
Forecasting: General Remarks

Suppose you wish to forecast a random quantity X (say, the
temperature at noon two days from now).

You collect some relevant information I. This doesn’t determine X
precisely; some uncertainty in X remains, which is described by a
probability distribution called the conditional distribution of X
given I.

What is the best prediction (forecast) of X?

That depends on what you mean by “best”.



Suppose you will be punished (or rewarded) depending on the
accuracy of your forecast. Then the “best” forecast is the one
which minimizes your expected punishment (or maximizes your
expected reward).

Let X̂ denote your forecast (guess) for X .

Squared Error Loss:

Suppose that you will be forced to pay (X − X̂ )2 dollars if you
guess X̂ and the actual value is X . This is called “squared error
loss”.

Then the best strategy is: guess the mean.



More precisely, your best guess is the mean of the conditional
distribution of X given I, written as

X̂ = E (X | I) .

This is the value of X̂ which minimizes the mean squared error
given I, written as

E [ (X − X̂ )2 | I ] .

“Squared error loss” is the most mathematically convenient “loss
function” and is reasonable in many situations. It is the one we
will use. But it is not the only possibility. Another is . . .



Absolute Error Loss

Suppose that you will be forced to pay |X − X̂ | dollars if you guess
X̂ and the actual value is X . This is called “absolute error loss”.

Then the best strategy is: guess the median.

More precisely, the best forecast is the median of the conditional
distribution of X given I. This is the value which minimizes the
mean absolute error given I:

E
(
|X − X̂ | | I

)
.



And there are still other loss functions.

For example, if you are forced to pay $100 unless your guess X̂ is
within ε of X (where ε is small), then your best guess is the mode
of the conditional distribution.



For normal distributions mean = median = mode so that all
three loss functions lead to the same “best” prediction.

But for skewed distributions or bimodal distributions, they give
different predictions.

Luckily, for
ARIMA models with normally distributed random shocks, (∗)

the future values we wish to predict have normal distributions, so
all three loss functions give the same best prediction.

For situations like (∗), we summarize the forecasting procedure on
the next page.



If the conditional distribution of X given the information I is:

Normal with mean = E (X | I) and variance = Var(X | I),

Then

I The best forecast of X is X̂ = E (X | I)

I The forecast error X − X̂ has variance = Var(X | I).

I A 100(1− α)% confidence interval for X is given by

(X̂ − zα/2 SE , X̂ + zα/2 SE)

where SE =
√

Var(X | I) is called the “standard error” of the
forecast. (As usual, for 95% confidence use z.025 = 1.96 .)



Computing Forecasts

Forecasts are just conditional expected values (or means), which
obey rules like those of ordinary expected values. Here are some
examples.

Let X , Y , Z be random variables, and a, b, c be constants. Let
X̂ = E (X | I), Ŷ = E (Y | I), Ẑ = E (Z | I).

If X = Y + Z , then X̂ = Ŷ + Ẑ .

If X = aY + bZ + c , then X̂ = aŶ + bẐ + c .

And so on for summations involving any number of random
variables.



Forecasting Future Values Given Observations Up To Time n

Suppose {zt} is a realization of a known ARIMA(p, d , q) process;
we know the orders p, d , q and the values of all parameters.

Suppose we observe all the values zt and at (the random shocks)
up to time n. Call this set of information In:

In = {zn, zn−1, zn−2, . . . , an, an−1, an−2, . . .}

(Note: The random shocks an, an−1, an−2, . . . are not directly
observed, but can be calculated from zn, zn−1, zn−2, . . . if the
ARIMA process is invertible.)

Given In, the forecast of zn+k is ẑn+k = E (zn+k | In).

How de we compute these forecasts?



The forecasts ẑn+1, ẑn+2, ẑn+3, . . . may be computed sequentially
using the facts:

I ẑt = E (zt | In) = zt for t ≤ n
(since zt ∈ In for t ≤ n).

I ât = E (at | In) = at for t ≤ n
(since at ∈ In for t ≤ n).

I ât = E (at | In) = 0 for t > n.
The future shocks (at for t > n) have mean zero and are
independent of In (the past). Each new shock is
independent of what has gone before. Therefore, knowing In
does not help in predicting at for t > n, and the best we can
do is “guess the mean” which is zero.



