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1 IntroductionLet X1;X2; : : : ;Xn be n points independently drawn from a uniform distribution onthe unit interval. The corresponding order statistics are X(1) � X(2) � � � � � X(n). Wesay that an m : d clump exists if there are m consecutive points all contained withinan interval of length d. We let YI denote the number of m : d clumps, i.e.YI = n�m+1Xi=1 IfX(i+m�1) �X(i) � dg ; (1)where for convenience we take X(0) = 0 and X(n+1) = 1.Random points on a circle arise in some applications. We can also de�ne the numberof m : d clumps in this situation in a manner similar to the above. Given n+1 randompoints X1;X2; : : : ;Xn+1 on a circle with unit circumference, we de�ne the circular orderstatistics X(1);X(2); : : : ;X(n+1) to be these same points ordered in a clockwise fashionstarting with X(1) � X1. We de�ne X(j) � X(i) to be distance one must travel in aclockwise direction to go from X(i) to X(j). We can now de�ne the number of m : dclumps YC by YC = n+1Xi=1 IfX(i+m�1) �X(i) � dg :Here we are using addition mod n+1 in the subscripts, that is, we take X(0) = X(n+1)and X(i) = X(n+1+i) : For remarks that pertain to both the interval and circle cases,we shall drop the subscripts I and C and just use Y to denote the number of m : dclumps. Note that to obtain the closest correspondence between the formulas in theinterval and circle cases, the number of random points on the circle is always n + 1whereas the number of points on the interval is n.Let Nx;x+d be the number of points Xi contained in the interval (x; x + d). Thescan statistic Nd is de�ned as the maximum number of points in a window of lengthd, that is, Nd = supxNx;x+d. This statistic is used to test for the presence of non-random clustering. Scan statistics have been applied in many �elds and are describedin Newell (1963), Naus (1965, 1966, 1979), Ne� and Naus (1980), and Wallensteinand Ne� (1987). Because of the complicated and impractical computation of the exactKey words: Compound Poisson approximations; Markov Chain approximation; Spacings.2



distribution of the scan statistic and the limited applicability of the asymptotic results,recent research in this area has mainly concentrated on �nding approximations andbounds. See, e.g., Cressie (1980), Naus (1982), Gates and Westcott (1984), Bermanand Eagleson (1985), Wallenstein and Ne� (1987), Glaz (1989), Loader (1991), Glaz(1992), Roos (1993), and Glaz et al. (1994).In this paper we are interested in the number of clumps Y mainly because it isclosely related to the scan statistic Nd. In particular, Y � 1 if and only if Nd � m.This implies PfY � 1g = PfNd � mg. The number of clumps has some importance inits own right. Glaz (1993) suggests that Y (which he calls the multiple scan statistic)would be a reasonable statistic for testing uniformity; if the value of Y is much largerthan expected, we reject the hypothesis of uniformity. We can use the moments of Yto approximate the distribution of Y and hence obtain approximate critical values forthis test. The distribution of Y has been studied by several authors. Among them areGlaz and Naus (1983), Dembo and Karlin (1992), Roos (1993), and Glaz et al. (1994).Much of the recent research has been devoted to �nding Poisson and compound Poissonapproximations to the distribution of Y .The goal of this paper is to approximate the distribution of the scan statistic byusing the moments of the number of clumps Y . We work with the moments of Ybecause they are relatively easy to compute and lead naturally to approximations andbounds for the value of PfY � 1g = PfNd � mg. The paper will be organized asfollows.In section 2 we show how to use the moments of Y to compute bounds and approx-imations for PfY � 1g. Section 2.1 presents upper and lower bounds for PfY � 1g.Section 2.2 contains an approximation to PfY � 1g based on a simple two-stateMarkov chain model. This approximation uses only the �rst two moments of Y . Sec-tion 2.3 presents approximations to PfY � 1g based on a variety of di�erent com-pound Poisson approximations to the distribution of Y . Tables are given to illustrateour bounds and approximations and compare them with others in the literature.In Section 3 we describe how to compute the moments of Y . In section 3.2 we giveexplicit general expressions for the �rst and second moments of both YI and YC. Forhigher order moments, we use the formulas in Section 3.3 and the computer programswritten by Lin (1993) to derive expressions valid for particular values of m. In Section3



3.4 we illustrate this process by computing the third and fourth moments of YI whenm = 4.2 Approximations and BoundsIn the next section we will demonstrate how to compute the moments �i = EY i for1 � i � 4. In this section we show how to use these moments to compute bounds andapproximations for PfY � 1g.2.1 Bounds for PfY � 1gLet p = PfY � 1g. Our approach to obtaining bounds for p is a simple one; toobtain an upper (lower) bound for p, we �nd a convenient random variable which isan upper (lower) bound for the indicator IfY�1g, and then compute the expectation ofthis random variable. Let w denote the largest possible value of Y ; for YI this valueis w = n �m + 1. If � and  are any two functions satisfying �(0) � 0 �  (0) and�(k) � 1 �  (k) for k = 1; 2; : : : ; w, then clearly E�(Y ) � p � E (Y ). When � and are polynomials of order at most 4, these expectations can be easily computed fromthe values �1; �2; �3; �4. Thus, by selecting appropriate polynomials � and  , we canobtain bounds on p using the moments.We have obtained excellent results with the following families of polynomials. Forinteger pairs (i; j) satisfying 1 � i � j � 2 de�ne�(y; i; j) = 1 � (y � i)(y � i� 1)(y � j)(y � j � 1)i(i+ 1)j(j + 1) : (2)For integers i satisfying 2 � i � w � 2 de�ne (y; i) = 1� (y � 1)(y � w)(y � i)(y � i� 1)wi(i+ 1) : (3)These polynomials are of order 4 and can easily be shown to satisfy the requiredconditions. Therefore, maxi;j E�(Y ; i; j) � p � mini E (Y ; i) : (4)The lower and upper bounds in (4) have been computed in numerous examples. In ourtables they are labeled as LB and UB. The max and min in (4) are usually attainedfor fairly small values of i and j, so there is actually very little calculation involved4



in implementing these bounds. The bounds we have just described are not necessarilythe strongest possible. Given the �rst k moments of Y and no other information, thebest possible upper and lower bounds for p can be obtained via linear programming(see Kwerel (1975), Pr�ekopa (1988), Krauth (1991)). We have not pursued this morecomplicated route since we suspect that the resulting improvements in the boundswould be slight.In judging the adequacy of the bounds and approximations we propose in thispaper, we shall rely heavily on the work of Glaz (1989). For the scan statistic on theinterval, let P (m; d; n) = PfNd � mg = PfYI � 1g = p: Glaz (1989) gave extensivetables comparing various approximations and bounds for P (m; d; n) over a broad rangeof values for m, d, and n. We display excerpts from his tables in our tables 3, 5, 7, 9,10, 11, 12, 13. We shall compare our upper bound UB with that given in equation (2.9)of Glaz (1989); we refer to this bound as GUB in our tables. This bound was the bestof the two upper bounds that Glaz studied. We �nd that UB and GUB are very closecompetitors. For small values of m, UB can sometimes be a substantial improvementover GUB. But for larger values of m, GUB tends to be slightly better.Glaz (1989) also studied the performance of one lower bound which is given in hisequation (2.12). He refers to this as the Kwerel lower bound because it is based onan inequality of Kwerel (1975). (The same inequality was also given by Dawson andSanko� (1967).) For this reason we abbreviate this bound as KLB in our tables. Intable 2 for n = 25 we see that our bound LB improves uniformly on KLB; in manycases the improvement is fairly dramatic. Because of the di�culty of the computationsinvolved, Glaz did not report KLB in his tables for larger values of n. But it is nothard to show that LB will be strictly larger than KLB for all values of m, d, and n.One might expect this on general grounds. The bound KLB can be written in termsof the �rst two moments of YI and is, in fact, the best lower bound based on the �rsttwo moments. Any reasonable bound based on the �rst four moments (such as LB)ought to do better.We note that when p is small (say p < :10) the bounds LB and UB are usuallyfairly tight. Thus, at commonly used signi�cance levels like 0.05 or 0.01, the boundsLB and UB will often su�ce for carrying out hypothesis tests using the scan statistic.We cannot currently compute the bounds LB and UB for m > 10. This is because5



of the di�culty of computing �4 (and to a lesser extent �3) by our current methods.Our approach (described in more detail in Section 3) involves obtaining, for each valueof m, an exact algebraic expression for �4 which is valid for all n and d. The computertime and memory required to construct this expression increases with m and preventsus from using larger values of m. The advantage of our approach is that, once theexpression for �4 has been obtained for some m, this expression can be stored and usedto rapidly compute �4 to arbitrary precision for any values of n and d. The remarks ofthis paragraph also apply to those approximations to p developed in Section 2.3 whichuse the fourth moment.2.2 A \Markov Chain" ApproximationWe shall now develop some approximations to p = PfY � 1g. If you are given valuesfor the �rst k moments of Y , a natural way to approximate PfY � 1g is to �nd a\reasonable" discrete distribution which has the same �rst k moments as Y and use theprobability given by this distribution as your approximation. This may be thought of asa \method of moments" approximation. In this section and the next, we shall presenttwo di�erent \method of moments" approximations. We give these approximationsonly for the interval case, that is, Y = YI . The development for the circle case Y = YCwould be similar.Our �rst approximation is based on a simple two-state Markov chain model. Thisapproximation will use only the �rst two moments of YI . For this reason we cancompute this approximation even for very large values of m. We shall call this approx-imation MC2.Let w = n �m + 1 denote the largest possible value of YI . In (1) we de�ne YI asa sum of w indicator random variables. The approximation MC2 is based on the hopethat this sequence of indicators behaves roughly like a two-state Markov chain. Let Pbe the transition matrix of a two-state Markov chain with o�-diagonal entries p01 = aand p10 = b. The stationary distribution for this chain is given by �0 = b=(a+ b) and�1 = a=(a + b). Let Z1; Z2; Z3; : : : be a Markov chain with transition matrix P whichis started from the stationary distribution. De�ne Y � =Pwi=1 Zi : Routine calculationsshow that PfY � � 1g = 1� (1� �)�1 � �s�w�1 ; (5)6



