
ARMA processes

AR ≡ auto-regressive MA ≡ moving average

ARMA processes are simple models for time series.

An ARMA process is constructed from a sequence of random
shocks (also called white noise) which are independent N(0, σ2a)
random variables denoted:

. . . , a−3, a−2, a−1, a0, a1, a2, a3, . . .

Other letters are used besides ‘a’ such as ‘ε’ or ‘N’.

We have written the sequence as starting in the remote past
(time −∞) and continuing into the remote future (time
+∞), but there can also be finite beginning and ending times
(e.g., 0 to 100).



Autoregressive Processes

AR(1) : zt =C + φ1zt−1 + at

AR(2) : zt =C + φ1zt−1 + φ2zt−2 + at

AR(p) : zt =C + φ1zt−1 + φ2zt−2 + · · ·+ φpzt−p + at

The values of the parameters C ,φ1, . . . , φp, σ2a determine the
behavior of the process.

To generate a realization z1, z2, . . . , zn from an AR(1) process:
Choose a starting value z1. Then

z2 =C + φ1z1 + a2

z3 =C + φ1z2 + a3
...

zn =C + φ1zn−1 + an

with the computer supplying the random shocks a2, a3, . . .



To generate a realization from an AR(2) process, we need two
starting values z1, z2. Then

z3 =C + φ1z2 + φ2z1 + a3

z4 =C + φ1z3 + φ2z2 + a4
...

zn =C + φ1zn−1 + φ2zn−2 + an

To generate an AR(p), we need p starting values.

What do these processes look like? (Display some examples.)



Moving Average Processes

MA(1) : zt =C + at − θ1at−1

MA(2) : zt =C + at − θ1at−1 − θ2at−2

MA(q) : zt =C + at − θ1at−1 − θ2at−2 − · · · − θqat−q

Note the sign convention: the MA(2) process

zt =10 + at + .7at−1 + .4at−2 is written as

zt =10 + at − (−.7)at−1 − (−.4)at−2

and so has θ1 = −.7 and θ2 = −.4 .

To generate z1, z2, . . . , zn:

I for an MA(1) process, you use a0, a1, . . . , an.

I for an MA(2) process, you use a−1, a0, a1, . . . , an.

I for an MA(q) process, you use a1−q, a2−q, . . . , an.



What do MA processes look like? (Display some examples.)

ARMA Processes

ARMA(1,1) : zt =C + φ1zt−1 + at − θ1at−1

ARMA(p,q) : zt =C + φ1zt−1 + · · ·+ φpzt−p

+ at − θ1at−1 − · · · − θqat−q

ARMA(p,0) ≡ AR(p)

ARMA(0,q) ≡ MA(q)



Remark: For any ARMA process, we can generate a huge
(essentially infinite) number of realizations, and think of them as
forming a population of time series. For any time t, we can define
quantities like Ezt , Ez

2
t , Eztzt−1 as averages over this population.

Similarly, we can define Var(zt), Cov(zt , zt−1), Corr(zt , zt−1), etc.

Behavior of AR Processes (Stationarity)

AR(1): If |φ1| < 1, then, for any choice of initial value z1, the
AR(1) process converges to a stationary process after an intial
transient phase.

Stationary (very roughly) means stable over time, not changing in
behavior with time.

We are not usually interested in the transient initial behavior of the
AR(1) process, but only in its long-run stable behavior. Whenever



we use the AR(1) process in applications, we assume it started far
enough in the past so that we are observing its stationary (stable)
behavior. (The same remark applies to general AR(p) and
ARMA(p,q) processes.)

AR(2): If all of the following hold:

|φ2| < 1 , φ2 + φ1 < 1 , φ2 − φ1 < 1

then, for any choice of initial values z1, z2, the AR(2) process
converges to a stationary process. If any of these conditions fails,
the process is non-stationary.

AR(p): Whether or not an AR(p) process is stationary depends
only on the values of φ1, . . . , φp. There are simple easy-to-check
conditions (stated earlier) for p = 1 and p = 2. There is a general
condition valid for all p (stated later) which is more difficult to
check.



Behavior of MA(q) Processes

MA(q) processes are always stationary (regardless of the values of
their parameters θ1, . . . , θq, C , σ2a). There is no transient initial
phase; they reach their stationary behavior immediately.

