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Abstract

Let X1, X5,..., X, be randomly distributed points on the unit interval. Let
Ny z44 be the number of these points contained in the interval (z,2 4 d). The
scan statistic Ny is defined as the maximum number of points in a window of
length d, that is, Ny = sup, Ny »+4. This statistic is used to test for the presence
of non-random clustering. We say that m points form an m : d clump if these
points are all contained in some interval of length d. Let Y denote the number of
m : d clumps. In this paper we show how to compute the lower order moments
of Y, and we use these moments to obtain approximations and bounds for the
distribution of the scan statistic Ng. Our approximations are based on using
the “method of moments” to approximate the distribution of Y. We try two
basic types of “method of moments” approximations, one involving a simple
Markov chain model, and others using a variety of different compound Poisson
approximations. Qur results compare favorably with other approximations and
bounds in the literature. In particular, our approximations MC2 and CPG2,
which use only the first two moment of Y, do quite well and ought to be generally
useful. In our work, we calculate the moments of ¥ using recursions given by
Huffer (1988). We give explicit general formulas for the first two moments of Y
and show how the computer programs of Lin (1993) may be used to calculate

the third and fourth moments.



1 Introduction

Let X1, X5,...,X,, be n points independently drawn from a uniform distribution on
the unit interval. The corresponding order statistics are X1y < X(g) <--- < X(,). We
say that an m : d clump exists if there are m consecutive points all contained within

an interval of length d. We let Y7 denote the number of m : d clumps, i.e.

n—m-1

Vi= Y K{Xipmey — Xy < dY, (1)
=1

where for convenience we take X(g) = 0 and X(,41) = 1.

Random points on a circle arise in some applications. We can also define the number
of m : d clumps in this situation in a manner similar to the above. Given n+ 1 random
points X7, X5, ..., X,,11 on a circle with unit circumference, we define the circular order
statistics X (1), X(2),..., X(n41) to be these same points ordered in a clockwise fashion
starting with X1y = X;. We define X(;) — X(;) to be distance one must travel in a
clockwise direction to go from X(;) to X(;. We can now define the number of m : d

clumps Yo by
n+1

Yo =Y H{Xsmo1y — Xy < d}.

i=1
Here we are using addition mod n + 1 in the subscripts, that is, we take X(g) = X(,41)
and X(;) = X(,414:) . For remarks that pertain to both the interval and circle cases,
we shall drop the subscripts I and C and just use Y to denote the number of m : d
clumps. Note that to obtain the closest correspondence between the formulas in the
interval and circle cases, the number of random points on the circle is always n + 1
whereas the number of points on the interval is n.

Let Ny 44 be the number of points X; contained in the interval (x,2 + d). The
scan statistic Ny is defined as the maximum number of points in a window of length
d, that is, Ny = sup, N, ,+q4. This statistic is used to test for the presence of non-
random clustering. Scan statistics have been applied in many fields and are described
in Newell (1963), Naus (1965, 1966, 1979), Neff and Naus (1980), and Wallenstein

and Neff (1987). Because of the complicated and impractical computation of the exact
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distribution of the scan statistic and the limited applicability of the asymptotic results,
recent research in this area has mainly concentrated on finding approximations and
bounds. See, e.g., Cressie (1980), Naus (1982), Gates and Westcott (1984), Berman
and Eagleson (1985), Wallenstein and Neff (1987), Glaz (1989), Loader (1991), Glaz
(1992), Roos (1993), and Glaz et al. (1994).

In this paper we are interested in the number of clumps Y mainly because it is
closely related to the scan statistic Ny. In particular, ¥ > 1 if and only if N; > m.
This implies P{Y > 1} = P{N; > m}. The number of clumps has some importance in
its own right. Glaz (1993) suggests that Y (which he calls the multiple scan statistic)
would be a reasonable statistic for testing uniformity; if the value of Y is much larger
than expected, we reject the hypothesis of uniformity. We can use the moments of ¥
to approximate the distribution of ¥ and hence obtain approximate critical values for
this test. The distribution of Y has been studied by several authors. Among them are
Glaz and Naus (1983), Dembo and Karlin (1992), Roos (1993), and Glaz et al. (1994).
Much of the recent research has been devoted to finding Poisson and compound Poisson
approximations to the distribution of Y.

