TEST #2 STA 4853 April 28, 2022

Name:_____

Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO

Directions

- This exam is **closed book** and **closed notes**.
- There are **35** multiple choice questions.
- Circle the **single best** answer for each multiple choice question. Your choice should be made clearly.
- Always circle the correct response. (Sometimes the question has an empty blank or a box, but this is **NOT** where the answer goes.)
- There is no penalty for guessing.
- The exam has **14** pages.
- Each question is worth equal credit.

Problem 1. The ACF of the process

$$(1 - 0.7B)z_t = (1 - 0.7B)a_t$$

is exactly the same as the ACF of which of the following processes?

$$\begin{array}{lll} \mathbf{a}) & (1+0.7B-0.7B^2)z_t = a_t & \mathbf{b}) & z_t = (1-0.7B+0.7B^2)a_t & \mathbf{c}) & (1+0.7B)z_t = a_t \\ \mathbf{d}) & (1+0.7B)z_t = (1-0.7B)a_t & \mathbf{e}) & (1-0.7B)z_t = a_t & \mathbf{f}) \star & z_t = a_t \\ \mathbf{g}) & (1-0.7B)z_t = (1+0.7B)a_t & \mathbf{h}) & z_t = (1-0.7B)a_t & \mathbf{i}) & (1-0.7B^2)z_t = a_t \\ \mathbf{j}) & z_t = (1+0.7B-0.7B^2)a_t & \mathbf{k}) & (1-0.7B+0.7B^2)z_t = a_t & \mathbf{l}) & z_t = (1+0.7B)a_t \\ \end{array}$$

The next two problems involve the following situation:

Suppose $\{z_t\}$ is a stationary ARMA(3,1) process and let $w_t = \nabla z_t = (1-B)z_t$.

Problem 2. $\{w_t\}$ is a	process.		
\mathbf{a}) \star ARMA(3,2)	b) $ARMA(1,2)$	c) $ARMA(4,2)$	$\mathbf{d}) \text{ ARMA}(4,1)$
$\mathbf{e}) \ \mathrm{AR}(2)$	$\mathbf{f}) \ \mathrm{MA}(2)$	$\mathbf{g}) \ \mathrm{AR}(4)$	$\mathbf{h}) \ \mathrm{MA}(4)$
i) ARIMA(3,1,1)	\mathbf{j}) ARIMA $(3,1,2)$	$\mathbf{k}) \text{ ARIMA}(2,1,1)$	l) ARIMA(1,1,2)

Problem 3. $\{w_t\}$ is _____.

\mathbf{a}) invertible	\mathbf{b}) seasonal	$\mathbf{c})\star$ non-invertible	\mathbf{d}) non-stationary
e) under-differenced	f) cross-corr	elated \mathbf{g}) determine	inistic h) periodic

Problem 4. Which of the following is an example of a regression model with ARMA(2,1) errors?

$$\begin{aligned} \mathbf{a}) \star \ y_t &= \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \frac{1 - \theta_1 B}{1 - \phi_1 B - \phi_2 B^2} a_t \\ \mathbf{b}) \ y_t &= \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \frac{1 - \phi_1 B - \phi_2 B^2}{1 - \theta_1 B} a_t \\ \mathbf{c}) \ y_t &= \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \frac{1 - \theta_1 B - \theta_2 B^2}{1 - \phi_1 B} a_t \\ \mathbf{d}) \ y_t &= \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \frac{1 - \theta_1 B - \theta_2 B^2}{1 - \phi_1 B} a_t \\ \mathbf{e}) \ y_t &= \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \frac{1 - \theta_1 B - \theta_2 B^2}{1 - \phi_1 B} a_t \\ \mathbf{f}) \ y_t &= \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \frac{1 - \theta_1 B - \phi_2 B^2}{1 - \phi_1 B} a_t \end{aligned}$$

Problem 5. For a stationary ARMA(p, q) process, the ψ -weights ψ_k always satisfy

Problem 6. If one observes an AR(1) process $\{z_t\}$ up to time *n* and uses this information to compute a forecast of z_{n+k} , the forecast is equal to $\hat{z}_{n+k} =$ _____.