EY � = w� ; (6)VarY � = w�(1� �) + 2�(1� �)(s� 1)(w � s(1� �)) ; (7)where for convenience we have introduced the quantities� = �1 = aa+ b; s = 1a+ b; and � = �1� 1s�w : (8)Setting the right hand sides of (6) and (7) equal to the mean � = �1 and variance�2 = �2 � �21 of YI respectively, solving for � and s, and plugging these values into (5)leads to an approximation for p. The quantity � is typically very small and neglectingit has little e�ect on the answer. If we drop � from (7) it becomes a quadratic equationin s and the system of equations (6) and (7) can be solved in closed form as� = �=w ; and s = 12 �w + 1 �q(w � 1)2 � 4c� (9)where c = (�2 � w�(1� �))=(2�(1 � �)). Using these values in (5) gives the approxi-mation we have labeled as MC2 in our tables.Considering the crudeness of the Markov chain model, the approximation MC2 doesremarkably well. It is fairly accurate throughout the range of m, d, n, values we used;it does not seem to do badly anywhere. Glaz (1989) reviews various approximationsto P (m; d; n) and makes recommendations concerning their use. We have listed in ourtables the three approximations recommended by Glaz. They are the approximationsgiven by Glaz [1989, eq. (3.3)], Naus [1982, eq. (6.1)] and Wallenstein and Ne� [1987,eq. (1)] which are labeled as Glaz, Naus and WN in our tables. The approximation MC2compares well with these. On the whole, MC2 seems to do better than any of theother approximations for larger values of p, and its performance for small p is about asgood as any of the others. Unfortunately, it is hard to draw �rm conclusions becausethe values of P (m; d; n) we use in our comparisons are only estimates obtained viasimulation; they are (typically) not accurate beyond the third decimal place.2.3 Compound Poisson ApproximationsIn this section we present some \method of moments" approximations using compoundPoisson distributions. First, we shall de�ne the compound Poisson (CP) distributionand motivate its use in this setting. 7



Let Z1; Z2; Z3; : : : be a sequence of independent random variables with Zi �Poisson(�i) where � = (�1; �2; �3; : : :) satis�es �i � 0 for all i and Pi �i < 1. ThenY � =Pi iZi has a compound Poisson distribution denoted by Y � � CP(�).For points on the interval, the number of clumps may be written as YI =Pn�m+1i=1 IBiwhere Bi denotes the event that X(i+m�1) �X(i) � d. When d� m=n, the probability� � P (Bi) is small. If the events Bi were independent, the distribution of YI wouldbe approximately a Poisson distribution with a mean of (n � m + 1)�. Of course,the events are not independent; when ji � jj is small, we expect the events Bi andBj to be positively correlated, that is, we expect P (BijBj) > P (Bi) or perhaps evenP (BijBj)� P (Bi). However, if n is large and m=n� 1, it is intuitively clear that Biand Bj are very close to being independent whenever ji� jj � m� 1.Problems exhibiting short range dependence and long range independence arisefrequently in the applied probability literature. Poisson and compound Poisson ap-proximations are frequently useful in the solution of these problems. The book byAldous (1989) contains many examples and references. The \Poisson clumping heuris-tic" of Aldous may be applied in our situation. When n is large and d� m=n� 1, weexpect the random set S = fi : Bi occursg to consist of groups of nearby values (be-cause of the short range dependence) with the separation between groups determined,at least roughly, by a Poisson process (because of the long range independence). ThusYI = jSj should have approximately a compound Poisson distribution. (For any setA, we use jAj to denote the number of elements in A.) In particular, we expect thedistribution of YI to be well approximated by CP(�) where �k is the expected numberof groups of size k in S.If Y � � CP(�), it is immediate thatPfY � � 1g = 1 � expf� 1Xk=1 �kg : (10)Our goal is to �nd � such that the distribution of Y � is close to that of YI , and thenuse (10) as our approximation to p = P (m; d; n). Formula (10) su�ces for the workin this paper. If one is interested in the entire distribution of YI , it is natural touse the approximation PfYI = jg � PfY � = jg. In this case, one needs a way tocalculate the quantities pj = PfY � = jg. A convenient way to do this is to start from8



p0 = exp(�Pi �i) and then for j � 1 use the recursionjpj = jXi=1(i�i)pj�i : (11)Finding a good choice for � is di�cult. Empirical work on this problem has beendone by Lin (1993). Some important theoretical work is that of Roos (1993). TheoremG of Roos (1993) and Theorem 1 of Glaz et al. (1994) show that if n!1 and d! 0in such a way that EYI remains �xed, then there is a sequence of compound Poissonrandom variables Y �n � CP(�n) such that supB jPfYI 2 Bg � PfY �n 2 Bgj = O(1=n).Roos (1993) gives an explicit description of the values �n used in this theorem. Unfor-tunately, it seems to be very di�cult to compute these values unless m is quite small.Glaz et al. (1994) in their Equations (3.3){(3.5) suggest a method of approximating �and use this to approximate the distribution of YI .In this paper we take an empirical approach to the choice of �. The approximationswe have tried are of the following type: Given the �rst k moments of Y = YI , we choose� to match these moments, that is, we �nd � such that Y � � CP(�) has E[(Y �)i] =EY i for 1 � i � k. There are many ways to choose � which match the moments. Wehave worked mainly with two methods of doing this; the resulting approximations for pproduced by these two methods we call APk and CPGk respectively. In method APk,we assume that �i = 0 for i > k and we choose �1; �2; : : : ; �k to match the moments.Note that AP1 is just a simple Poisson approximation; it is the same as the Poissonapproximation given in (2.10) of Glaz et al. (1994). In method CPGk, we assume thatthe values �i decay geometrically starting with �k�1, that is �i = �k�1ri�k+1 for i � kwhere r satis�es 0 � r < 1. We then choose �1; : : : ; �k�1 and r to match the givenmoments. The approximations CPGk are closely related to the compound Poissonapproximation studied by Glaz et al. (1994). They propose a speci�c form for � whichhas �2; : : : ; �m�1 decaying in a roughly geometric fashion and sets �i = 0 for i > m�1.Let �j denote the jth cumulant of Y . The cumulants �j are easily computed fromthe moments �` = EY ` using the relation�`+1 = X̀k=0 k̀!�k�`+1�k : (12)In this formula we take �0 = 1. The approximations APk and CPGk are analyticallyconvenient because the cumulants of Y � are linear in �; it is straightforward to show9



that if Y � � CP(�), then the cumulants ��j of Y � are given by��j = 1X̀=1 `j�`: (13)The approximations APk and CPGk are implemented as the following series of steps.First, compute the �rst k moments of Y . Then use (12) to obtain the �rst k cumulantsof Y . Next, equate the cumulants �j = ��j for j = 1; : : : ; k and use (13) to solve for �.Finally, use (10) to compute the approximation for p.The only one of these steps which requires elaboration is \solving for �". We mustsolve the system of k equations given by (13) with j = 1; 2; : : : ; k. For APk this stepis very simple. Let �k = (�1; �2; : : : ; �k)0 and �k = (�1; �2; : : : ; �k)0. De�ne Bk = (bj`)to be the k � k matrix with entries bj` = `j. Then (13) becomes �k = Bk�k so that�k = B�1k �k. Sometimes this produces a vector �k with one or more negative entries�i. When this happens, it means there does not exist a CP distribution of the assumedform (�i = 0 for i > k) with the given values for the �rst k moments. When k = 1, thesystem of equations (13) reduces to �1 = �1, and (10) then leads to the approximationAP1 = 1 � expf��1g : (14)For CPGk it is rather more di�cult to \solve for �". The system of equations wemust solve can be formulated in many ways. One convenient way is the following. Wesolve the system of k nonlinear equations�j = k�2X̀=1 `ja` + gj(r)ak�1 (j = 1; 2; : : : ; k) (15)for the k unknowns a1; : : : ; ak�1; r. Here we have introduced the functionsgj(x) = 1X̀=1 `jx` (16)and the auxiliary quantities a1; : : : ; ak�1 which are related to �1; : : : ; �k�1 via�i = ai + riak�1 for i = 1; : : : ; k � 2 ;�k�1 = rk�1ak�1 : (17)The solution obtained is legitimate so long as �i � 0 for i = 1; : : : ; k�1 and 0 � r < 1.Sometimes there does not exist a CP distribution of the assumed form (�i = �k�1ri�k+110