The goal of this paper is to approximate the distribution of the scan statistic by
using the moments of the number of clumps Y. We work with the moments of Y
because they are relatively easy to compute and lead naturally to approximations and
bounds for the value of P{Y > 1} = P{N; > m}. The paper will be organized as
follows.

In section 2 we show how to use the moments of Y to compute bounds and approx-
imations for P{Y > 1}. Section 2.1 presents upper and lower bounds for P{Y > 1}.
Section 2.2 contains an approximation to P{Y > 1} based on a simple two-state
Markov chain model. This approximation uses only the first two moments of Y. Sec-
tion 2.3 presents approximations to P{Y > 1} based on a variety of different com-
pound Poisson approximations to the distribution of Y. Tables are given to illustrate
our bounds and approximations and compare them with others in the literature.

In Section 3 we describe how to compute the moments of Y. In section 3.2 we give
explicit general expressions for the first and second moments of both Y7 and Y. For
higher order moments, we use the formulas in Section 3.3 and the computer programs

written by Lin (1993) to derive expressions valid for particular values of m. In Section



3.4 we illustrate this process by computing the third and fourth moments of Y; when

m = 4.

2 Approximations and Bounds

In the next section we will demonstrate how to compute the moments y; = EY? for
1 <@ < 4. In this section we show how to use these moments to compute bounds and

approximations for P{Y > 1}.

2.1 Bounds for P{Y > 1}

Let p = P{Y > 1}. Our approach to obtaining bounds for p is a simple one; to
obtain an upper (lower) bound for p, we find a convenient random variable which is
an upper (lower) bound for the indicator Iy>1y, and then compute the expectation of
this random variable. Let w denote the largest possible value of Y for Y7 this value
isw=n—m+1. If ¢ and ¢ are any two functions satisfying ¢(0) < 0 < ¢(0) and
d(k) <1 < (k) for k=1,2,...,w, then clearly E¢(Y) < p < Eyp(Y). When ¢ and
Y are polynomials of order at most 4, these expectations can be easily computed from
the values py, po, i3, ta. Thus, by selecting appropriate polynomials ¢ and 1, we can
obtain bounds on p using the moments.

We have obtained excellent results with the following families of polynomials. For
integer pairs (¢, 7) satisfying 1 <@ < j — 2 define
-y —i=Dy -y -j=1)

Wi+ 1)+ 1) ‘

¢(y;i7j) =1- (2)

For integers ¢ satistying 2 < ¢ < w — 2 define

(y — Dy —w)y —i)(y —1—1)
wi(i+ 1) '

Ply;)=1— (3)

These polynomials are of order 4 and can easily be shown to satisfy the required

conditions. Therefore,
max E¢(Y;4,7) < p < min Ey(Y5i). (4)
[ 7

The lower and upper bounds in (4) have been computed in numerous examples. In our
tables they are labeled as LB and UB. The max and min in (4) are usually attained

for fairly small values of ¢ and j, so there is actually very little calculation involved
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in implementing these bounds. The bounds we have just described are not necessarily
the strongest possible. Given the first £ moments of ¥ and no other information, the
best possible upper and lower bounds for p can be obtained via linear programming
(see Kwerel (1975), Prékopa (1988), Krauth (1991)). We have not pursued this more
complicated route since we suspect that the resulting improvements in the bounds
would be slight.