a) $\phi_1 \hat{a}_{n-1} + \phi_1^2 \hat{a}_{n-2} + \dots + \phi_1^k \hat{a}_{n-k}$ b) $C + \phi_1 \hat{a}_{n-1} + \phi_1^2 \hat{a}_{n-2} + \dots + \phi_1^k \hat{a}_{n-k}$ c)* $C + \phi_1 C + \phi_1^2 C + \dots + \phi_1^{k-1} C + \phi_1^k z_n$ d) $C + \phi_1 z_{n-1} + \phi_1^2 z_{n-2} + \dots + \phi_1^k z_{n-k}$ e) $\hat{a}_n + \phi_1 \hat{a}_{n-1} + \phi_1^2 \hat{a}_{n-2} + \dots + \phi_1^k \hat{a}_{n-k}$ f) $C + \phi_1 C + \phi_1^2 C + \dots + \phi_1^k C + \phi_1^{k+1} z_n$ g) $C + \phi_1 C + \phi_1^2 C + \dots + \phi_1^{k-1} C$ h) $C + \phi_1 C + \phi_1^2 C + \dots + \phi_1^k C$ i) $z_n + \phi_1 z_{n-1} + \phi_1^2 z_{n-2} + \dots + \phi_1^k z_{n-k}$ j) $\phi_1 z_{n-1} + \phi_1^2 z_{n-2} + \dots + \phi_1^k z_{n-k}$

Problem 7. Suppose you have a time series z_1, z_2, \ldots, z_n , and you use SAS PROC ARIMA to fit an ARIMA(2,1,1) model to this data and specify the NOCONSTANT option in the ESTIMATE statement. The long range forecasts $(\hat{z}_{n+k} \text{ as } k \to \infty)$ from this model will ______.

- **a**) converge to zero
- **b**) converge to the estimated mean $\hat{\mu}_z$ of the process
- c) decay with sinusoidal oscillation
- d) converge to a straight line a with a nonzero slope
- e) converge to a repetitive pattern with period S equal to the seasonality of the series
- f) converge to a repetitive pattern added to a straight line with nonzero slope
- (\mathbf{g}) \star converge to a value which depends mainly on the last few observed values of the series

Problem 8. Suppose $\{z_t\}$ is an ARIMA(0,2,3) process. Then $\nabla^2 z_t$ is an _____ process.

\mathbf{a}) \star MA(3)	$\mathbf{b}) \ \mathrm{MA}(1)$	c) $ARIMA(2,2,3)$	\mathbf{d}) under-differenced
\mathbf{e}) MA(5)	$\mathbf{f}) \text{ARIMA}(2,1,3)$	\mathbf{g}) ARMA(2,3)	\mathbf{h}) over-differenced

Problem 9. Suppose you have a time series z_1, z_2, \ldots, z_n , and you use SAS PROC ARIMA to fit an ARIMA $(2, 0, 0)(0, 1, 1)_{12}$ model to this data and you retain the constant in your model (that is, you do **NOT** use the NOCONSTANT option). The long range forecasts $(\hat{z}_{n+k} \text{ as } k \to \infty)$ from this model will ______.

- a) converge to a value which depends mainly on the last few observed values of the series
- **b**) converge to zero
- c) converge to the estimated mean $\hat{m}u_z$ of the process
- \mathbf{d}) converge to a straight line a with a nonzero slope
- e) converge to a repetitive pattern with period 12
- \mathbf{f} converge to a repetitive pattern with period 12 added to a straight line with nonzero slope
- g) decay with sinusoidal oscillation

Problem 10. Based on some available financial information \mathcal{I} , you are asked to forecast the random quantity

X = the closing value of the Dow Jones Index one week from today.

This value is currently in the neighborhood of 34,000 points and can vary by as much as a few hundred points in a day. Suppose you will be paid \$10,000,000 if your forecast is within one point of the correct value. If the conditional distribution of X given \mathcal{I} is skewed, then the best forecast for X is the ______ of the conditional distribution.

\mathbf{a}) variance	\mathbf{b}) standard deviation	\mathbf{c}) interquartile range
\mathbf{d}) \star mode	e) mean	\mathbf{f}) median

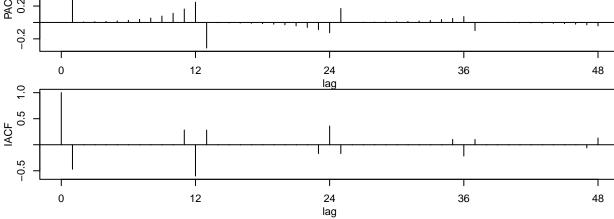
Problem 11. If the variability of a series z_t increases systematically with the level of the series so that the variability is proportional to the level of the series, then it is frequently useful to