for i � k ) with the given values for the �rst k moments. In these cases, attemptingto compute the approximation CPGk will lead to a non-legitimate solution of (15) inwhich at least one of these conditions is violated.In our work we solve the system (15) using the procedure fsolve in the symbolicmath package MAPLE. In doing this, it is useful to note that the functions gj(x) maybe computed symbolically from g0(x) = x=(1 � x) and the recursiongj+1(x) = x @@xgj(x) : (18)When k = 2, various simpli�cations occur and the solution to (15) has the simpleclosed form �1 = �1(1 � r)2 and r = (�2=�1)� 1(�2=�1) + 1 : (19)This solution is legitimate (leads to a valid CP distribution) whenever �2 � �1. Pluggingthe solution (19) into (10) leads to the approximationCPG2 = 1� exp(� 2�11 + (�2=�1)) : (20)Recall that �1 and �2 are just the mean and variance of Y .The approximations APk and CPGk were chosen partly on the basis of analyticalconvenience and partly on the basis of intuition and simulation work. When p is smalland m is not too large, we thought it would be very rare for S (de�ned in the paragraphbefore equation (10)) to contain any large groups. This was the motivation underlyingthe approximation APk; if groups of more than k values in S are extremely rare, aCP approximation which assumes �i = 0 for i > k ought to do well. In simulationsinvolving larger values of p or m, we observed that large groups did occur in S and thatthe frequency distribution of the group sizes seemed to tail o� in a roughly geometricfashion. This was the motivation for the approximations CPGk.In our tables, we list values for the approximations AP1{AP4, CPG2 and CPG4.In some cases, the approximations AP2{AP4 and CPG4 cannot be computed becausethere exists no CP distribution having the required form and the given moments. Whenthis happens, we place an asterisk in the table. On the whole, the approximations APkdid not perform well. The approximation AP1 is always larger than p and is oftenfar from p. However, AP1 is very easily computed, so it might be useful as a roughapproximation to p. The approximation AP2 tends to be smaller than p, but is usually11



a considerable improvement on AP1. The approximations AP2{AP4 often cannot becomputed; they generally fail to exist when m or p is large. However, when AP3 andAP4 do exist, they are usually good approximations for p. Approximations CPG2 andCPG4 seem to be very reliable. CPG2 is very similar to MC2, but MC2 does a littlebetter when n is small or p is close to 1. For small n, there are many cases in whichCPG4 cannot be computed. But for large n, we were able to compute CPG4 exceptin a few cases with p close 1. When CPG4 exists, it is usually better than both CPG2and MC2. The overall performance of CPG4 also seems to be superior to that of theapproximations Glaz, Naus, and WN listed in our tables. However, our comparisonshave so far been limited to m � 10, so we cannot draw any de�nite conclusions yet.3 The Moments of Y3.1 NotationIn our calculation of the moments, we rely extensively on properties of spacings. Thespacings S1; S2; : : : ; Sn+1 are simply the lengths of the spaces between consecutive orderstatistics X(i). More precisely, for n random points on the unit interval (or n+1 pointson the circle), we de�ne Si = X(i) �X(i�1) for 1 � i � n + 1. (Reminder: for pointson the interval we are taking X(0) = 0 and X(n+1) = 1.) Hu�er (1988) and Lin (1993)have developed a general approach to calculating probabilities involving several linearcombinations of spacings. Lin (1993) has devised algorithms and written computerprograms which implement this approach. By re-expressing Y in terms of spacings, weare able to use these results and computer programs to compute the moments of Y .The following notation is useful for representing sums of spacings: For any 4 �f1; 2; : : : ; n+ 1g, de�ne S(4) = Xi24Si :Let �i denote the particular subset fi + 1; i + 2; : : : ; i+m� 1g so that we may writeX(i+m�1)�X(i) = S(�i) : As in section 2.3 we de�ne the event Bi = fX(i+m�1)�X(i) �dg = fS(�i) � dg. Then we have Y =Xi IBiwith the range of summation being 1 � i � n �m+ 1 for YI , and 1 � i � n + 1 forYC : Now de�ne Pi = P (Bi); Pi;j = P (Bi \ Bj); Pi;j;k = P (Bi \ Bj \ Bk); etc. The12



moments of Y can be easily expressed in terms of these quantities. For example thethird moment is just EY 3 =Xi Xj Xk Pi;j;k : (21)The results of Hu�er (1988) and Lin (1993) can be used to evaluate quantitieslike Pi;j;k = PfS(�i) � d; S(�j) � d; S(�k) � dg. We have used these results to�nd convenient closed form expressions for EY = Pi Pi and EY 2 = Pi;j Pi;j . Theseformulas are given in section 3.2 below. The derivation of these formulas is presentedin Appendix B.For the third and fourth moments we have been less ambitious. Instead of givinggeneral formulas for EY 3 and EY 4, we have devised a procedure which uses the com-puter programs of Lin (1993) to produce formulas valid only for a given value of m.These formulas consist of piecewise polynomials in the argument d. To illustrate the�nal product of our methods, in Section 3.4 we give the explicit formulas for EY 3I andEY 4I when m = 4.Essentially, our approach is to use the programs of Lin (1993) to �nd exact ex-pressions for the terms Pi;j;k occurring in equation (21), and then add these variousterms together to obtain an exact expression for EY 3. Implementing this exactly asstated above would be highly ine�cient because many of the terms Pi;j;k are identicaland the computer program would waste time computing the same quantities over andover. The reason so many terms are identical is that the spacings S1; S2; : : : ; Sn+1 areexchangeable random variables. Thus, the joint distribution of (S(�i); S(�j); S(�k)) de-pends on i; j; k only through the pattern of overlaps among the sets �i; �j; �k, that is,the distribution depends only on the values j�i \ �jj; j�i \ �kj; j�j \ �kj, and j�i \ �j \ �kj.After combining identical terms in (21) and the corresponding formula for EY 4, weobtain the \reduced" expressions reported in section 3.3. It is these expressions whichare then evaluated by the computer programs. The process of going from the originalformula (such as (21)) to the \reduced" formula is basically one of counting identi-cal terms and is accomplished by elementary combinatorics. The derivations for theformulas in section 3.3 are given in Appendix C.The formulas in Sections 3.2 and 3.3 are complicated, but it is important to notethat the complexity does not increase with the sample size n. The number of terms inthese formulas depends only on the value of m. Thus, the computer time involved in13



calculating the moments will be roughly the same for all n.3.2 Formulas for the First and Second MomentsIn this section, we state formulas for the �rst and second moments of the number ofthe clumps. The proofs are given in Appendix B.The following notation will be used in both interval and circular cases. For �xed nand d de�ne G(i) = iXj=0 nj!dj(1� d)n�j (22)and F (i; j) = iXk=0 jXl=0  nk ; l!dk+l(1 � 2d)n�k�l+ : (23)The values G(i) are cumulative binomial probabilities, and F (i; j) are cumulative tri-nomial probabilities.Interval Case E(YI) = (n�m+ 1)[1 �G(m � 2)] : (24)For n � 2(m� 1) ,E(Y 2I ) = E(YI) + (n �m+ 1)(n �m)[1� 2G(m� 2)]+ 4m�3Xi=0 (m� i� 2)[n�m� (m� i� 1)(m� i� 3)=2]G(i)� 2m�3Xi=0 m�3Xj=0 [(n� 2m+ 3)� (m� i� 3)(m� j � 3)]F (i; j)+ (n� 2m+ 3)(n� 2m+ 2)F (m� 2;m� 2) : (25)Glaz and Naus (1983) study the number of clumps for random points on the unitinterval. They derive the expectation, variance and approximate distribution of YI interms of the quantities Pi and Pi;j and give exact expressions for Pi and Pi;j . Theformula they give for EY 2I is more complicated than ours and the number of terms intheir formula grows with the sample size n. This makes their formula di�cult to usefor large n.Circular Case 14



E(YC) = (n+ 1)[1 �G(m� 2)] :For n � 2(m� 2) ,E(Y 2C ) = E(YC) + n(n + 1)[1� 2G(m� 2)]+ 4(n + 1)m�3Xi=0 (m� i� 2)G(i)� 2(n+ 1)m�3Xi=0 m�3Xj=0 F (i; j)+ (n+ 1)(n � 2m+ 4)F (m� 2;m� 2) : (26)3.3 Expressions for the Third and Fourth MomentsInterval CaseThe expressions for E(Y 3I ) and E(Y 4I ) given below are valid for all n so long asempty sums (where the lower limit exceeds the upper limit) are taken to be zero, andbinomial coe�cients �ab� are de�ned to be zero whenever a < b. We also use thenotation (x)+ = max(x; 0).E(Y 3I ) = E(YI) + 6m�2Xi=1 (n �m� i+ 1)+P0;i + 6 n� 2m+ 32 !P0;m�1+ 6m�2Xi=1 i+m�2Xj=i+1 (n�m� j + 1)+P0;i;j + 12m�2Xi=1  n� 2m� i+ 32 !P0;i;i+m�1+ 6 n� 3m+ 53 !P0;m�1;2m�2 : (27)E(Y 4I ) = E(YI ) + 14m�2Xi=1 (n�m� i+ 1)+P0;i + 14 n� 2m+ 32 !P0;m�1+ 36m�2Xi=1 i+m�2Xj=i+1 (n�m� j + 1)+P0;i;j + 72m�2Xi=1  n � 2m� i+ 32 !P0;i;i+m�1+ 36 n� 3m+ 53 !P0;m�1;2m�2 + 24m�2Xi=1 i+m�2Xj=i+1 j+m�2Xk=j+1 (n�m+ 1 � k)+P0;i;j;k+ 48m�2Xi=1 i+m�2Xj=i+1  n � 2m � j + 32 !P0;i;j;j+m�1+ 72m�2Xi=1  n � 3m � i+ 53 !P0;i;i+m�1;i+2m�215



