Standard Deviation	1.816801			
Number of Observations	200			

Autocorrelation Check for White Noise										
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	9.96	6	0.1266	-0.090	-0.027	0.097	0.087	-0.140	0.054	
12	13.90	12	0.3074	0.010	-0.048	0.026	0.076	0.098	-0.008	
18	18.21	18	0.4422	-0.072	0.040	0.042	0.073	-0.071	0.027	
24	19.62	24	0.7180	-0.017	0.039	-0.005	0.048	-0.044	0.013	

