
Introduction to Transfer Functions

Consider explaining a response series {Yt} in terms of a single
input series {Xt}.

Regression and Regression with ARMA Errors

The simplest possible model is a simple regression model:

Yt = C + v0Xt + εt .

When fitting such a model, the estimated errors ε̂t are often found
to be serially correlated. In this case, we might model the errors εt
as an ARMA(p, q) process (or perhaps an ARIMA process):

Yt = C + v0Xt + Nt

where Nt denotes an ARIMA process.



Adding Lagged Terms in the Input Variable

Models may often be improved by adding lagged terms.

A transfer function model has the form

Yt = C + v0Xt + v1Xt−1 + v2Xt−2 + · · ·+ vhXt−h + Nt

where {Nt} is an ARIMA process, and the series {Xt} and {Nt}
are independent.

If we define v(B) = v0 + v1B + v2B
2 + · · ·+ vhB

h, then

v(B)Xt = v0Xt + v1Xt−1 + v2Xt−2 + · · ·+ vhXt−h

and the transfer function model can be written as

Yt = C + v(B)Xt + Nt .



Remarks:

The coefficients v0, v1, v2, . . . are often called the v -weights.

v(B) is called the “transfer function” or “impulse response
function” because . . .

v(B) “transfers” the changes in {Xt} to {Yt}.

In the simplest case where Yt = v(B)Xt , if the input {Xt} consists
of a unit pulse at time zero (i.e. X0 = 1 and Xt = 0 for t 6= 0),
then the output is Yt = vt for t = 0, 1, 2, . . . , h (and Yt = 0
otherwise). In other words, the v -weights give the response (the
output) when the input is an “impulse”.



If we make no assumptions about the pattern of the v -weights (i.e.
they are completely arbitrary), then the model

Yt = C + v(B)Xt + Nt .

is called a linear transfer function because it has the form of a
linear regression. It is also called a free-form distributed lag
model.

(We soon discuss transfer function models which assume the
v -weights follow certain patterns.)



Nt is often called the “noise process”.

If Nt is an ARMA process, then we can write

Nt =
θ(B)

φ(B)
at

so that the transfer function model becomes

Yt = C + v(B)Xt +
θ(B)

φ(B)
at .



Identifying Linear Transfer Function Models: A Simple
Approach

Choose an initial h which is relatively large, and fit a multiple
regression of Yt on Xt , Xt−1, . . . , Xt−h. Study the ACF/PACF of
the residuals from this multiple regression to identify a plausible
ARMA model for the noise process. Then re-fit the multiple
regression, but now assuming ARMA errors. Use the p-values for
the estimates v̂i to decide which values of vi are likely to be
non-zero, and make a final choice of h.

This approach is easy to implement in SAS using PROC ARIMA.

A variation: In the first stage, instead of using a plain multiple
regression, you can use regression with ARMA errors in which a
simple ARMA model (called a proxy model) such as an AR(2) is
temporarily assumed. This is used to obtain estimates N̂t of the
errors, which are then used to identify the final ARMA model for
Nt . (This method is more work to implement in SAS.)



Models with a Non-Stationary Noise Process

Suppose the residuals N̂t from the multiple regression model
appear non-stationary, and are reasonably modeled by an
ARIMA(p, d , q) model with d = 1 and no constant.

Then we assume Nt ∼ ARIMA(p, 1, q), and fit a linear transfer
function model with ARIMA(p, 1, q) noise.

How do we do this?

φ(B)(1− B)Nt = θ(B)at ⇒ Nt =
θ(B)

φ(B)(1− B)
at

so that the transfer function model becomes

Yt = C + v(B)Xt +
θ(B)

φ(B)(1− B)
at



or equivalently

(1− B)Yt = v(B)(1− B)Xt +
θ(B)

φ(B)
at

upon multiplying both sides by 1− B and using (1− B)C = 0.

This means we can fit the original linear transfer function model
with ARIMA(p,1,q) errors by differencing both Yt and Xt and
fitting a model with ARMA(p,q) errors to the differenced data.

PROC ARIMA requires us to use this approach.