+ 24m�2Xi=1 m�2Xj=1  n� 2m� i� j + 32 !P0;i;i+m�1;i+m�1+j+ 24 n� 4m+ 74 !P0;m�1;2m�2;3m�3 : (28)Circular CaseIn the circular case, it is possible for the spacings involved in quantities like Pi;j;kand Pi;j;k;` to \wrap around" the circle. The formulas we give below are valid providedthere is no \wrapping around" and the conditions on n ensure this does not occur.For n � 3(m� 2) ,E(Y 3C) = E(YC) + 6(n+ 1)m�2Xi=1 P0;i + 3(n+ 1)(n � 2m+ 4)P0;m�1+ 6(n+ 1)m�2Xi=1 i+m�2Xj=i+1 P0;i;j + 6(n + 1)m�2Xi=1 (n� 2m+ 4 � i)P0;i;i+m�1+ (n+ 1)(n� 3m+ 6)(n � 3m+ 5)P0;m�1;2m�2 : (29)For n � 4(m� 2) ,E(Y 4C ) = E(YC) + 14(n + 1)m�2Xi=1 P0;i + 7(n+ 1)(n � 2m+ 4)P0;m�1+ 36(n + 1)m�2Xi=1 i+m�2Xj=i+1 P0;i;j + 36(n + 1)m�2Xi=1 (n � 2m+ 4 � i)P0;i;i+m�1+ 6(n + 1)(n� 3m� 6)(n � 3m+ 5)P0;m�1;2m�2+ 24(n + 1)m�2Xi=1 i+m�2Xj=i+1 j+m�2Xk=j+1 P0;i;j;k+ 24(n + 1)m�2Xi=1 i+m�2Xj=i+1 (n� 2m+ 4 � j)P0;i;j;j+m�1+ 12(n + 1)m�2Xi=1 (n� 3m+ 6 � i)(n� 3m+ 5 � i)P0;i;i+m�1;i+2m�2+ 12(n + 1)m�2Xi=1 m�2Xj=1 (n� 2m+ 4� i� j)P0;i;i+m�1;i+m�1+j+ (n+ 1)(n � 4m+ 8)(n� 4m+ 7)(n � 4m+ 6)P0;m�1;2m�2;3m�3 : (30)3.4 ExampleTo illustrate the results of the preceding section, we shall give explicit formulas forEY 3I and EY 4I when m = 4. These formulas are valid for all n and d. The formulas16



are written in terms of functions b and R which are de�ned for integers j; k � 0 byb(j; k) = 8>><>>: �n�jk � for n � j + k ,0 for n < j + k . (31)and R(j; k) = 8>><>>: �nj�dj(1 � kd)n�j for kd < 1 ,0 for kd � 1 . (32)Substituting the value m = 4 into (27), we �nd that E(Y 3I ) is equal to the followingsum: b(3; 1)P0 + 6b(4; 1)P0;1 + 6b(5; 1)P0;2 + 6b(5; 2)P0;3 + 6b(5; 1)P0;1;2 + 6b(6; 1)P0;1;3+ 6b(6; 1)P0;2;3 + 6b(7; 1)P0;2;4 + 12b(6; 2)P0;1;4 + 12b(7; 2)P0;2;5 + 6b(7; 3)P0;3;6:The program of Lin (1993) has been designed so that it can be conveniently used toevaluate sums of this form. It can also handle a broad array of other problems involvinglinear combinations of spacings. The output of Lin's program is an algebraic expressionwritten in a form suitable for reading by the symbolic math package MAPLE. In thisexample we obtain the following expression for E(Y 3I ):(+6*b(7,3)+30*b(7,2)+61*b(7,1)+37*b(7,0)+19*b(6,0)+7*b(5,0)+1*b(4,0))+(-18*b(7,3)-12*b(7,2)+29*b(7,1)+23*b(7,0)-1*b(6,0)-13*b(5,0)-1*b(4,0))*R(0,1)+(-18*b(7,3)-60*b(7,2)-73*b(7,1)-31*b(7,0)-7*b(6,0)-1*b(5,0)-1*b(4,0))*R(1,1)+(-18*b(7,3)-84*b(7,2)-157*b(7,1)-91*b(7,0)-43*b(6,0)-13*b(5,0)-1*b(4,0))*R(2,1)+(+18*b(7,3)-66*b(7,2)-54*b(7,1)-60*b(7,0)-18*b(6,0)+6*b(5,0))*R(0,2)+(+36*b(7,3)-36*b(7,2)-78*b(7,1)-66*b(7,0)-30*b(6,0))*R(1,2)+(+72*b(7,3)+72*b(7,2)+18*b(7,1)-18*b(7,0)-18*b(6,0))*R(2,2)+(+108*b(7,3)+252*b(7,2)+174*b(7,1)+48*b(7,0))*R(3,2)+(+108*b(7,3)+324*b(7,2)+282*b(7,1)+72*b(7,0))*R(4,2)+(-6*b(7,3)+48*b(7,2)-36*b(7,1))*R(0,3)+(-18*b(7,3)+96*b(7,2)-36*b(7,1))*R(1,3)+(-54*b(7,3)+168*b(7,2)-24*b(7,1))*R(2,3)17



+(-144*b(7,3)+216*b(7,2))*R(3,3)+(-324*b(7,3)+144*b(7,2))*R(4,3)+(-540*b(7,3))*R(5,3)+(-540*b(7,3))*R(6,3)This expression can now be numerically evaluated by MAPLE for various values of nand d. Some simpli�cations of this formula are possible. For example, the leading term(+6*b(7,3)+30*b(7,2)+61*b(7,1)+37*b(7,0)+19*b(6,0)+7*b(5,0)+1*b(4,0))can be shown to be simply (n� 3)3+. However, we do not know a good general way torecognize such simpli�cations.The fourth moment is obtained in a similar fashion. Substituting m = 4 into (28),we �nd that E(Y 4I ) is equal tob(3; 1)P0 + 14b(4; 1)P0;1 + 14b(5; 1)P0;2 + 14b(5; 2)P0;3+ 36b(5; 1)P0;1;2 + 36b(6; 1)P0;1;3 + 36b(6; 1)P0;2;3 + 36b(7; 1)P0;2;4+ 72b(6; 2)P0;1;4 + 72b(7; 2)P0;2;5 + 36b(7; 3)P0;3;6+ 24b(6; 1)P0;1;2;3 + 24b(7; 1)P0;1;2;4 + 24b(7; 1)P0;1;3;4 + 24b(8; 1)P0;1;3;5+ 24b(7; 1)P0;2;3;4 + 24b(8; 1)P0;2;3;5 + 24b(8; 1)P0;2;4;5 + 24b(9; 1)P0;2;4;6+ 48b(7; 2)P0;1;2;5 + 48b(8; 2)P0;1;3;6 + 48b(8; 2)P0;2;3;6 + 48b(9; 2)P0;2;4;7+ 72b(8; 3)P0;1;4;7 + 72b(9; 3)P0;2;5;8 + 24b(7; 2)P0;1;4;5 + 24b(8; 2)P0;1;4;6+ 24b(8; 2)P0;2;5;6 + 24b(9; 2)P0;2;5;7 + 24b(9; 4)P0;3;6;9 :which can be re-expressed as the following algebraic expression:(+24*b(9,4)+180*b(9,3)+590*b(9,2)+1105*b(9,1)+671*b(9,0)+369*b(8,0)+175*b(7,0)+65*b(6,0)+15*b(5,0)+1*b(4,0))+(-96*b(9,4)-252*b(9,3)+92*b(9,2)+923*b(9,1)+675*b(9,0)+367*b(8,0)+95*b(7,0)-45*b(6,0)-29*b(5,0)-1*b(4,0))*R(0,1)+(-96*b(9,4)-540*b(9,3)-1252*b(9,2)-1521*b(9,1)-713*b(9,0)-253*b(8,0)-45*b(7,0)+7*b(6,0)-1*b(5,0)-1*b(4,0))*R(1,1)+(-96*b(9,4)-684*b(9,3)-2116*b(9,2)-3709*b(9,1)-2181*b(9,0)-1145*b(8,0)-505*b(7,0)-165*b(6,0)-29*b(5,0)-1*b(4,0))*R(2,1)+(+144*b(9,4)-324*b(9,3)-1306*b(9,2)-864*b(9,1)-434*b(9,0)18