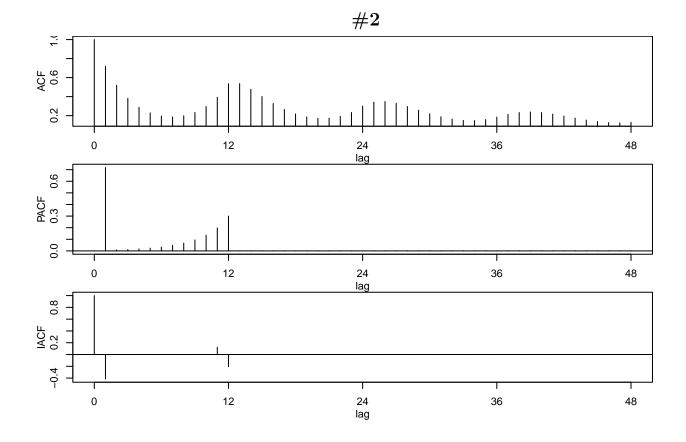
- **a**) use a square-root transform and model the series $y_t = \sqrt{z_t}$ instead of z_t
- **b**)* use a log transform and model the series $y_t = \log(z_t)$ instead of z_t
 - **c**) difference the series z_t at lag 1
- **d**) difference the series z_t at the seasonal lag
- e) model the trend using linear and quadratic functions
- f) model the trend using sine and cosine functions
- **g**) mean center the series and use \tilde{z}_t instead of z_t

The next three questions ask you to identify three different stationary processes (with seasonality S = 12) from plots of their **theoretical** ACF, PACF, and IACF which are given up to lag 48. These plots are given immediately after the next three questions.

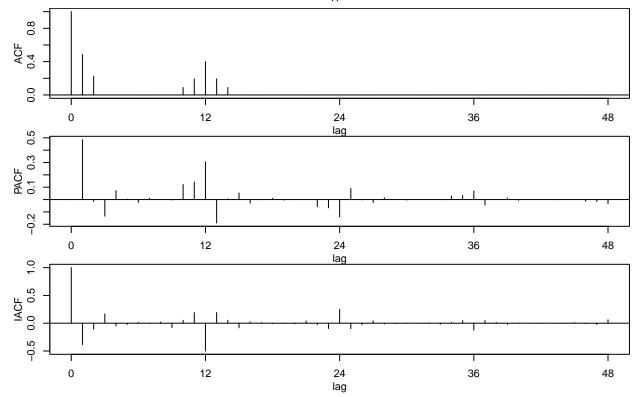
Note: In these plots, the PACF does NOT have a spike at lag zero, whereas the ACF and IACF do have a spike at lag zero.

Problem 12. Process #1 is a **a**) \star ARMA $(1, 0)(0, 1)_{12}$ **b**) ARMA $(1,0)(1,0)_{12}$ c) ARMA $(0, 1)(0, 1)_{12}$ **d**) ARMA $(0, 1)(1, 0)_{12}$ e) ARMA $(2,0)(0,1)_{12}$ f) ARMA $(2,0)(1,0)_{12}$ **g**) ARMA $(0, 2)(0, 1)_{12}$ **h**) ARMA $(0, 2)(1, 0)_{12}$ i) ARMA $(1, 1)(0, 1)_{12}$ j) Non-Multiplicative Nonseasonal/Seasonal AR model k) Non-Multiplicative Nonseasonal/Seasonal MA model Problem 13. Process #2 is a . **b**) ARMA $(1,0)(1,0)_{12}$ a) ARMA $(1,0)(0,1)_{12}$ c) ARMA $(0, 1)(0, 1)_{12}$ **d**) ARMA $(0, 1)(1, 0)_{12}$ e) ARMA $(2,0)(0,1)_{12}$ f) ARMA $(2,0)(1,0)_{12}$ **h**) ARMA $(0, 2)(1, 0)_{12}$ **g**) ARMA $(0, 2)(0, 1)_{12}$ i) ARMA $(1, 1)(0, 1)_{12}$ j)★ Non-Multiplicative Nonseasonal/Seasonal AR model **k**) Non-Multiplicative Nonseasonal/Seasonal MA model Process #3 is a _____. Problem 14. **a)** ARMA $(1,0)(0,1)_{12}$ **b**) ARMA $(1,0)(1,0)_{12}$ c) ARMA $(0, 1)(0, 1)_{12}$ **d**) ARMA $(0, 1)(1, 0)_{12}$ e) ARMA $(2,0)(0,1)_{12}$ f) ARMA $(2,0)(1,0)_{12}$ **g**) \star ARMA $(0, 2)(0, 1)_{12}$ **h**) ARMA $(0, 2)(1, 0)_{12}$ i) ARMA $(1, 1)(0, 1)_{12}$ #10.8 ACF 0.4 0.0 Т 0 12 24 36 48 lag 0.6 PACF 0.2





