
Detecting a Non-Stationary Mean

Visual inspection of the time series plot will reveal many types of
non-stationarity.

For detecting non-stationary mean, the Sample ACF (SACF) is
also helpful.

▶ A realization from a process with a NON-stationary mean will
typically have a SACF which decays very slowly to zero.
(Note: the theoretical ACF of a process with non-stationary
mean does NOT exist.)

▶ This fact may be used to help recognize such processes.

▶ Examples: Realizations from non-stationary AR(1) and AR(2)
processes.



Random Walk: AR(1) with phi(1) = 1.0
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Nonstationary AR(2) with phi(1) = -.5 and phi(2) = +.5
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Sample ACF’s for Realizations of Non-stationary Processes



Warnings:

▶ Other types of non-stationarity (such as non-stationary
variance) do not show up on the SACF. So, inspection of the
time series plot is still required.

▶ If the autocorrelations of a series are changing with time, that
also will not show up on the SACF. But if you divide the
series into parts, and compare the SACF for each part, then it
may show up.

▶ It is possible for a stationary ARMA process to have an ACF
which decays slowly. Thus it will sometimes be hard to
distinguish between nonstationary and stationary processes.
Example:
▶ The theoretical ACF of the AR(1) process is ρk = ϕk

1
▶ With ϕ1 = .9 we have ρ1 = .9, ρ2 = .81, ρ3 = .729, . . . which is

decaying rather slowly to zero.
▶ Also, the SACF for a realization of this processs will typically

decay to zero slowly.



▶ Thus, it is difficult in practice to distinguish between the
non-stationary AR(1) with ϕ1 = 1.0 and the stationary AR(1)
with ϕ1 = 0.9 .

▶ Many other similar examples can be constructed.

▶ Given a particular realization, deciding whether the underlying
process is stationary or not can sometimes be very difficult. In
close cases, the decision is highly subjective. The decision is
often made on the basis of simplicity. (Which choice leads to
a simpler model?)



ARIMA processes

• ARIMA processes are generated (simulated) by “integrating”
ARMA processes. The “I” in ARIMA stands for “integrated”.

Suppose we have a series z1, z2, . . . , zn.

• “Integrating” a time series means computing cumulative sums
for that series.

When we say that “{yt} is obtained by integrating {zt}” we mean
that

▶ yt = z1 + z2 + · · ·+ zt for all times t = 1, . . . , n.

▶ A mathematically equivalent way to state this is

yt = yt−1 + zt for 2 ≤ t ≤ n

where we define y1 = z1.



• “Differencing” a series means computing the differences between
consecutive values of the series.

When we say that “{xt} is obtained by differencing {zt}” we mean
that

xt = zt − zt−1 for t = 2, 3, . . . , n .

We cannot compute x1; this value is missing (indicated by a period
“.” in SAS).

If we difference a series d times, we end up with a series with d
missing values at the beginning.

The symbol ∇ (nabla) is often used to denote differencing:

∇zt = zt − zt−1 .

Using backshift notation, we may write ∇ = 1− B since

∇zt = zt − zt−1 = zt − Bzt = (1− B)zt .



• “Differencing” is almost the opposite (inverse operation) of
“integrating”. If you integrate and then difference, you get back
the original series except for a missing value at the beginning.

• An ARIMA(p,d,q) process is obtained by integrating an
ARMA(p,q) process d times. (The quantity d is referred to as the
“degree of differencing”, p is the AR order, q is the MA order.)

• Differencing an ARIMA(p,d,q) process d times produces an
ARMA(p,q) ≡ ARIMA(p,0,q) process.

• Integrating a stationary ARMA process produces a
non-stationary ARIMA process.

• Here are some time series plots of ARIMA processes.



Remarks on Differencing

▶ Purpose of Differencing: If a process (or realization) has a
nonstationary mean, differencing one or more times may
produce a stationary process (or realization).

▶ In particular, if the original process is ARIMA(p, d , q), then
differencing d times produces an ARMA(p, q) process (which
will be stationary if the AR coefficients satisfy the stationarity
conditions).

▶ For series typically encountered in practice, a degree of
differencing of d = 0, 1, or 2 is generally adequate. The
values d = 0 (no differencing) and d = 1 are quite common.
The value d = 2 occurs less frequently.

▶ If your series seems to require d > 2, probably another
approach is needed.

▶ Differencing may eliminate a non-stationary mean, but it will
not cure other forms of non-stationarity, such as
nonstationary variance or nonstationary ACF.



Stabilizing the Variance

▶ Many time series exhibit the following behavior: The
variability of the series zt changes systematically with the level
of the series.
▶ Many economic time series have a long term positive trend due

to economic growth or inflationary effects. For such series it is
common for the variability to increase as the series climbs.
Frequently, the standard deviation is roughly proportional to
the value of the series; when the series doubles, the standard
deviation doubles.

