
Modeling Non-Stationary Seasonal Series

A series zt with an (approximately) repeating seasonal pattern or
tendency is non-stationary since the mean Ezt varies with the time
t.

Examples: For temperature data, July may be consistently hotter
than December. For sales data, sales in December (which includes
Christmas) may consistently exceed sales in February, etc.

A seasonal pattern might be combined with other types of trends
(e.g. a long-term increasing trend), leading to a more complicated
non-stationary pattern.



One general approach to modeling non-stationary series which
exhibit seasonal patterns or seasonal variation is to:

• Make the series stationary by differencing. This may be ordinary
or seasonal differencing (described below) or some combination.

• Then choose an appropriate ARIMA(p, 0, q)(P, 0,Q)s process to
model the differenced series.



Seasonal Differencing

Seasonal differencing is differencing at the seasonal lag s.

Suppose we have a series {zt}. Seasonal differencing creates a new
series:

wt = zt − zt−s

If we know only the values z1, z2, . . . , zn, then we cannot compute
w1,w2, . . . ,ws . These values are missing. Differencing at lag s
leads to a new series with s missing values at the beginning of the
series.

Differencing at lag s is often denoted ∇s :

∇szt = zt − zt−s .



Seasonal differencing eliminates seasonal patterns, and can
sometimes remove long-term trends or other types of
non-stationarity.

If a series zt is periodic with period s (i.e. it repeats forever
the same cycle of s values), then ∇szt = 0 for all times t
since zt = zt−s for all t. Seasonal differencing removes the
seasonal pattern.

Example: the sequence 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, . . . is
periodic with period s = 4 and ∇4zt = 0.



Example: If the series zt is periodic with period s, and we
create a new series xt by adding a linear trend to zt :

xt = zt + ct ,

then

∇sxt = ∇s(zt + ct) = ∇szt +∇sct

= (zt − zt−s) + (ct − c(t − s)) = 0 + cs = cs

for all times t. So seasonal differencing has removed both the
seasonal pattern and the linear trend.

A series can be seasonally differenced more than once, but this is
rare in practice.



Seasonal differencing may be written in terms of the backshift B as

∇s = 1− Bs

since

(1− Bs)zt = zt − Bszt = zt − zt−s .

Seasonal differencing D times is written

∇D
s = (1− Bs)D .



Some series require both ordinary (lag 1) and seasonal (lag s)
differencing to make them stationary.

(Recall that lag 1 differencing is denoted ∇ = 1− B.)

The order in which the differencing is done does not matter.
Applying ∇ then ∇s leads to the same result as applying ∇s then
∇. (In general, backshift operators commute.)

We can show this as follows.

Suppose we start with the series xt , then calculate yt = ∇xt , and
then zt = ∇syt . This leads to

zt = yt − yt−s

= (xt − xt−1)− (xt−s − xt−s−1)

= xt − xt−1 − xt−s + xt−s−1 .



Now the other order. Start with xt , then calculate ut = ∇sxt , and
then wt = ∇ut . This gives

wt = ut − ut−1

= (xt − xt−s)− (xt−1 − xt−1−s)

= xt − xt−1 − xt−s + xt−s−1 .

They are the same!

We can also see that the order doesn’t matter by using the
backshift operators since

xt − xt−1 − xt−s + xt−s−1 = (1− B − Bs + Bs+1)xt

= (1− B)(1− Bs)xt = ∇∇sxt

= (1− Bs)(1− B)xt = ∇s∇xt .



If we form a new series wt by differencing the series xt d times at
lag 1 and then D times at lag s, we may write

wt = ∇D
s ∇dxt = (1− Bs)D(1− B)dxt .



Multiplicative Seasonal ARIMA Models

If zt can be (appropriately) differenced to obtain a stationary
seasonal ARMA process, then zt is a seasonal ARIMA process.

In particular, if wt = ∇D
s ∇dzt is a stationary ARMA(p, q)(P,Q)s

process, then zt is a ARIMA(p, d , q)(P,D,Q)s process.

Since wt can be written in backshift form as

Φ(Bs)φ(B)wt = C + Θ(Bs)θ(B)at ,

substituting wt = ∇D
s ∇dzt gives us the general expression for a

seasonal ARIMA model in backshift form.

ARIMA(p, d , q)(P,D,Q)s :

Φ(Bs)φ(B)∇D
s ∇dzt = C + Θ(Bs)θ(B)at



Identifying a Seasonal ARIMA Model

Choose orders of differencing D and d which convert the series
into a stationary series. The time series plot of the differenced
series should appear stationary, and have a sample ACF which
decays to zero reasonably rapidly along both the seasonal lags
s, 2s, 3s, . . . and along the early non-seasonal lags 1, 2, 3, . . .

Strong seasonal patterns in the time series plot and/or slow decay
of the sample ACF along the seasonal lags may indicate the need
for seasonal differencing. A non-stationary mean in the time series
plot and/or slow decay of the sample ACF may indicate the need
for ordinary differencing (at lag 1).

In practice, the orders of differencing are usually small. Usually
d + D ≤ 2. Often d + D ≤ 1.



After finding reasonable orders of differencing, study the sample
ACF, PACF, and IACF of the differenced series to determine
plausible values for p, q,P,Q. Identify p and q using the pattern
along the early non-seasonal lags 1, 2, 3, . . ., and P and Q from the
pattern along the seasonal lags s, 2s, 3s, . . ..

It is difficult to identify higher order processes (those with larger
values of p, q,P,Q), particularly mixed processes, from the
patterns in ACF and PACF. In practice, low order processes usually
suffice.