#3



Problem 15. for the stationary process

$$z_t = C + \Phi_1 z_{t-12} + \Phi_2 z_{t-24} + a_t - \Theta_1 a_{t-12} - \Theta_2 a_{t-24} \,,$$

what is the value of ρ_2 , the autocorrelation at lag 2?

a)
$$\Phi_1^2$$
b) Φ_2 c) Θ_1^2 d) Θ_2 e) Φ_2^2 f) \star 0g) 1h) -1i) $1/2$ j) $-1/2$

Problem 16. Suppose you have time series $\{Y_t\}$ and $\{X_t\}$ and are trying to find a good transfer function model

$$Y_t = C + v(B)X_t + N_t$$

where $v(B) = v_0 + v_1 B + v_2 B^2 + \dots + v_h B^h$. One way to identify a reasonable initial choice of the ARMA(p,q) model for the noise process N_t is to _____.

- **a**) fit an ARMA(p,q) model for Y_t with relatively large values of p and q, and study the ACF/PACF of the residuals
- **b**) \star fit a multiple regression model of Y_t on X_t , X_{t-1} , ..., X_{t-h} with a relatively large h, and study the ACF/PACF of the residuals
 - c) fit an ARMA(p,q) model for X_t with relatively large values of p and q, and study the ACF/PACF of the residuals
 - d) fit a simple regression model of Y_t on X_t , and study the ACF/PACF of the residuals
 - e) use the MINIC option of the IDENTIFY statement in PROC ARIMA to determine the values of p and q which approximately minimize the BIC
 - **f**) study the cross-correlations between the series Y_t and X_t
 - **g**) study the autocovariances between the series Y_t and X_t

Problem 17. Integrating a stationary ARMA process typically produces a ______ ARIMA process.

\mathbf{a}) \star non-stationary	\mathbf{b}) invertible	\mathbf{c}) over-differenced
d) stationary	\mathbf{e}) non-invertible	\mathbf{f}) seasonal

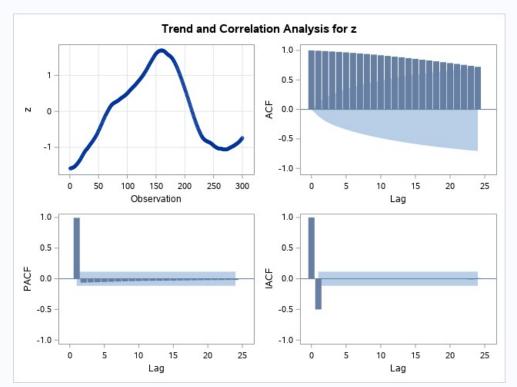
Problem 18. The following two pages give some SAS output produced by the IDENTIFY statement of PROC ARIMA for a time series z_t . Which of the models listed below is the best choice for this series?

$\mathbf{a}) \text{ ARIMA}(2,1,0)$	b) ARIMA $(3,1,0)$	c) ARIMA $(3,1,2)$	$\mathbf{d}) \text{ ARIMA}(2,1,3)$
e) $ARIMA(2,2,0)$	f) $ARIMA(0,2,3)$	\mathbf{g}) \star ARIMA(1,2,1)	h) ARIMA $(5,2,6)$
i) ARIMA(1,0,0)	j) ARIMA(1,0,2)	\mathbf{k}) ARIMA(2,0,1)	l) ARIMA(0,0,1)

The ARIMA Procedure

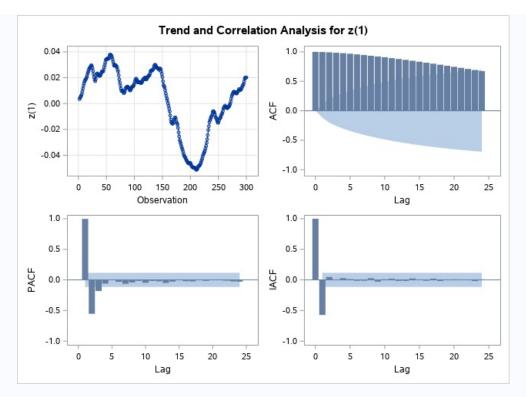
Name of Variable = z						
Mean of Working Series -2E-6						
Standard Deviation	0.998331					
Number of Observations	300					