-616*b(8,0)-270*b(7,0)-20*b(6,0)+14*b(5,0))*R(0,2)+(+288*b(9,4)+216*b(9,3)-1220*b(9,2)-2596*b(9,1)-1448*b(9,0)-852*b(8,0)-400*b(7,0)-92*b(6,0))*R(1,2)+(+576*b(9,4)+1728*b(9,3)+1496*b(9,2)-56*b(9,1)-400*b(9,0)-168*b(8,0)-200*b(7,0)-64*b(6,0))*R(2,2)+(+864*b(9,4)+4104*b(9,3)+7668*b(9,2)+7164*b(9,1)+2736*b(9,0)+684*b(8,0)+156*b(7,0))*R(3,2)+(+864*b(9,4)+4968*b(9,3)+11556*b(9,2)+13812*b(9,1)+6360*b(9,0)+2148*b(8,0)+348*b(7,0))*R(4,2)+(-96*b(9,4)+684*b(9,3)-24*b(9,2)-876*b(9,1)-936*b(9,0)-120*b(8,0))*R(0,3)+(-288*b(9,4)+1188*b(9,3)+1176*b(9,2)-180*b(9,1)-744*b(9,0)-120*b(8,0))*R(1,3)+(-864*b(9,4)+1404*b(9,3)+3528*b(9,2)+2124*b(9,1)-144*b(8,0))*R(2,3)+(-2304*b(9,4)-864*b(9,3)+4512*b(9,2)+5088*b(9,1)+1392*b(9,0))*R(3,3)+(-5184*b(9,4)-9720*b(9,3)-3360*b(9,2)+2568*b(9,1)+1344*b(9,0))*R(4,3)+(-8640*b(9,4)-24840*b(9,3)-20160*b(9,2)-5640*b(9,1))*R(5,3)+(-8640*b(9,4)-29160*b(9,3)-27360*b(9,2)-7560*b(9,1))*R(6,3)+(+24*b(9,4)-288*b(9,3)+648*b(9,2)-288*b(9,1)+24*b(9,0))*R(0,4)+(+96*b(9,4)-864*b(9,3)+1296*b(9,2)-288*b(9,1))*R(1,4)+(+384*b(9,4)-2448*b(9,3)+2112*b(9,2)-144*b(9,1))*R(2,4)+(+1440*b(9,4)-6048*b(9,3)+2448*b(9,2))*R(3,4)+(+4896*b(9,4)-12096*b(9,3)+1584*b(9,2))*R(4,4)+(+14400*b(9,4)-17280*b(9,3))*R(5,4)+(+34560*b(9,4)-12960*b(9,3))*R(6,4)+(+60480*b(9,4))*R(7,4)+(+60480*b(9,4))*R(8,4) .This expression appears rather bulky, but it is easily handled by MAPLE, and compu-tations using this formula are fast and accurate.19
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performance of MC2 and CPG2 for m > 10. For comparison we include in our tablesthe values of Glaz, Naus, WN, KLB, GUB described above. These values were taken fromGlaz (1989). In Tables 10, 11, 12, 13, the values of Prob were also taken from Glaz(1989); they are estimates from simulations with 20,000 trials.
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Table 1: Approximations to P (m; d; n) for n = 20m d Prob AP1 AP2 CPG2 MC2 AP3 AP4 CPG4 LB UB3 .005 .07428 .07737 .07420 .07433 .07432 .07428 .07428 .07428 .07428 .074303 .01 .24801 .26175 .24788 .24869 .24845 .24797 � � .24788 .248943 .05 .99619 .99139 � � .99637 � � � .96758 > 14 .01 .01567 .01692 .01558 .01568 .01568 .01568 .01567 .01567 .01567 .015684 .05 .65524 .72286 .65652 .66692 .66179 � � � .62642 .707294 .10 .99770 .99588 � � .99789 � � � .97189 > 15 .01 .00064 .00068 .00064 .00064 .00064 .00064 .00064 .00064 .00064 .000645 .05 .17752 .22464 .16585 .17934 .17868 .17919 .17753 .17772 .17589 .183605 .10 .80160 .88084 .80573 .82268 .81166 � � � .73514 .920466 .05 .02984 .03787 .02778 .02994 .02991 .03028 .02976 .02985 .02972 .030236 .10 .35340 .47671 .30464 .36241 .35803 .35877 .35743 .35746 .33719 .379296 .15 .83405 .92210 .83407 .86040 .84419 � � � .76148 .992807 .05 .00377 .00460 .00359 .00377 .00377 .00380 .00376 .00377 .00376 .003797 .10 .10091 .14576 .08109 .10208 .10159 � � .10135 .09907 .105447 .15 .43985 .61027 � .45594 .44654 .44683 � � .40217 .488707 .20 .83381 .93550 .82161 .86455 .84238 � � � .75603 .993368 .05 .00038 .00044 .00036 .00038 .00038 .00038 .00038 .00038 .00038 .000388 .10 .02182 .03054 .01846 .02193 .02188 � � .02186 .02161 .022568 .15 .15982 .24810 � .16315 .16146 � � .16215 .15304 .170478 .20 .47596 .67600 � .49725 .48287 � � � .42550 .534599 .10 .00376 .00498 .00337 .00376 .00376 .00386 � .00376 .00373 .003829 .15 .04479 .06859 � .04528 .04507 � � .04506 .04387 .046799 .20 .19701 .32003 � .20289 .19952 � � .20303 .18527 .214129 .25 .48419 .70528 � .50940 .49047 � � � .43407 .5462910 .10 .00052 .00066 .00049 .00052 .00052 .00053 .00052 .00052 .00052 .0005310 .15 .01008 .01451 .00822 .01013 .01011 � � .01010 .00997 .0104210 .20 .06410 .10399 � .06523 .06469 � � .06486 .06191 .0674810 .25 .21622 .36248 � .22464 .21946 � � � .20047 .23671Note: P(m,d,n) (Prob) is exact.� indicates the approximation is not de�ned for this case.24



Table 2: Approximations to P (m; d; n) for n = 25m d Prob AP1 AP2 CPG2 MC2 AP3 AP4 CPG4 LB UB3 .01 .42507y .44703 .42539 .42673 .42613 � � � .42326 .433114 .01 .03825 .04201 .03780 .03819 .03818 .03817 .03815 .03815 .03814 .038194 .05 .90919 .93897 .91691 .91942 .91499 � � � .84476 > 15 .05 .41014 .51125 .38308 .41736 .41445 .41103 � � .39565 .438335 .10 .98544 .99302 .99010 .99032 .98791 � � � .93264 > 16 .05 .09916 .13351 .08743 .09990 .09968 .10246 � .09941 .09817 .103176 .10 .72834 .85912 .68723 .75167 .73965 .70834 � � .65721 .865717 .05 .01714 .02278 .01562 .01735 .01734 .01780 � .01734 .01722 .017727 .20 .99811 .99931 .99913 .99914 .99814 � � � .96774 > 18 .10 .10132 .15682 � .10239 .10193 � � .10222 .09770 .108199 .10 .02527 .03771 � .02521 .02516 � � .02523 .02464 .0263110 .20 .31509y .52687 � .32620 .31893 � � � .27775 .36342Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials except for the values indicated by y which are exact.� indicates the approximation is not de�ned for this case.Table 3: Approximations to P (m; d; n) for n = 25m d Prob Glaz Naus WN KLB GUB3 .01 .42507y .424 .402 .509 .379 .5104 .01 .03825 .038 .038 .039 .038 .0394 .05 .90919 .879 .827 > 1 .697 > 15 .05 .41014 .391 .377 .455 .314 .4565 .10 .98544 .953 .925 > 1 .815 > 16 .05 .09916 .097 .096 .101 .081 .1016 .10 .72834 .667 .646 .880 .527 .8947 .05 .01714 .017 .017 .017 .015 .0177 .20 .99811 .969 .970 > 1 .875 > 18 .10 .10132 .099 .099 .102 .076 .1029 .10 .02527 .025 .025 .025 .019 .02510 .20 .31509y .298 .299 .317 .216 .324These approximations and bounds are Glaz (1989, eq. 3.3),Naus (1982, eq. 6.1), Wallenstein and Ne� (WN) (1987, eq. 1),Glaz (KLB) (1989, eq. 2.12), and Glaz (GUB) (1989, eq. 2.9).All the values are taken from Glaz's (1989) Table 1.25



Table 4: Approximations to P (m; d; n) for n = 100m d Prob AP1 AP2 CPG2 MC2 AP3 AP4 CPG4 LB UB3 .001 .35218 .36525 .35139 .35203 .35196 .35180 .35180 .35180 .35119 .355543 .005 .99977 .99985 .99982 .99982 .99981 � � � .97852 > 14 .001 .01373 .01448 .01378 .01381 .01381 .01382 .01381 .01381 .01381 .013824 .005 .68032 .74538 .67054 .68372 .68287 .68127 .68092 .68093 .63779 .773204 .01 .99823 .99955 .99838 .99864 .99851 � � � .95941 > 15 .005 .12481 .14840 .12020 .12502 .12499 .12575 .12479 .12493 .12433 .127285 .01 .72584 .82863 .68908 .73249 .73079 .73218 .72763 .72810 .65097 .882996 .01 .21309 .27825 .18820 .21311 .21293 � � .21296 .20797 .225487 .01 .03762 .04900 .03339 .03723 .03723 .03856 � .03734 .03703 .038688 .01 .00523 .00659 .00475 .00515 .00515 .00529 � .00517 .00514 .005299 .05 .99744 .99999 � .99899 .99846 � � � .94566 > 110 .05 .92437 .99679 � .93914 .93303 � � � .80081 > 1Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials.� indicates the approximation is not de�ned for this case.Table 5: Approximations to P (m; d; n) for n = 100m d Prob Glaz Naus WN GUB GCP3 .001 .35218 .351 .347 .426 .4263 .005 .99977 .999 .998 > 1 > 14 .001 .01373 .014 .014 .014 .0144 .005 .68032 .670 .657 > 1 > 14 .01 .99823 .997 .992 > 1 > 1 .99675 .005 .12481 .124 .124 .131 .1325 .01 .72584 .710z .694 > 1 > 1z .71446 .01 .21309 .210z .208 .232 .232z .21237 .01 .03762 .037z .037 .038 .038z .03768 .01 .00523 .0052z .0052z .00529 .05 .99744 .983 .979 > 1 > 110 .05 .92437 .888z .863 > 1 > 1All the approximated values are taken from Glaz's (1989) Table 2except GCP which is taken from Table 1 (3.4) of Glaz ed al. (1994)and values indicated z which are taken from Glaz's (1992) Table 1.26



