Modeling Non-Stationary Seasonal Series

A series z; with an (approximately) repeating seasonal pattern or
tendency is non-stationary since the mean Ez; varies with the time
t.

Examples: For temperature data, July may be consistently hotter
than December. For sales data, sales in December (which includes
Christmas) may consistently exceed sales in February, etc.

A seasonal pattern might be combined with other types of trends
(e.g. a long-term increasing trend), leading to a more complicated
non-stationary pattern.



One general approach to modeling non-stationary series which
exhibit seasonal patterns or seasonal variation is to:

e Make the series stationary by differencing. This may be ordinary
or seasonal differencing (described below) or some combination.

e Then choose an appropriate ARIMA(p, 0, q)(P, 0, Q)s process to
model the differenced series.



Seasonal Differencing
Seasonal differencing is differencing at the seasonal lag s.

Suppose we have a series {z;:}. Seasonal differencing creates a new
series:

Wt = 2t — Zt—s

If we know only the values z, 5, . . ., z,, then we cannot compute
Wi, Wo, ..., Ws. Ihese values are missing. Differencing at lag s
leads to a new series with s missing values at the beginning of the
series.

Differencing at lag s is often denoted V:

Vszt = Zt — Zt—s -



Seasonal differencing eliminates seasonal patterns, and can
sometimes remove long-term trends or other types of
non-stationarity.

If a series z; is periodic with period s (i.e. it repeats forever
the same cycle of s values), then Vsz; = 0 for all times t
since z; = z;_s for all t. Seasonal differencing removes the
seasonal pattern.

Example: the sequence 4,3,2,1,4,3,2,1,4,3,2,1,...is
periodic with period s =4 and V,z: = 0.



Example: If the series z; is periodic with period s, and we
create a new series x; by adding a linear trend to z:

Xt = Zy + ct,
then

Vsxt = Vs(zt + ct) = Vsz: + Vsct
=(zt —zt—s)+(ct—c(t—s)) =0+ cs=cs

for all times t. So seasonal differencing has removed both the
seasonal pattern and the linear trend.

A series can be seasonally differenced more than once, but this is
rare in practice.



Seasonal differencing may be written in terms of the backshift B as
Vs=1-8B°

since
(1 — Bs)Zt = Zt — BSZt =Zt — Zt_s .

Seasonal differencing D times is written

vb=@1-8B%P.



Some series require both ordinary (lag 1) and seasonal (lag s)
differencing to make them stationary.

(Recall that lag 1 differencing is denoted V =1 — B.)

The order in which the differencing is done does not matter.
Applying V then Vg leads to the same result as applying Vs then
V. (In general, backshift operators commute.)

We can show this as follows.

Suppose we start with the series x;, then calculate y; = Vx, and
then z; = Vsy;. This leads to

Zt =Yt — Yt—s
= (Xt — xt—1) — (Xt—s — Xt—s-1)

=Xt — Xt—1 — Xt—s + Xt—s—1-



Now the other order. Start with x;, then calculate u; = Vsx;, and
then wy = Vu;. This gives

Wi = Ut — U1
= (Xt - Xt—s) - (Xt—l - Xt—l—s)

=Xt — Xt—1 — Xt—s + Xt—s—1-

They are the same!

We can also see that the order doesn’t matter by using the
backshift operators since

Xt — Xt—1 — Xt—s + Xt—s—1 = (1 — B = B® + B*!)x,

= (1 - B)(1 - B%)x; = VVsx:
=(1-B°)(1 - B)xt = VsVx.



If we form a new series w; by differencing the series x; d times at
lag 1 and then D times at lag s, we may write

we = VoV = (1-B°)°(1 - B)x;.



Multiplicative Seasonal ARIMA Models

If z; can be (appropriately) differenced to obtain a stationary
seasonal ARMA process, then z; is a seasonal ARIMA process.

In particular, if w, = VPV9z is a stationary ARMA(p, q)(P, Q)s
process, then z; is a ARIMA(p, d, q)(P, D, Q)s process.

Since w; can be written in backshift form as
®(B%)p(B)w: = C +O(B*)0(B)a: ,

substituting w; = VPV9z, gives us the general expression for a
seasonal ARIMA model in backshift form.

ARIMA(p, d’ Q)(P, Da Q)5:

®(B%)p(B)VPVIz, = C + ©(B*)0(B)a:



Identifying a Seasonal ARIMA Model

Choose orders of differencing D and d which convert the series
into a stationary series. The time series plot of the differenced

series should appear stationary, and have a sample ACF which

decays to zero reasonably rapidly along both the seasonal lags

s,2s,3s,... and along the early non-seasonal lags 1,2, 3,...

Strong seasonal patterns in the time series plot and/or slow decay
of the sample ACF along the seasonal lags may indicate the need
for seasonal differencing. A non-stationary mean in the time series
plot and/or slow decay of the sample ACF may indicate the need
for ordinary differencing (at lag 1).

In practice, the orders of differencing are usually small. Usually
d+ D <2 Oftend+D<1.



After finding reasonable orders of differencing, study the sample
ACF, PACF, and IACF of the differenced series to determine
plausible values for p, q, P, Q. Identify p and g using the pattern
along the early non-seasonal lags 1,2,3,..., and P and @ from the
pattern along the seasonal lags s, 2s,3s, .. ..

It is difficult to identify higher order processes (those with larger
values of p, g, P, Q), particularly mixed processes, from the
patterns in ACF and PACF. In practice, low order processes usually
suffice.