	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	1751.16	6	<.0001	0.995	0.989	0.982	0.974	0.966	0.958	
12	3344.98	12	<.0001	0.949	0.939	0.929	0.918	0.907	0.895	
18	4725.68	18	<.0001	0.883	0.870	0.857	0.844	0.830	0.815	
24	5860.70	24	<.0001	0.801	0.786	0.770	0.755	0.739	0.723	



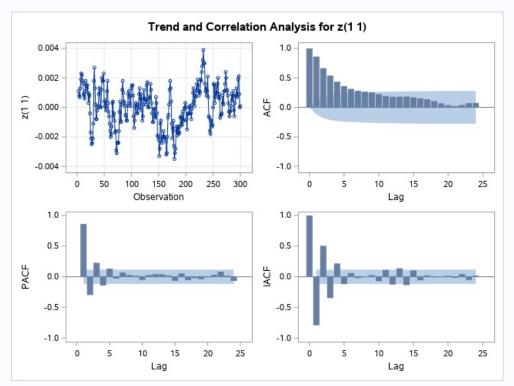
Name of Variable = z					
Period(s) of Differencing	1				
Mean of Working Series	0.002829				
Standard Deviation	0.024694				
Number of Observations	299				
Observation(s) eliminated by differencing	1				

	Autocorrelation Check for White Noise										
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations							
6	1754.95	6	<.0001	0.998	0.993	0.986	0.978	0.968	0.958		
12	3314.18	12	<.0001	0.946	0.934	0.922	0.908	0.894	0.880		
18	4608.54	18	<.0001	0.865	0.849	0.833	0.816	0.799	0.782		
24	5617.10	24	<.0001	0.764	0.747	0.729	0.711	0.692	0.674		



Name of Variable = z	
Period(s) of Differencing	1,1
Mean of Working Series	0.000056
Standard Deviation	0.00135
Number of Observations	298
Observation(s) eliminated by differencing	2

Autocorrelation Check for White Noise										
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	571.79	6	<.0001	0.861	0.664	0.539	0.436	0.361	0.313	
12	675.23	12	<.0001	0.282	0.266	0.254	0.225	0.193	0.180	
18	722.68	18	<.0001	0.181	0.186	0.171	0.154	0.137	0.107	
24	729.02	24	<.0001	0.070	0.037	0.023	0.041	0.073	0.076	



Problem 19. An ARMA(3,1) model can be written in backshift form as _____.

 $\begin{array}{l} \mathbf{a}) & (1-\theta_{1}B)z_{t}=C+(1-\phi_{1}B-\phi_{2}B^{2}-\phi_{3}B^{3})a_{t} \\ \mathbf{b}) & (1-\theta_{1}B^{2})z_{t}=C+(1-\phi_{1}B^{2}-\phi_{2}B^{3}-\phi_{3}B^{4})a_{t} \\ \mathbf{c}) & (1-\phi_{1}B)z_{t}=C+(1-\theta_{1}B-\theta_{2}B^{2}-\theta_{3}B^{3})a_{t} \\ \mathbf{d}) & (B-\theta_{1}B^{2})z_{t}=C+(B-\phi_{1}B^{2}-\phi_{2}B^{3}-\phi_{3}B^{4})a_{t} \\ \mathbf{e}) & (B-\phi_{1}B^{2})z_{t}=C+(B-\theta_{1}B^{2}-\theta_{2}B^{3}-\theta_{3}B^{4})a_{t} \\ \mathbf{f}) & (\phi_{1}B+\phi_{2}B^{2}+\phi_{3}B^{3})z_{t}=C+\theta_{1}Ba_{t} \\ \mathbf{g}) & \theta_{1}Bz_{t}=C+(\phi_{1}B+\phi_{2}B^{2}+\phi_{3}B^{3})a_{t} \\ \mathbf{h}) & \phi_{1}Bz_{t}=C+(\theta_{1}B+\theta_{2}B^{2}+\theta_{3}B^{3})a_{t} \\ \mathbf{i}) & (1-\phi_{1}B^{2}-\phi_{2}B^{3}-\phi_{3}B^{4})z_{t}=C+(1-\theta_{1}B^{2})a_{t} \\ \mathbf{j})\star & (1-\phi_{1}B-\phi_{2}B^{2}-\phi_{3}B^{3})z_{t}=C+(1-\theta_{1}B)a_{t} \end{array}$

Problem 20. Suppose you are trying to find a reasonable ARIMA(p, d, q) model for a series z_t . If you examine the series z_t , the series $(1-B)z_t$, and the series $(1-B)^2z_t$, and all three of the series appear to be stationary, then you should ______.