Table 6: Approximations to P (m; d; n) for n = 500m d Prob AP1 AP2 CPG2 MC2 AP3 AP4 CPG4 LB UB4 .001 .99735 .99919 .99682 .99745 .99742 .99734 .99733 .99733 .95048 > 15 .001 .50888 .57725 .49307 .50886 .50875 .51141 .50812 .50863 .49128 .550216 .001 .06873 .08042 .06604 .06830 .06830 .06880 .06829 .06837 .06820 .069158 .005 .97756 .99897 � .97876 .97825 � � .98007 .87547 > 19 .005 .68108 .86927 � .67903 .67836 � � .68584 .57121 .9496710 .005 .27074 .41673 � .26699 .26688 � � .27148 .23490 .32096Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials.� indicates the approximation is not de�ned for this case.Table 7: Approximations to P (m; d; n) for n = 500m d Prob Glaz Naus WN GUB4 .001 .99735 .997 .996 > 1 > 15 .001 .50888 .505 .503 .700 .7006 .001 .06873 .069 .068 .071 .0718 .005 .97756 .970 .968 > 1 > 19 .005 .68108 .670 .665 > 1 > 110 .005 .27074 .268 .266 .309 .311All the approximated values are taken from Glaz's (1989) Table 3.Table 8: Approximations to P (m; d; n) for n = 1000m d Prob AP1 AP2 CPG2 MC2 AP3 AP4 CPG4 LB UB6 .001 .92690 .97318 .89412 .92743 .92724 � � .92735 .82754 > 17 .001 .35264 .44264 .31704 .35192 .35188 � � .35298 .33922 .384898 .001 .06081 .07817 .05504 .06049 .06049 .06256 � .06077 .06026 .063029 .001 .00767 .00990 .00727 .00783 .00783 .00803 � .00786 .00782 .00804Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials.� indicates the approximation is not de�ned for this case.27



Table 9: Approximations to P (m; d; n) for n = 1000m d Prob Glaz Naus WN GUB6 .001 .92690 .923 .921 > 1 > 17 .001 .35264 .351 .341 .432 .4328 .001 .06081 .061 .061 .063 .0639 .001 .00767 .0079 .0078 .0079 .0079All the approximated values are taken from Glaz's (1989) Table 4.Table 10: Approximations to P (m; d; n) for n = 25m d Prob CPG2 MC2 Glaz Naus WN KLB GUB12 .20 .043 .04335 .04308 .043 .043 .043 .031 .043Note: Prob, Glaz, Naus, WN, KLB, GUB are taken from Glaz's (1989) Table 1.Table 11: Approximations to P (m; d; n) for n = 100m d Prob CPG2 MC2 Glaz Naus WN GUB12 .05 .353 .35903 .35712 .345 .338 .399 .41314 .05 .060 .05761 .05756 .059 .058 .060 .06114 .10 .999 .99983 .99953 .984 .981 > 1 > 116 .10 .858 .88372 .87070 .800 .783 > 1 > 118 .10 .408 .41394 .40925 .401 .383 .449 .49420 .10 .116 .11460 .11420 .121 .115 .120 .12822 .10 .025 .02307 .02304 .025 .024 .024 .02526 .20 .900 .92391 .90099 .839 .830 > 1 > 128 .20 .585 .59467 .57744 .569 .542 .619 .775Note: Prob, Glaz, Naus, WN, GUB are taken from Glaz's (1989) Table 2.28



Table 12: Approximations to P (m; d; n) for n = 500m d Prob CPG2 MC2 Glaz Naus WN GUB11 .01 .998 .99870 .99854 .996 .995 > 1 > 112 .005 .019 .01753 .01753 .018 .018 .018 .01812 .01 .935 .93285 .93142 .918 .910 > 1 > 113 .01 .665 .65461 .65349 .651 .640 > 1 > 114 .01 .341 .32922 .32893 .336 .329 .397 .40815 .01 .135 .13208 .13204 .137 .135 .144 .14816 .01 .048 .04611 .04610 .048 .048 .049 .049Note: Prob, Glaz, Naus, WN, GUB are taken from Glaz's (1989) Table 3.
Table 13: Approximations to P (m; d; n) for n = 1000m d Prob CPG2 MC2 Glaz Naus WN GUB12 .005 .996 .99603 .99585 .994 .992 > 1 > 113 .005 .891 .88777 .88700 .885 .877 > 1 > 114 .005 .575 .56259 .56218 .572 .562 .822 .84615 .005 .267 .25601 .25593 .266 .261 .302 .30816 .005 .098 .09471 .09470 .099 .098 .103 .10417 .005 .032 .03095 .03095 .033 .032 .033 .03418 .005 .010 .00930 .00930 .0097 .0096 .0097 .009819 .005 .0025 .00261 .00261 .0027 .0027 .0027 .0027Note: Prob, Glaz, Naus, WN, GUB are taken from Glaz's (1989) Table 4.29



B Derivation of the First and Second MomentsBefore beginning the proofs, we need some preliminaries. First, we note the followingfacts: Pi = P0 for all i ;Pi;i+j = P0;j for all i; j ; (33)Pi;i+j = P0;m�1 for j � m� 1 :Here i and j are positive integers which satisfy certain obvious restrictions, for example,for random points on the interval, Pi;j is not de�ned except when both i and j are lessthan n � m + 3. These facts are simple consequences of the exchangeability of thespacings. In particular, the condition j � m� 1 in the third fact ensures that Bi andBi+j involve disjoint sets of spacings.It is also convenient to introduce the auxiliary quantity Q(i; j; k) de�ned as follows.Let 41;42;43 be disjoint subsets of f1; 2; : : : ; n + 1g having sizes j41j = i; j42j =j; j43j = k. De�neQ(i; j; k) = PfS(41) + S(43) > d; S(42) + S(43) > dg : (34)The values i; j; k can be zero in which case we take S(;) = 0: This de�nition implicitlyrelies upon the exchangeability of the spacings.The quantity Q(i; j; k) is useful mainly because it satis�es the following recursion:When i; j and k are positive,Q(i; j; k) = Q(i� 1; j; k) +Q(i; j � 1; k) �Q(i; j; k � 1) : (35)This is proved in Hu�er (1988), see equation (10). Given values for the boundaryterms Q(0; j; k); Q(i; 0; k) and Q(i; j; 0), this recursion completely determines Q. Theboundary terms are easily evaluated using elementary properties of spacings. In termsof the functions G and F de�ned in (22) and (23), these boundary terms areQ(0; j; k) = Q(i; 0; k) = PfS1 + � � � + Sk > dg = G(k � 1) ; (36)Q(i; j; 0) = PfS1 + � � �+ Si > d; Si+1 + � � �+ Si+j > dg = F (i� 1; j � 1) : (37)We shall need the following two facts in our arguments. They are derived using therecursion and boundary terms given above. We shall defer the proofs of these factsuntil the end of this section. 30



Lemma 1 For n � 2(x � 1),x�1Xk=1Q(k; k; x� k) = 2 x�2Xi=0(x� 1� i)G(i)� x�2Xi=0 x�2Xj=0 F (i; j):Lemma 2 For n � 2(x � 1),x�1Xk=1 kQ(k; k; x� k) = x�2Xi=0[(x� i� 1)3 + (x� i� 1)]G(i)� x�2Xi=0 x�2Xj=0[(x� i� 2)(x� j � 2) + (x� 1)]F (i; j):Finally, we note that the quantities Pi and Pi;j are easily re-expressed in terms ofF;G, and Q. It is clear thatP0 = PfS(�0) � dg = 1 � PfS(�0) > dg = 1 �G(m� 2) : (38)Also, by switching to complementary events and using (34) we see thatP0;k = PfS(�0) � d; S(�k) � dg= 1� PfS(�0) > dg � PfS(�k) > dg + PfS(�0) > d; S(�k) > dg= 1� 2G(m � 2) +Q(k; k;m� 1� k) (39)for k � m� 1. When k = m� 1, fact (37) impliesP0;m�1 = 1 � 2G(m� 2) + F (m� 2;m� 2) : (40)Interval CaseWe may now proceed with the proofs. Using (33) and (38) it is immediate thatE(YI) = n�m+1Xi=1 Pi = (n�m+ 1)P0 = (n�m+ 1)[1�G(m� 2)]:Noting that Pi;i = Pi , the second moment of YI can be written asE(Y 2I ) = n�m+1Xi=1 n�m+1Xj=1 Pi;j = E(YI) + 2Xi<j Pi;j : (41)For any k > 0, the number of pairs (i; j) with j � i = k is equal to n �m� k + 1. Ashort combinatorial argument shows that the number of pairs (i; j) with j� i � m� 1is equal to �n�2m+32 �. Thus using (33) leads toEY 2I = EYI + 2m�2Xk=1 (n�m� k + 1)P0;k + 2 n � 2m + 32 !P0;m�1 : (42)31



Now substituting for P0;k and P0;m�1 using (39) and (40), and then doing some manip-ulations we obtainEY 2I = EYI + (n �m+ 1)(n �m)(1 � 2G(m � 2))+ (n� 2m+ 3)(n� 2m+ 2)F (m� 2;m� 2)+ 2(n�m+ 1)m�2Xk=1 Q(k; k;m� k � 1)� 2m�2Xk=1 kQ(k; k;m� k � 1) :The remaining sums can be evaluated using Lemmas 1 and 2 with x = m � 1. Thisleads to the desired result given in (25).Circular CaseThe arguments are very similar to those in the interval case. Using (33) and (38) itis immediate that E(YC) = n+1Xi=1 Pi = (n+ 1)[1 �G(m � 2)] :The second moment can be written asE(Y 2C ) = n+1Xi=1 n+1Xj=1 Pi;j = E(YC) +Xi 6=j Pi;j :Employing (33), we may combine equal terms to obtain= E(YC) + 2(n+ 1)m�2Xk=1 P0;k + (n+ 1)(n� 2m+ 4)P0;m�1 : (43)This expression is valid only for n � 2(m� 2).When n � 2(m � 2), the coe�cient (n + 1)(n � 2m + 4) in (43) is the number ofways to select two disjoint sets �i and �j of m� 1 consecutive spacings. It is obtainedby the following argument. Since we have n + 1 spacings on the circle, we have n+ 1ways to select the �rst set �i. Once we have chosen the �rst set of spacings, we haveonly (n+1)� (m� 1) spacings left. The number of ways to choose m� 1 consecutivespacings from these is (n+ 1) � (m� 1)� (m� 2) = (n� 2m+ 4):The coe�cient 2(n+1) in (43) is the number of ways to choose two sets �i and �j ofm� 1 consecutive spacings having a given number k(� m� 2) of spacings in common.There are n+ 1 ways to choose �i . Given �i , there are two ways to choose �j .Substituting (39) and (40) for P0;k and P0;m�1 in (43) and then doing some manip-ulations we obtainE(Y 2C ) = E(YC) + n(n+ 1)(1 � 2G(m� 2)) + (n+ 1)(n� 2m+ 4)F (m� 2;m� 2)32