In judging the adequacy of the bounds and approximations we propose in this
paper, we shall rely heavily on the work of Glaz (1989). For the scan statistic on the
interval, let P(m;d,n) = P{Ny; > m} = P{Y; > 1} = p. Glaz (1989) gave extensive
tables comparing various approximations and bounds for P(m;d,n) over a broad range
of values for m, d, and n. We display excerpts from his tables in our tables 3, 5, 7, 9,
10, 11, 12, 13. We shall compare our upper bound UB with that given in equation (2.9)
of Glaz (1989); we refer to this bound as GUB in our tables. This bound was the best
of the two upper bounds that Glaz studied. We find that UB and GUB are very close
competitors. For small values of m, UB can sometimes be a substantial improvement
over GUB. But for larger values of m, GUB tends to be slightly better.

Glaz (1989) also studied the performance of one lower bound which is given in his
equation (2.12). He refers to this as the Kwerel lower bound because it is based on
an inequality of Kwerel (1975). (The same inequality was also given by Dawson and
Sankoff (1967).) For this reason we abbreviate this bound as KLB in our tables. In
table 2 for n = 25 we see that our bound LB improves uniformly on KLB; in many
cases the improvement is fairly dramatic. Because of the difficulty of the computations
involved, Glaz did not report KLB in his tables for larger values of n. But it is not
hard to show that LB will be strictly larger than KLB for all values of m, d, and n.
One might expect this on general grounds. The bound KLB can be written in terms
of the first two moments of Y; and is, in fact, the best lower bound based on the first
two moments. Any reasonable bound based on the first four moments (such as LB)
ought to do better.

We note that when p is small (say p < .10) the bounds LB and UB are usually
fairly tight. Thus, at commonly used significance levels like 0.05 or 0.01, the bounds
LB and UB will often suffice for carrying out hypothesis tests using the scan statistic.

We cannot currently compute the bounds LB and UB for m > 10. This is because



of the difficulty of computing p4 (and to a lesser extent ps) by our current methods.
Our approach (described in more detail in Section 3) involves obtaining, for each value
of m, an exact algebraic expression for p4 which is valid for all n and d. The computer
time and memory required to construct this expression increases with m and prevents
us from using larger values of m. The advantage of our approach is that, once the
expression for py has been obtained for some m, this expression can be stored and used
to rapidly compute py to arbitrary precision for any values of n and d. The remarks of
this paragraph also apply to those approximations to p developed in Section 2.3 which

use the fourth moment.

2.2 A “Markov Chain” Approximation

We shall now develop some approximations to p = P{Y > 1}. If you are given values
for the first £ moments of Y| a natural way to approximate P{Y > 1} is to find a
“reasonable” discrete distribution which has the same first £ moments as ¥ and use the
probability given by this distribution as your approximation. This may be thought of as
a “method of moments” approximation. In this section and the next, we shall present
two different “method of moments” approximations. We give these approximations
only for the interval case, that is, Y = Y. The development for the circle case Y = Y
would be similar.

Our first approximation is based on a simple two-state Markov chain model. This
approximation will use only the first two moments of Y;. For this reason we can
compute this approximation even for very large values of m. We shall call this approx-
imation MC2.

Let w = n —m + 1 denote the largest possible value of Y7. In (1) we define Y7 as
a sum of w indicator random variables. The approximation MC2 is based on the hope
that this sequence of indicators behaves roughly like a two-state Markov chain. Let P
be the transition matrix of a two-state Markov chain with off-diagonal entries py; = a
and p1g = b. The stationary distribution for this chain is given by 7o = b/(a 4 b) and
m =af(a+b). Let Z1, 75, Zs,... be a Markov chain with transition matrix P which
is started from the stationary distribution. Define Y* = 372, Z;. Routine calculations
show that

o\ w1
P >1) = 1—(1—71')(1——) , (5)

S



EY" = wr, (6)
VarY* = wr(l—7)+27x(1 —7)(s—1)(w —s(1 —9¢)), (7)

where for convenience we have introduced the quantities

a 1 1

= = = —: d — 1__ .
Tem a-+b’ ° a+b’ and ¢ ( 5) ()

Setting the right hand sides of (6) and (7) equal to the mean p = gy and variance
0% = g — pi of Y7 respectively, solving for = and s, and plugging these values into (5)
leads to an approximation for p. The quantity ¢ is typically very small and neglecting
it has little effect on the answer. If we drop ¢ from (7) it becomes a quadratic equation
in s and the system of equations (6) and (7) can be solved in closed form as

7 =p/w, and 3:%<w—l—1— (w—1)2—4c) 9)

where ¢ = (6 — wn(1 — 7))/(27(1 — 7)). Using these values in (5) gives the approxi-
mation we have labeled as MC2 in our tables.