\mathbf{a}) try a transformation	b) try $d = 3$	\mathbf{c})* choose $d = 0$
$\mathbf{d}) \ \mathrm{try} \ \mathrm{a} \ \mathrm{seasonal} \ \mathrm{model}$	e) choose $d = 1$	f) choose $d = 2$
\mathbf{g}) try a "(trend) + (stationary	ARMA process)" model	

Problem 21. If you use SAS PROC ARIMA to fit a model to a time series $\{z_t\}$ which is specified by the code given below:

IDENTIFY VAR=Z(12) NLAG=36 ; ESTIMATE P=(12) Q=1 METHOD=ML ;

and you use this model to forecast into the far future, then the confidence interval widths

- a) will be larger for high forecasts and smaller for low forecasts
- **b**) converge to a repetitive pattern which repeats with a period of 12
- \mathbf{c}) converge to a repetitive pattern added to a straight line with nonzero slope
- d) converge to a limiting value
- \mathbf{e}) \star continue to increase and will reach arbitrarily large values
 - f) converge to a straight line with a nonzero slope

Problem 22. A time series (such as temperature data) which has an approximately repeating seasonal pattern is _____.

\mathbf{a}) invertible	\mathbf{b}) non-invertible	c) white noise	\mathbf{d}) over-differenced
\mathbf{e}) \star non-stationary	\mathbf{f}) stationary	\mathbf{g}) auto-regressive	\mathbf{h}) moving average

Problem 23. The sample IACF (Inverse ACF) of a non-invertible process will usually _____

- a) have a cutoff to zero
- **b**) exhibit sinusoidal decay
- c) go outside the typical bounds of -1 and 1
- d) increase slowly to infinity
- \mathbf{e}) \star decay to zero very slowly
 - f) decay to zero **not** too slowly

Problem 24. If all the roots of $\theta(B) = 0$ are strictly outside the unit circle in the complex plane, then

a)
$$\pi(B) = \frac{\theta(B)}{\phi(B)} = 1 - \sum_{k=1}^{\infty} \pi_k B^k$$
 and $\pi_k \to 0$ as $k \to \infty$
b)* $\pi(B) = \frac{\phi(B)}{\theta(B)} = 1 - \sum_{k=1}^{\infty} \pi_k B^k$ and $\pi_k \to 0$ as $k \to \infty$

c)
$$\psi(B) = \frac{\phi(B)}{\theta(B)} = 1 + \sum_{k=1}^{\infty} \psi_k B^k$$
 and $\psi_k \to 0$ as $k \to \infty$

d)
$$\psi(B) = \frac{\theta(B)}{\phi(B)} = 1 + \sum_{k=1}^{\infty} \psi_k B^k$$
 and $\psi_k \to 0$ as $k \to \infty$

Problem 25. Suppose z_t is a **quarterly** series with a **non**stationary mean. If the first differences ∇z_t appear stationary but have substantial autocorrelations at lags 1, 4, and 8, which of the following options might you wish to pursue? (More than one may be reasonable.)

- 1. Try a model without any differencing.
- 2. Try differencing at lag 1 a second time.
- 3. Try replacing differencing at lag 1 by differencing at lag 4.
- 4. Try a seasonal model which includes a seasonal term at lag 4.
- 5. Try an MA(1) model on ∇z_t .
- 6. Try an AR(1) model on ∇z_t .

