Identifying Transfer Functions for Step Interventions

Suppose
Yt = V(B)Xt + Nt
where . (8)
B°w(B
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and X; is step function representing an intervention at time teyent:
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We (tentatively) identify the form of the transfer function by
comparing the pattern of the change in the series Y} starting at
time teyent With the pattern of
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for various choices of b > 0,

w(B) =wp — w1B —wyB? — - —w,B" and
§(B)=1—6,B—6,B>—---—6,B".
Choosing b

Choosing b (the delay) is easy. If b =0, the series Y; changes
immediately at time teyent. If b > 0, the series does not change
until time teyent + b. Frequently, b = 0.



The Case r =0

If the series Y; was stationary before the intervention and reaches
a new permanent mean level a small number of time steps after
the intervention, then we don't need a denominator; we can take
r = 0. For particular values b and h, the series Y; begins to
change at time tevent + b and reaches its new permanent (mean)
level at time teyent + b + h.

If the series Y; was non-stationary before the intervention, the
situation is similar but more difficult to describe. At time
tevent + b + h, the change in the series reaches it final value.



More precisely, if b= 0 and r = 0 so that

v(B) = w(B) = wo —w1B —wyB? — -+ — wy, BN,

then Y; = C; + N; where
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The Case r=1

If r =1, the change C; converges exponentially to a limiting value
from some time point onward.

For r =1 and given values of b and h, we have C; = 0 for

t < tevent + b and C; converges exponentially to its limiting value
starting from time teyent + b + h onward. The rate of the
exponential convergence is determined by d;. What goes on from
time teyent + b to time teyent + b + h is determined by the values
wo, - - . ,wp and d1; anything is possible.

The simplest caseis r =1, b =10, h = 0. In this case exponential
convergence starts immediately at time teyent. In particular,



wo for t = tevent

c_ wo(1 + 1) for t = teyent + 1
' wo(l+ 61 + 62) for t = teyent + 2
etc.
The Case r =2

With r = 2 one can get a greater variety of behaviors, including
sinusoidally oscillating exponential convergence.

The following pages give plots of C; = v(B)X; where X; is a step
function with teyent = 21.
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