Considering the crudeness of the Markov chain model, the approximation MC2 does
remarkably well. It is fairly accurate throughout the range of m, d, n, values we used;
it does not seem to do badly anywhere. Glaz (1989) reviews various approximations
to P(m;d,n) and makes recommendations concerning their use. We have listed in our
tables the three approximations recommended by Glaz. They are the approximations
given by Glaz [1989, eq. (3.3)], Naus [1982, eq. (6.1)] and Wallenstein and Neff [1987,
eq. (1)] which are labeled as Glaz, Naus and WN in our tables. The approximation MC2
compares well with these. On the whole, MC2 seems to do better than any of the
other approximations for larger values of p, and its performance for small p is about as
good as any of the others. Unfortunately, it is hard to draw firm conclusions because
the values of P(m;d,n) we use in our comparisons are only estimates obtained via

simulation; they are (typically) not accurate beyond the third decimal place.

2.3 Compound Poisson Approximations

In this section we present some “method of moments” approximations using compound
Poisson distributions. First, we shall define the compound Poisson (CP) distribution

and motivate its use in this setting.



Let Zi,7Z5,7Z5,... be a sequence of independent random variables with 7, ~
Poisson(A;) where A = (A1, A2, As,...) satisfies \; > 0 for all ¢ and }; \; < oo. Then
Y* =3,17; has a compound Poisson distribution denoted by Y* ~ CP(A).

For points on the interval, the number of clumps may be written as Y; = 302" [,
where B; denotes the event that Xy, 1) — X5 < d. When d < m/n, the probability
S = P(B;) is small. If the events B; were independent, the distribution of Y; would
be approximately a Poisson distribution with a mean of (n —m + 1)3. Of course,
the events are not independent; when | — j| is small, we expect the events B; and
B; to be positively correlated, that is, we expect P(B;|B;) > P(B;) or perhaps even
P(B;|Bj) > P(B;). However, if n is large and m/n < 1, it is intuitively clear that B;
and B; are very close to being independent whenever i — j| > m — 1.

Problems exhibiting short range dependence and long range independence arise
frequently in the applied probability literature. Poisson and compound Poisson ap-
proximations are frequently useful in the solution of these problems. The book by
Aldous (1989) contains many examples and references. The “Poisson clumping heuris-
tic” of Aldous may be applied in our situation. When n is large and d < m/n < 1, we
expect the random set § = {7 : B; occurs} to consist of groups of nearby values (be-
cause of the short range dependence) with the separation between groups determined,
at least roughly, by a Poisson process (because of the long range independence). Thus
Y7 = |S| should have approximately a compound Poisson distribution. (For any set
A, we use |A| to denote the number of elements in A.) In particular, we expect the
distribution of Y7 to be well approximated by CP(X) where )y is the expected number
of groups of size k in S.

If Y* ~ CP(A), it is immediate that

P{Y">1} =1 —exp{— i Akt (10)

k=1
Our goal is to find X such that the distribution of Y™ is close to that of Y7, and then
use (10) as our approximation to p = P(m;d,n). Formula (10) suffices for the work
in this paper. If one is interested in the entire distribution of Y7, it is natural to
use the approximation P{Y; = j} =~ P{Y* = j}. In this case, one needs a way to

calculate the quantities p; = P{Y™* = j}. A convenient way to do this is to start from



po = exp(—>_; A;) and then for j > 1 use the recursion
J
Jpi = ;(i)‘i)pj—i : (11)