Select the pair of options which seem most reasonable and circle your choice **below**. (Do NOT circle items on the list above!)

a) 1 or 2	b) 1 or 5	c) 1 or 6	d) 2 or 6
\mathbf{e}) \star 3 or 4	f) 3 or 5	\mathbf{g}) 2 or 5	\mathbf{h}) 5 or 6

Problem 26. If z_t is an ARIMA $(2,3,1)(1,2,3)_9$ process, then $w_t =$ _____ will be an ARMA $(2,1)(1,3)_9$ process.

a) $(1 - B^2)(1 - B^3)^9 z_t$	b) $(1 - 3B - 2B^9)z_t$	c) $(1 - 3B - 2B^2)^9 z_t$
d) $(1 - B^3 - 9B^2)z_t$	e) $(1 - B^3 - 2B^9)z_t$	f) $(1 - B - B^9)^3 z_t$
g) $(1-B)^2(1-B^9)^3 z_t$	h)* $(1-B)^3(1-B^9)^2 z_t$	i) $(1 - B^3)(1 - B^2)^9 z_t$

Note: The series z_t in the next problem has nothing to do with the series z_t in the previous problem.

Problem 27. If we difference a series z_t at lag 1 and then at lag s, we get the series $w_t = \nabla_s \nabla z_t$. This may also be written as _____.

a)
$$w_t = (z_t - z_{t-s})(z_t - z_{t-1})$$

b) $w_t = (z_t - z_{t+s})(z_t - z_{t+1})$
c) $w_t = z_t - z_{t+1} - z_{t+s} + z_{t+s+1}$
d) $\star w_t = z_t - z_{t-1} - z_{t-s} + z_{t-s-1}$
e) $w_t = (z_{t+s} - z_t)(z_{t+1} - z_t)$
f) $w_t = (z_{t+s} - z_{t-s})(z_{t+1} - z_{t-1})$
g) $w_t = z_t - z_{t+1} + z_{t+s} - z_{t+s+1}$
h) $w_t = -z_t + z_{t-1} + z_{t-s} - z_{t-s+1}$

Problem 28. To fit an ARIMA $(3, 0, 4)(1, 0, 2)_{10}$ model using PROC ARIMA, you would use the code ______ in the ESTIMATE statement.

a)
$$p=(1,2,3)(10,20) q=(1,2,3,4)(10)$$
b) $p=(3)(1,10) q=(4)(2,10)$ c) $p=(1,2,3)(1,10) q=(1,2,3,4)(2,10)$ d) $p=(3)(1,10) q=(4)(2,10)$ e)* $p=(1,2,3)(10) q=(1,2,3,4)(10,20)$ f) $p=(3)(1) q=(4)(2)$ g) $p=(1,2,3)(1) q=(1,2,3,4)(2)$ h) $p=(3)(4) q=(1)(2)$

Problem 29. The model $(1 - .2B^{12})(1 - .4B - .2B^2 - .3B^3)z_t = 5.0 + (1 - .5B^{12} + .2B^{24})(1 + .2B + .3B^2 - .2B^3 + .1B^4)a_t$ is a ______. a) ARIMA(2, 0, 1)(3, 0, 4)_{12} b) ARIMA(3, 0, 1)(4, 0, 2)_{12} c) \star ARIMA(3, 0, 4)(1, 0, 2)_{12} d) ARIMA(4, 0, 3)(2, 0, 1)_{12} e) ARIMA(1, 0, 2)(3, 0, 4)_{12} f) ARIMA(4, 0, 2)(3, 0, 1)_{12}

h) ARIMA $(1, 0, 2)(4, 0, 3)_{12}$

i) ARIMA $(2, 0, 4)(1, 0, 3)_{12}$

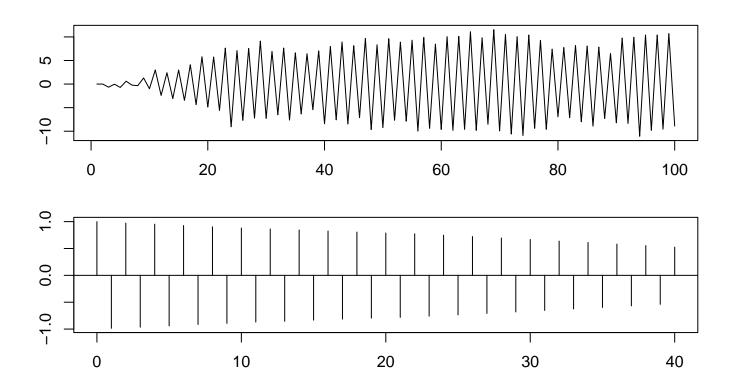
Problem 30. The backshift expression $B(C + \phi_1 z_{t-1} + a_t - \theta_1 a_{t-1})$ is equal to ______