+ 2(n + 1)m�2Xk=1 Q(k; k;m� k � 1) :Now applying Lemma 1 with x = m� 1 gives us the result (26).Proving the LemmasOur proofs of lemmas 1 and 2 will be based on the following fact.Lemma 3 IfS(x; y) = f(x; y) + S(x� 1; y) + S(x; y � 1) � S(x� 1; y � 1)for integers x > c; y > c, and S(x; c) = S(c; y) = 0 for x � c; y � c, thenS(x; y) = xXi=c+1 yXj=c+1 f(i; j):This fact has an easy induction proof (which we omit). Note that the relationS(x; y)� S(x� 1; y)� S(x; y � 1) + S(x� 1; y � 1) = f(x; y)is a discrete version of@2S@x@y = f(x; y) with solution S(x; y) = Z xc du Z yc dv f(u; v) :Proof of Lemma 1:De�ne S(x; y) = x^y�1Xk=1 Q(x� k; y � k; k);where x ^ y = min(x; y). This de�nition is motivated by the fact thatS(x; x) = x�1Xk=1Q(x� k; x� k; k) = x�1Xk=1Q(k; k; x� k):Write z � (x ^ y)� 1. The recursion (35) impliesS(x; y) = zXk=1Q(x� 1� k; y � k; k) + zXk=1Q(x� k; y � 1� k; k)� zXk=1Q(x� k; y � k; k � 1)= I(x � y)Q(0; y � x+ 1; x� 1) + S(x� 1; y)+I(x � y)Q(x� y + 1; 0; y � 1) + S(x; y � 1)�Q(x� 1; y � 1; 0)� S(x� 1; y � 1)33



so long as we take S(1; y) = S(x; 1) = 0,= f(x; y) + S(x� 1; y) + S(x; y � 1) � S(x� 1; y � 1)with f(x; y) = (1 + �xy)G(x ^ y � 2)� F (x� 2; y � 2): (44)Therefore, S(x; y) = xXi=2 yXj=2 f(i; j)and with a little manipulation we see thatS(x; x) = x�2Xi=0 G(i) + x�2Xi=0(2x � 3 � 2i)G(i)� x�2Xi=0 x�2Xj=0 F (i; j)= 2 x�2Xi=0(x� 1 � i)G(i)� x�2Xi=0 x�2Xj=0 F (i; j):Proof of Lemma 2De�ne S�(x; y) = x^y�1Xk=1 (x ^ y � k)Q(x� k; y � k; k):This de�nition is motivated by the fact thatS�(x; x) = x�1Xk=1(x� k)Q(x� k; x� k; k) = x�1Xk=1 kQ(k; k; x� k):Write z � (x ^ y)� 1 again. The recursion (35) impliesS�(x; y) = zXk=1(x ^ y � k)Q(x� 1� k; y � k; k)+ zXk=1(x ^ y � k)Q(x� k; y � 1 � k; k)� zXk=1(x ^ y � k)Q(x� k; y � k; k � 1)= I(x � y) [Q(0; y � x+ 1; x� 1) + S(x� 1; y)] + S�(x� 1; y)+I(x � y) [Q(x� y + 1; 0; y � 1) + S(x; y � 1)] + S�(x; y � 1)�(x ^ y � 1)Q(x� 1; y � 1; 0) � S�(x� 1; y � 1)so long as we take S�(1; y) = S�(x; 1) = 0,= f�(x; y) + S�(x� 1; y) + S�(x; y � 1) � S�(x� 1; y � 1)34



with f�(x; y) = (1 + �xy)G(x ^ y � 2) + I(x � y)S(x� 1; y)+I(x � y)S(x; y � 1)� (x ^ y � 1)F (x� 2; y � 2)= (1 + �xy)G(x ^ y � 2) + I(x � y) [S(x� 1; y)� S(x; y)]+I(x � y) [S(x; y � 1) � S(x; y)] + (1 + �xy)S(x; y)�(x ^ y � 1)F (x� 2; y � 2)= f(x; y) + I(x � y) [S(x� 1; y)� S(x; y)]+I(x � y) [S(x; y � 1) � S(x; y)] + (1 + �xy)S(x; y)�(x ^ y � 2)F (x� 2; y � 2):Hence, by Lemma 3 we haveS�(x; x) = xXi=2 xXj=2 f�(i; j)= S(x; x)� 2 xXi=2 S(i; i) + xXi=2 xXj=2 S(i; j) + xXi=2 S(i; i)� xXi=2 xXj=2(i ^ j � 2)F (i� 2; j � 2)= � x�1Xi=2 S(i; i) + xXi=2 xXj=2 S(i; j)� xXi=2 xXj=2(i ^ j � 2)F (i� 2; j � 2)= � x�1Xi=2 iXk=2 iXh=2 f(k; h) + xXi=2 xXj=2 iXk=2 jXh=2 f(k; h)� xXi=2 xXj=2(i ^ j � 2)F (i� 2; j � 2):Now expand f(k; h) using the de�nition (44). Collecting the terms which involve F ,we have x�1Xi=2 i�2Xk=0 i�2Xh=0F (k; h)� xXi=2 xXj=2 i�2Xk=0 j�2Xh=0F (k; h)� xXi=2 xXj=2(i ^ j � 2)F (i� 2; j � 2)= x�3Xk=0 x�3Xh=0(x� h _ k � 2)F (k; h)� x�2Xk=0 x�2Xh=0(x� k � 1)(x� h� 1)F (k; h)� x�2Xk=0 x�2Xh=0(h ^ k)F (k; h)= � x�2Xk=0 x�2Xh=0 [(x� k � 1)(x � h � 1) + h ^ k � x+ h _ k + 2]F (k; h)35



= � x�2Xk=0 x�2Xh=0 [(x� k � 2)(x � h � 2) + x� 1]F (k; h):The notation h _ k � max(h; k) was used in the above. Collecting the terms whichinvolve G, we have� x�1Xi=2 iXk=2 iXh=2(1 + �kh)G(h ^ k � 2) + xXi=2 xXj=2 iXk=2 jXh=2(1 + �kh)G(h ^ k � 2)= �2 x�1Xi=2 i�2Xk=0(i� 1� k)G(k) + xXi=2 xXj=2 iXk=2 jXh=2 I(k � h)G(k � 2)+ xXi=2 xXj=2 iXk=2 jXh=2 I(h � k)G(h� 2)= �2 x�3Xk=0 x�1Xi=k+2(i� 1 � k)G(k) + 2 xXk=2 xXh=k xXi=k xXj=hG(k � 2)= � x�2Xk=0(x� k � 2)(x� k � 1)G(k) + x�2Xk=0(x� k � 1)2(x� k)G(k)= x�2Xk=0 h(x� k � 1)3 + (x� k � 1)iG(k):Therefore, S�(x; x) = x�2Xi=0[(x� i� 1)3 + (x� i� 1)]G(i)� x�2Xi=0 x�2Xj=0[(x� i� 2)(x� j � 2) + (x� 1)]F (i; j):C Expressions for Third and Fourth MomentsIn this section we derive the expressions given in Section 3.3 for the third and fourthmoments of YI and YC .C.1 The Third Moments of YInterval Case: From the de�nition of YI we obtainE(Y 3I ) = n�m+1Xi=1 n�m+1Xj=1 n�m+1Xk=1 Pi;j;k :Grouping together terms according to the number of distinct values in the 3-tuple(i; j; k) and then rewriting the sums so that the indices i; j; k are ordered (that is,36



i < j < k) leads to= E(YI) + 2 � 3!1!2! n�mXi=1 n�m+1Xj=i+1 Pi;j + 3! n�m�1Xi=1 n�mXj=i+1 n�m+1Xk=j+1 Pi;j;k : (45)Because the spacings are exchangeable, many of the terms in (45) are equal. Theargument which follows is really nothing more than counting and combining the similarterms. In this argument we shall freely use the exchangeability property, frequentlywithout explicit mention.The �rst sum in (45) is the same as that in (41). Thus the argument leading to (42)gives us = E(YI) + 6m�2Xi=1 (n �m� i+ 1)P0;i + 6 n� 2m+ 32 !P0;m�1+6 n�m�1Xi=1 n�mXj=i+1 n�m+1Xk=j+1 Pi;j;k : (46)The triple summation in (46) can be rewritten asXi;j;k Pi;j;k;where 1 � i < j < k � n � m + 1. Making the change of variables r = j � i ands = k � j gives us = Xi;r;sPi;i+r;i+r+s;where i; r; s � 1 and i+ r+ s � n�m+1. Using exchangeability to simplify the aboveequation yields = Xi;r;sP0;r;r+s :Summing over i leads to =Xr;s (n�m+ 1� r � s)P0;r;r+s; (47)where r; s � 1 and r + s � n�m.If n � 3(m� 1), the summation (47) can be separated into four parts. The sum is�rst broken into two parts depending on whether or not �0 intersects �r. Each of theseparts is in turn broken in two depending on whether or not �r intersects �r+s. Theresulting four parts can be written in short asXr;s = Xr�m�2s�m�2+ Xr�m�2s�m�1+ Xr�m�1s�m�2+ Xr�m�1s�m�1 :37