▶ This is a form of nonstationary variance.

▶ This problem can frequently be “cured” by transforming the
data. We model the series yt = f (zt) for some appropriately
chosen function f , instead of modeling the original series zt .
▶ If the variability (as measured by the “local standard

deviation”) is proportional to the level of the series zt , the
appropriate transformation is taking logs, that is, we model
yt = log(zt) .



▶ If the variability (standard deviation) increases at a slower rate,
a square root transformation (yt =

√
zt) may work.

▶ More general power transformations yt = zλt also may be
employed. (Here the “power” is λ.) The value of λ is chosen
(perhaps by trial and error) to stabilize the variance.

▶ A convenient form of the power transformation is the so-called
Box-Cox transformation

yt =
zλt − 1

λ
.

For practical purposes, this is essentially the same as the
simple power transformation yt = zλt .

▶ Sometimes it is helpful to add or subtract a constant before
using a log or power transformation, that is, we model
yt = log(zt − c) or yt =

√
zt − c , etc.



• If you obtain forecasts ŷt for a transformed series yt = f (zt),
then you must apply the inverse transform ẑt = f −1(ŷt) to obtain
forecasts for the original series.

Modeling a Time Series with Non-Stationary Mean

▶ Box-Jenkins approach: Model the series as a realization of an
ARIMA(p, d , q) process. Choose d to be the order of
differencing needed to make the series stationary. Then
choose p and q by finding an ARMA(p, q) model for the
differenced series. (Do this by studying the ACF and PACF of
the differenced series.)

▶ Alternative: Model the series as

(Series) = (Trend) + (Stationary Process)

The stationary process could be an ARMA process. The trend
could be linear (a+ bt), quadratic (a+ bt + ct2), sinusoidal
(sin(ω(t − t0)), a periodic function represented as a sum of
sines and cosines, etc. Here t denotes time.



Identifying ARIMA Models

Choose the order of differencing d :

▶ If the original series z1, . . . , zn appears stationary (e.g., the
time series plot has a constant mean and the SACF decays
fairly rapidly), then try d = 0.

▶ If not, examine the first differences yt = (1− B)zt . If they
appear stationary, try d = 1. (d = 1 is very common.)

▶ If not, examine the second differences wt = (1− B)2zt . If
they appear stationary, try d = 2. (This is less common.)

▶ If not, try something else. (d > 2 is rare.)



Overdifferencing

How can I tell if I have differenced too many times?

The Inverse Autocorrelation Function (IACF) may be useful
here.

What is the IACF?

The theoretical IACF of an ARMA(p,q) process is equal to the
theoretical ACF of the corresponding ARMA(q,p) process obtained
by interchanging the roles of the θ’s and ϕ’s.



In particular,

▶ The theoretical IACF of an AR(p) = ARMA(p,0) process is
the same as the ACF of an MA(p) = ARMA(0,p) process; it
has a cutoff (to zero) after lag p.

▶ The theoretical IACF of an MA(q) process is the same as the
ACF of an AR(q) process; it eventually decays to zero
(perhaps in a complicated way).

The IACF and PACF are different, however, their general
interpretation is similar for nonseasonal stationary processes. For
an AR(p) process, both the theoretical IACF and PACF cutoff to
zero after lag p. For seasonal processes (discussed later), the IACF
may be easier to interpret than the PACF.



The sample IACF of an “over-differenced” series will typically
decay to zero very slowly. That is, if you take a realization from an
already stationary ARMA process and difference it, the sample
IACF of the resulting differences will usually decay to zero very
slowly.

Thus the ACF and IACF are both of assistance in choosing the
appropriate order of differencing, the ACF helping to detect
“under-differencing” and the IACF helping to detect
“over-differencing”.



After choosing d . . .

Now choose the AR and MA orders p and q in the usual way, by
examining the sample ACF/PACF of the appropriately differenced
series.

There may be a number of plausible models, perhaps even with
different values of d (e.g., d = 0 or d = 1 may both be plausible
for “borderline” stationary series). Choose among them by looking
at the estimation results:

▶ Significance of estimated parameters

▶ Residual diagnostics: ACF, PACF, Autocorrelation Check of
Residuals (the Chi-Square statistics, i.e., Ljung-Box Q),
QQ-Plot, plot of residuals versus predicted values.

▶ AIC or SBC (Note: these should only be used to compare
models having the same number of residuals.)



If the variability of z1, . . . , zn changes systematically with the level
of the series, try a transformation (e.g., log, square root, other
power transform, etc.). Transformations are always applied to the
original series, never to the differenced series.

Sometimes one does not realize a transformation is needed until
after fitting an ARIMA model to the raw data and observing
non-constant variance in the plot of residuals versus predicted
values.


