
Estimation

After identifying plausible ARMA models, estimate the
parameters in a model using the ESTIMATE statement
in PROC ARIMA:

• ESTIMATE P=3;
fits an AR(3) model. (Similarly for any AR order.)

• ESTIMATE Q=2;
fits an MA(2) model. (Similarly for any MA order.)

• ESTIMATE P=2 Q=1;
fits an ARMA(2,1) model. (Similarly for any or-
ders.)



• ESTIMATE P=(1,3,5,7);
fits an AR model including terms only at lags 1, 3,
5, 7.

• ESTIMATE Q=(2,4);
fits an MA model including terms only a lags 2, 4.

• ESTIMATE P=(1,3) Q=(2,4);
fits a model with AR and MA terms only at the
specified lags.



There are three methods of estimation available:

• CLS (conditional least squares, the default)

• ULS (unconditional least squares)

• ML (maximum likelihood)

The option METHOD=ML or METHOD=ULS in the
ESTIMATE statement specifies use of these methods.

ML is the preferred method when the shocks at are inde-
pendent and (approximately) normally distributed with
constant variance.



ML estimates the parameters by those values which max-
imize the “likelihood” of the observed data z1, z2, . . . , zn,
assuming the shocks at are independent N(0, σ2

a).

CLS estimates parameters by those values which mini-
mize a certain “conditional” sum of squared errors. For
an AR(p) model, CLS minimizes

n∑
t=1

(z̃t − φ1z̃t−1 − · · · − φpz̃t−p)2

where z̃t = zt − µz for t ≥ 1 and z̃t is set equal to zero
for t < 1.



Model Diagnostics

For each parameter, SAS reports an estimate, standard
error, t-value, and p-value, with interpretations similar
to the same quantities in regression.

t-value =
estimate

standard error
=

θ̂

SE(θ̂)

Here (and later) we use θ to denote a “generic” parame-
ter.

The p-value for a parameter reports the approximate
probability of getting a t-value by chance whose mag-
nitude is as large as that observed when the true value



of the parameter is zero.

If the p-value for a parameter θ is small (say, less than
.05), we reject H0 : θ = 0, and conclude that θ is (prob-
ably) nonzero. The corresponding term (usually) im-
proves the performance of the model and is retained in
the model.

If the p-value is not small, we usually drop that term
from the model. This yields a more “parsimonious” model
(one with fewer parameters) which does about as well the
original model.

The output also gives estimates of:



Quantity Name in Output
µz MU
C Constant Estimate
σ2
a Variance Estimate
σa Std Error Estimate

Residuals

SAS computes residuals ât which are estimates of the
random shocks at.

The residuals should behave like random shocks.

• The sample ACF of the residuals should resem-
ble that of random shocks. The “Autocorrelation



Check for Residuals” (the Ljung-Box test) should
not be significant.

• The residuals should have (approximately) mean
zero and constant variance. Look for these proper-
ties in the plot of residuals versus time order, and
in the plot of residuals versus predicted values. In
these plots, it is useful to add a smooth estimate of
the mean using the LOESS smoother.

• The residuals should be approximately normally
distributed, at least when you are using ML es-
timation. Judge this in the Q-Q Plot (residuals
versus normal quantiles) which should be roughly
a straight line, and the histogram/density plot.



The “predicted values” used in the plot of residuals ver-
sus predicted values are the one-step-ahead predictions
described later. They are similar to the fitted values
(also called predicted values) in regression. For a good
model, the residuals should be independent of the pre-
dicted values; there should be no relationship between
the residuals and predicted values.

Comparing Different Models

If more than one model has reasonable residual diagnos-
tics (or if all the models have problems), then one strat-
egy is to choose the model with the smallest AIC or SBC
value.



• AIC is Akaike’s Information Criterion:

AIC = −2 ln(L) + 2k

where L is the Likelihood value and k is the number
of estimated parameters.

• SBC is Schwarz’s Bayesian Criterion, also known
as BIC for Bayesian Information Criterion:

SBC = −2 ln(L) + k ln(n)

where n is the number of residuals.