Rational Distributed Lag Models

A fairly general form for the transfer function is the rational
polynomial:

v(B) =
Bbω(B)

δ(B)

where ω(B) = ω0 − ω1B − ω2B
2 − · · · − ωhB

h

and δ(B) = 1− δ1B − δ2B2 − · · · − δrB r ,

and b ≥ 0 is called the delay, dead time, shift, or lead time. If
b = 0, a change in X has an immediate effect on Y . But if b > 0,
the effect is delayed by b time units.



If we expand v(B) as a series:

v(B) =
∞∑
i=0

viB
i

we get vi = 0 for i < b. This means

v(B)Xt =
∞∑
i=0

viXt−i = vbXt−b + vb+1Xt−b−1 + · · ·



The Noise Process
If the noise process Nt is a mean zero ARMA(p, q) process, we
may write

Nt =
θ(B)

φ(B)
at

where φ(B) = 1− φ1B − · · · − φpBp

and θ(B) = 1− θ1B − · · · − θqBq

and at is a random shock sequence (white noise).

To estimate the transfer function model

Yt = C +
Bbω(B)

δ(B)
Xt +

θ(B)

φ(B)
at

in PROC ARIMA, we use



ESTIMATE INPUT=(b$(1,2,...,h)/(1,2,...,r)X) P=p Q=q ;

where b, r , h, p, q are integers denoting the delay, denominator
order, numerator order, AR-order, and MA-order. If b = 0, omit
b$. If r = 0 (i.e., δ(B) = 1), omit /(1,2,...,r). If h = 0, (i.e.,
ω(B) = 1), omit (1,2,...,h). The commas in INPUT=... are
optional.



Actually, SAS allows ω(B), δ(B), θ(B), φ(B) to have arbitrary
multiplicative forms, and you can specify exactly what lag terms
you want in each factor. For example, to estimate the model:

Yt = C +
B2(ω0 − ω1,1B

3)(1− ω2,1B
12)

1− δ1,1B2 − δ1,2B6
Xt

+
1− θ1,1B3 − θ1,2B5 − θ1,3B8

(1− φ1,1B − φ1,2B2)(1− φ2,1B12)
at

we use

ESTIMATE INPUT=(2$(3)(12)/(2,6)X) P=(1,2)(12) Q=(3,5,8) ;



The ALTPARM option

If the ALTPARM option (alternative parameterization) is used in
the ESTIMATE statement, then the first numerator factor is taken
to be

ω0(1− ω1B
1 − · · · − ωhB

h) instead of ω0 − ω1B
1 − · · · − ωhB

h

in our first example, and

ω0(1− ω1,1B
3) instead of ω0 − ω1,1B

3

in our second.



Identifying Transfer Functions

How do we identify transfer function models? That is, how do we
choose the delay b and the orders of the numerator and
denominator polynomials ω(B) and δ(B) in the transfer function
v(B) = Bbω(B)/δ(B)?

Suppose {Xt} is a random input series.

Definition: jointly stationary processes

If {Yt} and {Xt} are both stationary processes and the correlation
Corr(Ys ,Xt) depends on the time difference s − t only, we say that
{Yt} and {Xt} are jointly stationary.



If {Xt} and {Yt} are jointly stationary, then we can define the
cross-correlation function:

ρxy (s) = Corr(xt , yt+s) = Corr(yt , xt−s)

Identifying Transfer Functions for Jointly Stationary Series

Suppose {Xt} and {Yt} are jointly stationary, and

Yt = C + v(B)Xt + Nt

where the series {Xt} and {Nt} are independent.

We describe how to identify transfer functions in this special case.

We begin by discussing the even more special case where Xt is
white noise so that Corr(Xs ,Xt) = 0 when s 6= t.



Fact: If Xt is white noise, then

vk =
σy
σx

ρxy (k) , k = 0, 1, 2, 3, . . .

so that the v -weights are proportional to the theoretical CCF (and
will be approximately proportional to the sample CCF if the series
length n is large enough).

Proof: Mean center each series: X̃t = Xt − µx and Ỹt = Yt − µy .
Then the constant C disappears and our model becomes

Ỹt = v(B)X̃t + Nt .



Thus

ρxy (k) = Corr(Yt ,Xt−k) =
Cov(Yt ,Xt−k)

σyσx

=
1

σyσx
E (ỸtX̃t−k)

=
1

σyσx
E
[
X̃t−k(Nt + v0X̃t + v1X̃t−1 + v2X̃t−2 + · · · )

]
(†)

=
1

σyσx
(vkσ

2
x) =

σx
σy

vk .