Example: Forecasting an AR(1) process

zn+1 = C + φ1zn + an+1

⇒ ẑn+1 = C + φ1ẑn + ân+1 = C + φ1zn + 0 = C + φ1zn

zn+2 = C + φ1zn+1 + an+2

⇒ ẑn+2 = C + φ1ẑn+1 + ân+2 = C + φ1(C + φ1zn) + 0

= C + φ1C + φ21zn

zn+3 = C + φ1zn+2 + an+3

⇒ ẑn+3 = C + φ1ẑn+2 + ân+3 = C + φ1(C + φ1C + φ21zn)

= C + φ1C + φ21C + φ31zn

and so on.

Note: The process is a little simpler if we “mean center” (i.e.,
z̃t = zt − µz) to get rid of the C ’s.



One-Step-Ahead Prediction Errors

The one-step-ahead prection error is

zn+1 − ẑn+1 = an+1 ,

which has variance

Var(zn+1 − ẑn+1) = Var(an+1) = σ2a

(which is the same as Var(zn+1 | In)).
The 95% confidence interval for zn+1 is

ẑn+1 ± 1.96σa .

We have shown these statements for AR(1) processes, but they are
also true for any ARIMA process.



Long Range Forecasts

For an AR(1) process:

ẑn+k = C + φ1C + φ21C + · · ·+ φk−11 C + φk1zn

For a stationary process (i.e., |φ1| < 1), as k →∞ we have

φk1zn → 0

C + φ1C + φ21C + · · ·+ φk−11 C → C

1− φ1
= µz

since the sum above is a geometric series.



Thus, as k →∞,

ẑn+k → µz

and it can also be shown that

Var(zn+k | In) = Var(zn+k − ẑn+k)→ σ2z

so that the 95% confidence interval for zn+k is approximately

µz ± 1.96σz

for sufficiently large k.

These properties hold not just for stationary AR(1) processes, but
for any stationary ARMA process.



Example: Forecasting an MA(2) process (given In)

zn+1 = C + an+1 − θ1an − θ2an−1
⇒ ẑn+1 = C + ân+1 − θ1ân − θ2ân−1 = C + 0− θ1an − θ2an−1

zn+2 = C + an+2 − θ1an+1 − θ2an
⇒ ẑn+2 = C + ân+2 − θ1ân+1 − θ2ân = C + 0− 0− θ2an

zn+3 = C + an+3 − θ1an+2 − θ2an+1

⇒ ẑn+3 = C + ân+3 − θ1ân+2 − θ2ân+1 = C + 0− 0− 0

= C = µz

ẑn+k = µz for all k ≥ 3 (by the same argument).

Similarly, for an MA(q) process, ẑn+k = µz for all k ≥ q + 1.



Psi-weights and Confidence Interval Widths

Every ARIMA(p,d,q) or ARIMA(p, d , q)(P,D,Q)s process can be
expressed in MA form using the psi-weights ψk .

For a stationary ARMA process, this has the form

zt = µz + at +ψ1at−1 +ψ2at−2 +ψ3at−3 + · · · = µz +
∞∑
k=0

ψkat−k

where we define ψ0 = 1 . For the MA form of a general ARIMA
process with C = 0, just delete µz above. (For non-stationary
processes with C 6= 0, the formula is a little more complicated; µz
gets replaced by a deterministic trend.)

If p > 0 or P > 0, then infinitely many MA terms are required.



• If the process is stationary (d = 0 and D = 0 and the
AR-weights satisfy the appropriate stationarity conditions), then
the psi-weights decay to zero, that is, ψk → 0 as k →∞.

• If the process is non-stationary (d > 0 or D > 0 or the
AR-weights violate the stationarity conditions), then the
psi-weights do not decay to zero. For any lag m, no matter how
large, there will be lags k > m with “sizeable” values of ψk .



Let en(k) denote the k-step-ahead prediction error:

en(k) = zn+k − ẑn+k

Define σ[en(k)] =
√

Var(en(k)) (the “standard error”). The 95%
confidence interval for zn+k is ẑn+k ± 1.96σ[en(k)].

Confidence Interval Widths are governed by the standard error

σ[en(k)] = σa

√
1 + ψ2

1 + ψ2
2 + · · ·+ ψ2

k−1 .

For k = 1 this becomes

σ[en(1)] = σa .



Consequences:

For a stationary ARMA process, the confidence interval widths for
long run forecasts converge to a limiting value.

For non-stationary ARIMA processes, the confidence interval
widths continue to gradually increase and will (if you forecast far
enough into the future) reach arbitrarily large values.

In other words, for stationary processes zt , the standard error
σ[en(k)]→ a constant value (which equals σz) as k →∞. For
nonstationary processes, σ[en(k)]→∞ as k →∞.