The second and third sums are the same by symmetry, so that we have= Xr;s�m�2+2 Xr�m�2s�m�1+ Xr;s�m�1;where r; s � 1 and r + s � n�m.We now examine these three terms. For convenience, we shall call them (a), (b) and(c). (a) = m�2Xr=1 m�2Xs=1 (n�m+ 1� r � s)P0;r;r+s = m�2Xr=1 r+m�2Xt=r+1 (n�m+ 1� t)P0;r;t :(b) = m�2Xr=1 n�m�rXs=m�1(n �m+ 1 � r � s)P0;r;r+s = m�2Xr=1 n�mXt=r+m�1(n�m+ 1� t)P0;r;t :Because �r and �t are disjoint, the above sum can be simpli�ed as= m�2Xr=1  n� 2m� r + 32 !P0;r;r+m�1 :Finally, we have (c) = Xr;s�m�1(n�m+ 1� r � s)P0;r;r+s;where r+s � n�m. Because �0; �r and �r+s are mutually disjoint, the above expressioncan be rewritten as =  n� 3m+ 53 !P0;m�1;2m�2 :Combining these intermediate terms and putting them back in (45) we get the result(27).Circular Case: The argument for (45) when applied to YC leads toE(Y 3C ) = E(YC) + 6 nXi=1 n+1Xj=i+1Pi;j + 6 n�1Xi=1 nXj=i+1 n+1Xk=j+1Pi;j;k : (48)The sums in (48) can be handled in much the same way as in the derivations of(43) and (27). We shall not give the details, but will just comment on parts of theargument.In the circular case the n + 1 spacings may be viewed as being arranged around acircle. The factors of n+ 1 which occur repeatedly in (29) all come from the fact that38



any collection of sets such as �0; �i; �j can be \rotated" to begin at any of the n + 1positions on the circle.The coe�cient (n + 1)(n � 2m + 4 � i) in the �fth term of (29) is the number ofways to select three distinct sets �j; �k; �` so that two of the sets have a given amountof overlap and the remaining set is disjoint from these two. (Note that here we do notconsider di�erent orderings of the sets to be distinct.) This coe�cient can be derivedby extending the argument given for E(Y 2C ). Once we have chosen the �rst set �i, thereis only one choice for the overlapping set �j. After �i and �j are chosen, there are(n + 1) � (m � 1) � i spacings left. Therefore, the number of ways to choose m � 1consecutive spacings for �k from these is (n+1)�(m�1)�i�(m�2) = n�2m+4�i.The value (n+ 1)(n� 3m+ 6)(n� 3m+ 5)=6 is the number of ways to select threedisjoint sets of m�1 consecutive spacings when the ordering of the sets does not count.After choosing the �rst set (in n+ 1 ways), there are (n + 1) � (m � 1) = n �m+ 2consecutive spacings remaining. Using the lemma stated below, the number of waysto choose two nonoverlapping sets of m � 1 spacings from these remaining spacingsis �(n�m+2)�2(m�1)+22 �. We must now divide by 3, since any of our three sets couldhave been designated the \�rst". Thus, our three disjoint sets can be selected in(n + 1)�n�3m+62 � � 13 = (n+ 1)(n � 3m+ 6)(n � 3m + 5)=6 ways. When we plug thisinto equation (48), the 1/6 cancels the 6 and we get the coe�cient of the last term in(29).Lemma 4 Let L = f1; 2; : : : ; Lg. Suppose you wish to select k disjoint subsetsR1; R2; : : : ; Rk from L having given cardinalities jRij = ri for 1 � i � k. If each setmust consist of consecutive integers, and the sets R1; R2; : : : ; Rk must be arranged fromleft to right, then the number of ways this can be done is L� (r1 + r2 + � � �+ rk) + kk ! :Proof: For 2 � i � k, let gi be the size of the gap between sets Ri�1 and Ri.Let g1 be the number of integers (in L) to the left of R1, and gk+1 be the numberof integers to the right of Rk. Every choice of R1; : : : ; Rk corresponds uniquely to achoice of gaps g1; : : : ; gk+1 satisfying gi � 0 for all i and Pi gi = L � (r1 + � � � + rk) .Counting the number of ways to choose the gaps g1; : : : ; gk+1 is a well known elementarycombinatorics problem whose answer is given in Lemma 4.39



C.2 The Fourth Moments of YThe derivation of the fourth moment of Y is very similar to that of the third moment.Hence we shall just remark on parts of the proof.Interval CaseE(Y 4I ) = E(YI ) +  4!2!2! + 2 4!1!3!! n�mXi=1 n�m+1Xj=i+1 Pi;j + 3 4!1!1!2! n�m�1Xi=1 n�mXj=i+1 n�m+1Xk=j+1 Pi;j;k+4! n�m�2Xi=1 n�m�1Xj=i+1 n�mXk=j+1 n�m+1X`=k+1 Pi;j;k;` : (49)For n � 4(m� 1), we can rewrite the last summation in (49) as= Xr;s;t(n�m+ 1 � r � s� t)P0;r;r+s;r+s+t;where r; s; t � 1 and r + s+ t � n �m. This can be separated into eight parts whichcan be written in short asXr;s;t = Xr;s;t�m�2+ Xr;s�m�2t�m�1 + Xr;t�m�2s�m�1 + Xr�m�2s;t�m�1+ Xr�m�1s;t�m�2+ Xr;t�m�1s�m�2 + Xr;s�m�1t�m�2 + Xr;s;t�m�1 :It is easy to see thatXr;s�m�2t�m�1 = Xr�m�1s;t�m�2 and Xr�m�2s;t�m�1 = Xr;t�m�1s�m�2 = Xr;s�m�1t�m�2 :Combining these equal terms together we getXr;s;t = Xr;s;t�m�2+2 Xr;s�m�2t�m�1 +3 Xr�m�2s;t�m�1+ Xr;t�m�2s�m�1 + Xr;s;t�m�1;where r; s; t � 1 and r + s+ t � n�m.Following the derivation of E(Y 3I ), we may rewrite these sums as= m�2Xr=1 r+m�2Xw=r+1 w+m�2Xu=w+1 (n�m+ 1� u)P0;r;w;u+ 2m�2Xr=1 r+m�2Xw=r+1  n� 2m�w + 32 !P0;r;w;w+m�1+ 3m�2Xr=1  n� 3m� r + 53 !P0;r;r+m�1;r+2m�2+ m�2Xr=1 m�2Xt=1  n� 2m� r � t+ 32 !P0;r;r+m�1;r+m�1+t+  n � 4m+ 74 !P0;m�1;2m�2;3m�3 :40



(The binomial coe�cients occurring above can also be obtained by repeated applica-tions of Lemma 4.) Putting all these terms back in (49), we obtain the result (28).Circular Case From the de�nition of YC we obtainE(Y 4C ) = E(YC) +  4!2!2! + 2 4!1!3!! nXi=1 n+1Xj=i+1Pi;j + 3 4!1!1!2! n�1Xi=1 nXj=i+1 n+1Xk=j+1Pi;j;k+4! n�2Xi=1 n�1Xj=i+1 nXk=j+1 n+1X`=k+1 Pi;j;k;` : (50)For n � 4(m� 2), the last summation in (50) can be broken down into cases witheach case then being simpli�ed as in the derivation of E(Y 3C ). Doing this, the lastsummation can be rewritten as(n+ 1)m�2Xi=1 i+m�2Xj=i+1 j+m�2Xk=j+1 P0;i;j;k + (n+ 1)m�2Xi=1 i+m�2Xj=i+1 (n� 2m+ 4 � j)P0;i;j;j+m�1+(n+ 1)m�2Xi=1 (n� 3m+ 6 � i)(n� 3m+ 5 � i)=2 � P0;i;i+m�1;i+2m�2+(n+ 1)m�2Xi=1 m�2Xj=1 (n� 2m+ 4� i� j)=2 � P0;i;i+m�1;i+m�1+j+(n+ 1)(n � 4m + 8)(n� 4m+ 7)(n� 4m+ 6)=24 � P0;m�1;2m�2;3m�3 : (51)The �rst three terms in (51) can be obtained by arguments very similar to thoseneeded in (29).The coe�cient (n+1)(n�2m+4�i�j)=2 in the fourth term is the number of ways toselect four sets �r; �s; �t; �u ofm�1 consecutive spacings such that: �r and �s have a givenoverlap, �t and �u have a given overlap, and �r[�s is disjoint from �t[�u. After selectingthe set �r[�s (in n+1 ways), we have (n+1)�(m�1)�i spacings left. The number ofways to choose �t[�u from these is (n+1)�(m�1)�i�(m�1)�j+1 = (n�2m+4�i�j).We must now divide by two since either �r [ �s or �t [ �u could have been chosen �rst.The coe�cient (n+ 1)(n � 4m+ 8)(n � 4m+ 7)(n � 4m + 6)=24 is the number ofways to select four disjoint sets of m � 1 consecutive spacings (without taking orderinto consideration). The �rst set may be chosen in n + 1 ways. According to Lemma4, the remaining three sets can then chosen in (n� 4m+8)(n� 4m+7)(n� 4m+6)=6ways. Now we divide by 4 since any of the four sets could have been designated as the\�rst". This gives us the desired coe�cient.Combining the equation (51) with the results in E(Y 2C ) and E(Y 3C) yields the �nalexpression (30). 41