 $\mathbf{a}) \star \ C + \phi_1 z_{t-2} + a_{t-1} - \theta_1 a_{t-2}$ $\mathbf{b}) \ C_{t-1} + \phi_0 z_{t-2} + a_{t-1} - \theta_0 a_{t-2}$ $\mathbf{c}) \ C_{t+1} + \phi_2 z_t + a_{t+1} - \theta_2 a_t$ $\mathbf{d}) \ C + \phi_2 z_{t-2} + a_{t-1} - \theta_2 a_{t-2}$ $\mathbf{e}) \ 0 + \phi_1 z_{t-2} + a_{t-1} - \theta_1 a_{t-2}$ $\mathbf{f}) \ 0 + \phi_0 z_{t-2} + a_{t-1} - \theta_0 a_{t-2}$ $\mathbf{g}) \ 0 + \phi_2 z_{t+1} + a_{t+1} - \theta_2 a_{t+2}$

g) ARIMA $(1, 0, 4)(3, 0, 2)_{12}$

Problem 31. For a time series $z_1, z_2, \ldots, z_{100}$ of length 100, the two figures below give the time series plot (z_t versus t) and the estimated ACF up to lag 40. Which response best completes this sentence: This time series appears to be a realization of a _____ process.

a) stationary random walkb) MA(1)c) MA(2)d) MA(3)e) \star non-stationaryf) stationary AR(1)g) stationary AR(2)h) random shock



Problem 32. One general approach to modeling a series with a non-stationary mean which exhibits seasonal patterns or seasonal variation is to _____.

- **a**)★ make the series stationary by ordinary and/or seasonal differencing, and then choose an appropriate $ARIMA(p, 0, q)(P, 0, Q)_s$ process to model the differenced series
- **b**) choose an appropriate $\operatorname{ARIMA}(p, 0, q)(P, 0, Q)_s$ process to eliminate the seasonal effects, and then difference the resulting series (using ordinary and/or seasonal differencing) to eliminate the non-stationarity
- c) transform the series (for example, by using a log or square root transformation), and then choose an appropriate $ARIMA(p, 0, q)(P, 0, Q)_s$ process to model the transformed series
- d) choose an appropriate $ARIMA(p, 0, q)(P, 0, Q)_s$ process to eliminate the seasonal effects, and then transform the resulting series (for example, by using a log or square root transformation) to eliminate the non-stationarity

Problem 33. If the theoretical **P**ACF of a stationary ARMA process has a cutoff (to zero) after lag 3, then the theoretical **I**ACF (Inverse Autocorrelation Function) will _____.

- a) undergo sinusoidal decay
- **b**) undergo alternating exponential decay
- c) decay to zero very rapidly
- d) decay to zero very slowly
- e) decay exponentially
- f) decay exponentially starting at lag 3
- g) undergo sinusoidal decay after lag 3
- **h**) \star have a cutoff after lag 3

Problem 34. The standard error of the k-step ahead forecast from an ARIMA process involves the ψ -weights and is given by the expression _____.

Problem 35. An MA(1) process with $|\theta_1| < 1$ can be re-written in the form _____.

 $\begin{aligned} \mathbf{a}) \star \quad & \tilde{z}_{t} = a_{t} - \theta_{1} \tilde{z}_{t-1} - \theta_{1}^{2} \tilde{z}_{t-2} - \theta_{1}^{3} \tilde{z}_{t-3} - \cdots \\ \mathbf{b}) \quad & \tilde{z}_{t} = a_{t} + \theta_{1} \tilde{z}_{t-1} + \theta_{1}^{2} \tilde{z}_{t-2} + \theta_{1}^{3} \tilde{z}_{t-3} + \cdots \\ \mathbf{c}) \quad & \tilde{z}_{t} = a_{t} + \theta_{1} \tilde{z}_{t-1} + \theta_{2} \tilde{z}_{t-2} + \theta_{3} \tilde{z}_{t-3} + \cdots \\ \mathbf{d}) \quad & \tilde{z}_{t} = a_{t} + \theta_{1} a_{t-1} + \theta_{1}^{2} a_{t-2} + \theta_{1}^{3} a_{t-3} + \cdots \\ \mathbf{e}) \quad & \tilde{z}_{t} = a_{t} - \theta_{1} a_{t-1} - \theta_{1}^{2} a_{t-2} - \theta_{1}^{3} a_{t-3} - \cdots \\ \mathbf{f}) \quad & \tilde{z}_{t} = a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \theta_{3} a_{t-3} - \cdots \end{aligned}$