
Testing H0 : ρk = 0

For an MA(q) process, the theoretical ACF has a cutoff to zero
after lag q, i.e., ρk = 0 for k > q.

In the sample ACF, we expect an approximate cutoff to zero after
lag q.

Therefore, to identify the order of an MA process, we need to be
able to test the null hypothesis that ρk = 0.

If ρj = 0 for all j ≥ k , then an approximate standard error for rk is
given by

s(rk) =

1 + 2
k−1∑
j=1

r2j

1/2

n−1/2

and the ratio rk/s(rk) has approximately a N(0, 1) distribution (if
n is large enough).



An approximate level α test of H0 : ρk = 0 rejects H0 when∣∣∣∣ rk
s(rk)

∣∣∣∣ > zα/2 or equivalently |rk | > zα/2 s(rk)

For α = .05, use zα/2 = 1.96.

The ACF plot produced by SAS PROC ARIMA has a band marked
at “two standard errors” (at ±2s(rk)). This can be used for tests
at level α ≈ .05.

For an MA(q) process, after lag q we expect all (or nearly all) of
the values rk to lie within this band, most of them being well inside
the band.



Testing H0 : φkk = 0

For an AR(p) process, the theoretical PACF has a cutoff to zero
after lag p, i.e., φkk = 0 for k > p.

In the sample PACF, we expect an approximate cutoff to zero after
lag p.

Therefore, to identify the order of an AR process, we need to be
able to test the null hypothesis that φkk = 0.

When φkk = 0, an approximate standard error for φ̂kk is given by

s(φ̂kk) = n−1/2

and the ratio φ̂kk/s(φ̂kk) has approximately a N(0, 1) distribution
(if n is large enough).



An approximate level α test of H0 : φkk = 0 rejects H0 when∣∣∣∣∣ φ̂kk

s(φ̂kk)

∣∣∣∣∣ > zα/2 or equivalently |φ̂kk | > zα/2 n
−1/2

The PACF plot produced by PROC ARIMA has a band marked at
“two standard errors” (at ±2n−1/2). This can be used for tests at
level α ≈ .05.

For an AR(p) process, after lag p we expect all (or nearly all) of
the values φ̂kk to lie within this band, most of them being well
inside the band.

Note: the band for the PACF has constant width. The band for
the ACF has increasing width.



Autocorrelation Check for White Noise

This item in the PROC ARIMA output displays the Ljung-Box test
computed at lags which are multiples of 6.

A white noise process (random shocks) has ρk = 0 for all k 6= 0.

A test of H0 : ρ1 = ρ2 = . . . = ρm = 0 uses the statistic

Q(m) = n(n + 2)
m∑

k=1

r2k
n − k

where n is the length of the time series.

If a series z1, z2, . . . , zn consists of random shocks (or more
generally, of independent identically distributed random variables
with enough moments) and n is large enough, then Q(m) has
approximately a χ2

m distribution.



If any of ρ1, ρ2, . . . , ρm are non-zero, Q(m) will be “larger than
χ2
m”.

We reject H0 at level α if Q(m) > χ2
m(α), the upper α point of

the chi-squared distribution with m degrees of freedom. SAS
displays the p-values, so we reject if p-value < α.

PROC ARIMA displays Q(6), Q(12), Q(18), Q(24).

For a random shock sequence, we expect all of these to be
non-significant (but of course, for each of them there is a
probability α of rejecting H0 by chance).



Properties of AR(1) Processes

AR(1): zt = C + φ1zt−1 + at with at independent N(0, σ2a).

• An AR(1) process is stationary if |φ1| < 1, and non-stationary if
|φ1| ≥ 1.

For a stationary AR(1) process:

I µz =
C

1− φ1

I σ2z =
σ2a

1− φ21
I zt ∼ N(µz , σ

2
z ).

(This is the marginal or unconditional distribution of zt
when given no information about past values.)

I ρk = (φ1)k , for k = 0, 1, 2, . . .
(exponential decay to 0 as k →∞)



Some derivations

Let X ,Y ,Z be random variables (with finite means and variances),
and a, b, c , d be constants.

Rules for Expected Values:

I E (X + Y ) = EX + EY ,
E (X + Y + Z ) = EX + EY + EZ , etc.

I E (bX ) = b(EX ).

I E (c + X ) = c + EX .

I In combination: E (bX + c) = b(EX ) + c ,
E (aX + bY + cZ + d) = a EX + b EY + c EZ + d , etc.



Derivation 1:

zt = C + φ1zt−1 + at

⇒ E (zt) = E (C + φ1zt−1 + at) (taking E on both sides)

⇒ E (zt) = C + φ1E (zt−1) + E (at) (applying the rules)

⇒ µz = C + φ1µz + 0 (now solve for µz)

⇒ (1− φ1)µz = C

⇒ µz =
C

1− φ1

In the above we used:

I C and φ1 are constants; zt , zt−1, at are random variables.