Behavior of ARMA(p,q) Processes

An ARMA(p,q) process is stationary if and only if φ1, . . . , φp
satisfy the same conditions required for an AR(p) to be stationary.



Definition: A process z1, z2, z3, . . . is called a (weakly or second
order) stationary process if:

I Ezt = µz for all t,

I Var(zt) = σ2z for all t,

I For any positive integer k ,

Cov(zt , zt−k)

σ2z
= Corr(zt , zt−k) = ρk for all t.

The process is called strictly stationary if, in addition:

zt has the same distribution for all t,

(zt , zt+1) has the same joint distribution for all t

(zt , zt+1, zt+2) has the same joint distn for all t, etc.

The value ρk is called the autocorrelation at lag k. The sequence
ρ0, ρ1, ρ2, ρ3, . . . is called the autocorrelation function (ACF).



The Partial Autocorrelation Function (PACF)

Let zt , t = 1, 2, 3, . . ., be a stationary ARMA process.

The PACF is a sequence of values φ11, φ22, φ33, . . . defined
(informally) as follows:

Consider a series of regressions:

zt = C1 + φ11zt−1 + ε1,t

zt = C2 + φ21zt−1 + φ22zt−2 + ε2,t

zt = C3 + φ31zt−1 + φ32zt−2 + φ33zt−3 + ε3,t
...

zt = Ck + φk1zt−1 + φk2zt−2 + · · ·+ φkkzt−k + εk,t
...



In the k-th regression, we are trying to predict zt using the
previous k values zt−1, . . . , zt−k .

Suppose we have an infinite amount of data and we fit the
regressions by least squares. Then we obtain the “true” values of
the regression parameters, the values giving the best predictions in
the population. (The “true” values are also referred to as the
“exact” or “theoretical” or “population” values.)

The PACF is the sequence of estimated regression coefficients:
φ11, φ22, φ33, . . . The value φkk is the true lag k coefficient in the
regression of zt on zt−1, . . . , zt−k .

A formal definition: If you choose the values C , φk1, . . . , φkk to
minimize

E (zt − C − φk1zt−1 − φk2zt−2 − · · · − φkkzt−k)2 ,

then φkk is the value of the PACF at lag k .



φkk can be expressed as a function of ρ1, ρ2, . . . , ρk :

φkk = gk(ρ1, ρ2, . . . , ρk) .

This function has a simple form in matrix notation.



Identifying ARMA Processes Using the ACF and PACF

For an AR(p) process:

I The theoretical ACF decays to zero, either exponentially or
with a damped sine wave pattern or with both of these
patterns.

I The theoretical PACF has a cutoff to zero after lag p; the last
nonzero value is at lag p, and it is exactly zero for lags greater
than p:

φpp 6= 0 and φkk = 0 for k > p;



For an MA(q) process:

I The theoretical ACF has a cutoff to zero after lag q; the last
nonzero value is at lag q, and it is exactly zero for lags greater
than q:

ρq 6= 0 and ρk = 0 for k > q .

I The theoretical PACF decays to zero.

For an ARMA(p, q) process with both p > 0 and q > 0, the
theoretical ACF and PACF both decay to zero; neither of them has
a cutoff.

For a random shock process, the ACF and PACF are exactly zero
for all nonzero lags:

ρk = 0 and φkk = 0 for all k > 0.



Estimating the ACF

Suppose we have data z1, z2, . . . , zn which is a realization of a
stationary process.

The theoretical ACF of this process is estimated by the sample
ACF (SACF):

ρk is estimated by rk =

∑n−k
t=1 (zt − z̄)(zt+k − z̄)∑n

t=1(zt − z̄)2

which is approximately the sample correlation in the scatterplot of
zt versus zt−k .

The sequence r1, r2, r3, . . . is the SACF.

Erk ≈ ρk unless n is fairly small. (rk is approximately unbiased.)

rk → ρk as n→∞.



Estimating the PACF

The theoretical ACF and PACF are related by:

φkk = gk(ρ1, ρ2, . . . , ρk) .

Suppose we have data z1, z2, . . . , zn.

The sample PACF is obtained from the sample ACF in the same
way:

φ̂kk = gk(r1, r2, . . . , rk) .

The sample PACF value φ̂kk may also be approximated by the
estimated coefficient for zt−k obtained from fitting a regression of
zt on zt−1, . . . , zt−k (using least squares). This approximation will
be good when n is large.