In going from (†) to the next line we used

EX̃t−kNt = EX̃t−k ENt = 0 · 0 = 0

by independence of Xs and Nt for all s and t. We also used

EX̃ 2
t−k = σ2x and EX̃t−k X̃t−j = 0 for j 6= k .



Essentially same argument shows

Another Fact:

ρxy (k) = Corr(xt , yt+k) = 0 for k = −1,−2,−3, . . .

This says that, if {Xt} and {Yt} satisfy a transfer function model
and {Xt} is white noise, the current and past values of Y cannot
influence future values of X ; there is no feedback.



What good is the special case we just proved?

Any jointly stationary series {Yt} and {Xt} can be reduced to this
case by pre-whitening:

I Find an ARMA model for Xt :

φx(B)Xt = θx(B)bt .

Here bt denotes a white noise series. This model gives us a
filter f (B) which converts Xt into white noise:

bt =
φx(B)

θx(B)
Xt = f (B)Xt where f (B) =

φx(B)

θx(B)
.

Thus f (B)Xt is white noise.

I Apply the filter f (B) to both {Xt} and {Yt}. Let
X ′t = f (B)Xt and Y ′t = f (B)Yt . The series X ′t (formerly
called bt) is white noise. This process is called pre-whitening.



I The series X ′t and Y ′t follow a transfer function model with
the same transfer function v(B) as the original model:

Y ′t = v(B)X ′t + N ′t (‡)

since multiplying both sides of Yt = v(B)Xt + Nt by f (B)
gives

f (B)Yt = v(B)f (B)Xt + f (B)Nt

which has the form in (‡).

I The CCF between X ′t and Y ′t will be proportional to the
v -weights. (This is exactly true for the theoretical CCF if we
use the true model for Xt to do the pre-whitening, and
approximately true for the sample CCF if the series are long
enough and we find a reasonable model for Xt .)

I Use the sample CCF between X ′t and Y ′t to determine the
form of v(B).



Comment on Feedback: As shown earlier, if the pre-whitened
series X ′t and Y ′t follow a transfer function model, then
ρx ′y ′(k) = 0 for k < 0. If the sample CCF ρ̂x ′y ′(k) is “large” at
one or more negative lags, this is evidence of feedback and the
model is suspect.

After identifying a tentative form for v(B), use PROC ARIMA to
fit this model (not trying to model the noise) and use the residuals
to identify an ARMA process for the noise.

Fit and refine the resulting model.

In your final model, the residuals should resemble white noise and
also be uncorrelated with the input series. Examine the usual
residual diagnostics and also the cross-correlations between the
residuals and the input series.



What if the series {Xt} and {Yt} are not jointly stationary?

Try differencing.

If {Xt} and {Yt} are not stationary, try to find orders of
differencing (non-seasonal and seasonal) such that

X ∗t = (1− B)d1(1− Bs)D1Xt and Y ∗t = (1− B)d2(1− Bs)D2Yt

are stationary.

If {X ∗t } and {Y ∗t } appear to be jointly stationary, then apply the
pre-whitening procedure to identify a transfer function model and
then identify an ARMA noise model (possibly seasonal, say, an
ARIMA(p, 0, q)(P, 0,Q)) for these series. Estimating this model
leads to:

Y ∗t =
Bbω(B)

δ(B)
X ∗t +

θ(B)

φ(B)
at



If the orders of differencing are the same for the two series:

d1 = d2 ≡ d and D1 = D2 ≡ D

this model has a nice interpretation in terms of the original series:

(1− B)d(1− Bs)DYt =
Bbω(B)

δ(B)
(1− B)d(1− Bs)DXt +

θ(B)

φ(B)
at

becomes (upon dividing through by (1− B)d(1− Bs)D)

Yt =
Bbω(B)

δ(B)
Xt +

θ(B)

(1− B)d(1− Bs)Dφ(B)
at .



We recognize this as a transfer function model with an ARIMA
noise process:

Nt =
θ(B)

(1− B)d(1− Bs)Dφ(B)
at

is an ARIMA(p, d , q)(P,D,Q) process.