I Ezt = Ezt−1 = µz since the process is stationary .

I Eat = 0 .



Some Rules for Variances:

I Var(X + b) = Var(X ).

I Var(cX ) = c2Var(X ).

I In combination: Var(cX + b) = c2Var(X ).

I If X and Y are independent (or even just uncorrelated),
then Var(X + Y ) = Var(X ) + Var(Y ).
Similarly, if X , Y , Z are independent, then
Var(X + Y + Z ) = Var(X ) + Var(Y ) + Var(Z ), etc.

I In combination: If X , Y are independent, then
Var(bX + cY + d) = b2 Var(X ) + c2 Var(Y ), etc.



Derivation 2:

zt = C + φ1zt−1 + at

⇒ Var(zt) = Var(C + φ1zt−1 + at) (taking Var on both sides)

⇒ Var(zt) = φ21Var(zt−1) + Var(at) (applying the rules)

⇒ σ2z = φ21σ
2
z + σ2a (now solve for σ2z )

⇒ (1− φ21)σ2z = σ2a

⇒ σ2z =
σ2a

1− φ21

In the above we used:

I Var(zt) = Var(zt−1) = σ2z since the process is stationary .

I Var(at) = σ2a .

I zt−1 and at are independent. (Why?)



General Facts: For any stationary ARMA(p, q) process:

I For any time t, the random variable zt will be independent of
all the “future” random shocks {at+1, at+2, at+3 . . .}.

I The process can be re-written as an MA(∞) process:

zt = µz + at +
∞∑
i=1

ψiat−i

where ψi → 0 as i →∞ (approaching zero at an eventually
exponential rate).

For simplicity, we will show this only for a stationary AR(1) process
with C = 0.



We know that:

(A): zt = at + φ1zt−1 ,

(B): zt−1 = at−1 + φ1zt−2 ,

(C): zt−2 = at−2 + φ1zt−3 , etc.

Substituting (B) into (A) gives:

zt = at + φ1(at−1 + φ1zt−2)

= at + φ1at−1 + φ21zt−2 .

Substituting (C) into the above gives:

zt = at + φ1at−1 + φ21(at−2 + φ1zt−3)

= at + φ1at−1 + φ21at−2 + φ31zt−3

and the pattern is clear.



Repeated substitution shows for any k > 0 that

zt = at + φ1at−1 + φ21at−2 + · · ·+ φk1at−k + φk+1
1 zt−k−1

= at +
k∑

i=1

φi1at−i + φk+1
1 zt−k−1 .

Since |φ1| < 1, the term φk+1
1 zt−k−1 goes to zero as k →∞ and

the sum converges to give

zt = at +
∞∑
i=1

φi1at−i

which has the desired form with ψi = φi1.

The same process of repeated substitution works for any ARMA
process.



Since the random shocks are all independent of each other, and zt
is expressed entirely as a combination of the “present” shock at
and “past” shocks at−1, at−2, . . ., it will be independent of the
“future” shocks at+1, at+2, . . . QED

The Mean of a General Stationary ARMA(p, q) Process

Suppose

zt = C +φ1zt−1 + · · ·+φpzt−p +at−θ1at−1−· · ·−θqat−q (∗)

is stationary. Taking expected values on both sides gives

µz = C + φ1µz + · · ·+ φpµz + 0− θ10− · · · − θq0 (∗∗)

and solving for µz produces

µz =
C

1− φ1 − φ2 − · · · − φp
.



Mean Centering

Suppose {zt} is a stationary ARMA(p, q) process.

For all t, define z̃t = zt − µz so that Ez̃t = 0. We call z̃t the
“mean centered process”.

Subtracting (∗∗) from (∗) on the previous page, we find

z̃t = φ1z̃t−1 + · · ·+ φp z̃t−p + at − θ1at−1 − · · · − θqat−q .

(The constant C has disappeared.)



Another Rule for Expected Values: Products of Independent
RV’s

• If X and Y are independent (with finite means), then

E (XY ) = (EX )(EY ) .

Special Cases: Suppose {zt} is a stationary ARMA process and
{at} is the sequence of random shocks used to generate {zt}.

I E (asat) = 0 if s 6= t.

I E (zsat) = 0 if s < t.

Proofs:

I s 6= t ⇒ as , at indep. ⇒ E (asat) = (Eas)(Eat) = 0 · 0 = 0.

I s < t ⇒ zs , at indep. ⇒ E (zsat) = (Ezs)(Eat) = µz · 0 = 0.



Deriving the Theoretical ACF of Stationary AR(1)

Suppose k > 0.

Cov(zt , zt−k) =E (zt − µz)(zt−k − µz)

=Ez̃t z̃t−k

=E [(φ1z̃t−1 + at)z̃t−k ]

=E (φ1z̃t−1z̃t−k + at z̃t−k)

=φ1Ez̃t−1z̃t−k + Eat z̃t−k

=φ1Cov(zt−1, zt−k) + 0

(since at is a future shock relative to zt−k)

Therefore (dividing by σ2z )

Cov(zt , zt−k)

σ2z
= φ1

Cov(zt−1, zt−k)

σ2z
⇒ ρk = φ1ρk−1



Setting k = 1 gives ρ1 = φ1ρ0 = φ1 since ρ0 = 1.

Setting k = 2 gives ρ2 = φ1ρ1 = φ21.

Setting k = 3 gives ρ3 = φ1ρ2 = φ31, etc.

Thus ρk = φk1 for all k = 0, 1, 2, . . .

A similar approach works to derive recursions for the ACF of any
ARMA process. (But it is messier.)



Autocovariance

For any stationary process {zt} define the autocovariances:

γk = Cov(zt , zt−k) = Cov(zt , zt+k) for k = 0,±1,±2, . . .

Note:

I γ0 = Var(zt) = σ2z .

I γk = γ−k for all k .

I ρk =
γk
γ0

for all k.



Mean, Variance, and Autocovariances of an MA(q) Process

For convenience, define ψ0 = 1, and ψi = −θi for i = 1, . . . , q so
that

zt =C + at − θ1at−1 − · · · − θqat−q
=C + ψ0at + ψ1at−1 + · · ·+ ψqat−q

(1) µz = C (We already knew this one.)

(2) σ2z = γ0 = σ2a

q∑
i=0

ψ2
i

(3) γk = σ2a

q−k∑
i=0

ψiψi+k for k = 0, 1, . . . , q

(4) γk = 0 for k > q



Fact (4) gives the cutoff to zero after lag q in the ACF.

Proofs:

(4):

zt =C + at − θ1at−1 − · · · − θqat−q
zt−k =C + at−k − θ1at−k−1 − · · · − θqat−k−q

So

zt depends on {at , at−1, . . . , at−q}
zt−k depends on {at−k , at−k−1, . . . , at−k−q}

If k > q, there is no overlap in these two groups so that zt and
zt−k are independent (since the two groups of random shocks are
independent of each other). When zt and zt−k are independent,
their covariance is zero. (Recall: Independent ⇒ Uncorrelated)



(2): To simplify the notation, take q = 2 and t = 3. We illustrate
the argument in this special case. (It works in general.)

z̃3 = ψ0a3 + ψ1a2 + ψ2a1

so that

Var(z3) =E
[
(z3 − µz)2

]
= E

[
z̃23
]

= E
[
(ψ0a3 + ψ1a2 + ψ2a1)2

]
=E

[
ψ2
0a

2
3 + ψ2

1a
2
2 + ψ2

2a
2
1

+ 2ψ0ψ1a3a2 + 2ψ0ψ2a3a1 + 2ψ1ψ2a2a1
]

=ψ2
0Ea

2
3 + ψ2

1Ea
2
2 + ψ2

2Ea
2
1

+ 2ψ0ψ1Ea3a2 + 2ψ0ψ2Ea3a1 + 2ψ1ψ2Ea2a1

=ψ2
0σ

2
a + ψ2

1σ
2
a + ψ2

2σ
2
a

+ 2ψ0ψ1 0 + 2ψ0ψ2 0 + 2ψ1ψ2 0

=σ2a(ψ2
0 + ψ2

1 + ψ2
2)



(3): For simplicity, take q = 2 and particular values of t:

z̃4 = ψ0a4 + ψ1a3 + ψ2a2

z̃3 = ψ0a3 + ψ1a2 + ψ2a1

Then

γ1 = Cov(z4, z3) = E (z4 − µz)(z3 − µz) = Ez̃4z̃3

= E (ψ0a4 + ψ1a3 + ψ2a2)(ψ0a3 + ψ1a2 + ψ2a1)

= ψ1ψ0Ea
2
3 + ψ2ψ1Ea

2
2 + 0 + · · ·+ 0

= σ2a(ψ0ψ1 + ψ1ψ2)

The argument for γ2 = σ2aψ0ψ2 is similar.



Why Does AR(p) PACF Cutoff to Zero After Lag p?

Here is an intuitive argument.

Consider the special case AR(2). We know

zt = C + φ1zt−1 + φ2zt−2 + at (∗)

and that at is independent of zt−1, zt−2, zt−3, . . . Thus (∗) is
essentially a regression model with error term at . Since the error at
is independent of zt−3, adding zt−3 to the regression model cannot
improve the fit. In other words, if we add zt−3 to the model, the
regression coefficient φ33 must be zero.

Similarly, since both zt−3 and zt−4 are independent of at , adding
them both to the model (∗) cannot improve the fit. In other
words, if we add zt−3 and zt−4 to the model, both regression
coefficients φ43 and φ44 must be zero.

Thus φ33 = φ44 = 0 and so on.