Finding a good choice for A is difficult. Empirical work on this problem has been
done by Lin (1993). Some important theoretical work is that of Roos (1993). Theorem
G of Roos (1993) and Theorem 1 of Glaz et al. (1994) show that if n — co and d — 0
in such a way that EY; remains fixed, then there is a sequence of compound Poisson
random variables Y* ~ CP(X,) such that supg |P{Y; € B} — P{Y* € B}| = O(1/n).
Roos (1993) gives an explicit description of the values A, used in this theorem. Unfor-
tunately, it seems to be very difficult to compute these values unless m is quite small.
Glaz et al. (1994) in their Equations (3.3)—(3.5) suggest a method of approximating A
and use this to approximate the distribution of Y7.

In this paper we take an empirical approach to the choice of A. The approximations
we have tried are of the following type: Given the first £ moments of Y = Y7, we choose
A to match these moments, that is, we find X such that Y* ~ CP(X) has E[(Y*))] =
EY? for 1 <i < k. There are many ways to choose A which match the moments. We
have worked mainly with two methods of doing this; the resulting approximations for p
produced by these two methods we call APk and CPGk respectively. In method APk,
we assume that A\; = 0 for ¢ > k and we choose A1, Az, ..., A; to match the moments.
Note that AP1 is just a simple Poisson approximation; it is the same as the Poisson
approximation given in (2.10) of Glaz et al. (1994). In method CPGk, we assume that
the values \; decay geometrically starting with A\,_;, that is \; = A\p_yr % for ¢+ > k
where r satisfies 0 < r < 1. We then choose A\q,..., A\;_1 and r to match the given
moments. The approximations CPGk are closely related to the compound Poisson
approximation studied by Glaz et al. (1994). They propose a specific form for A which
has Ay, ..., A, —1 decaying in a roughly geometric fashion and sets A; = 0 for ¢ > m — 1.

Let &; denote the ;% cumulant of Y. The cumulants &; are easily computed from

the moments y, = EY' using the relation
L[l
flgr = Y ( )Mk&+1—k- (12)
k=0 k
In this formula we take g = 1. The approximations APk and CPGk are analytically

convenient because the cumulants of Y™ are linear in A; it is straightforward to show
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that if Y* ~ CP(A), then the cumulants £ of Y™ are given by

&= izw. (13)
/=1

The approximations APk and CPGk are implemented as the following series of steps.
First, compute the first £ moments of Y. Then use (12) to obtain the first & cumulants
of Y. Next, equate the cumulants §; = £ for j = 1,...,k and use (13) to solve for A.
Finally, use (10) to compute the approximation for p.

The only one of these steps which requires elaboration is “solving for A”. We must
solve the system of k equations given by (13) with j = 1,2,... k. For APk this step
is very simple. Let &, = (&1,6&2,..., &) and Ay = (A1, Ag, ..., Ag)'. Define By, = (bjy)
to be the k x k matrix with entries b;; = /. Then (13) becomes £, = BjA; so that
Ar = B;'€,. Sometimes this produces a vector A, with one or more negative entries
A;. When this happens, it means there does not exist a CP distribution of the assumed
form (A; = 0 for ¢ > k) with the given values for the first £ moments. When k = 1, the
system of equations (13) reduces to {&; = Ay, and (10) then leads to the approximation

APl =1 —exp{-&}. (14)

For CPGk it is rather more difficult to “solve for A”. The system of equations we
must solve can be formulated in many ways. One convenient way is the following. We

solve the system of k£ nonlinear equations

k-2
&= Cartgi(rae (G=12....k) (15)
/=1
for the £ unknowns aq,...,a._1,r. Here we have introduced the functions
gilx) =3 " (16)
/=1
and the auxiliary quantities aq, ..., a;_1 which are related to A,..., Az_1 via

N, = a;+r'ay, fori= 1,...,k—2,
)\k—l = Tk_lak_l. (17)

The solution obtained is legitimate so long as A\; > 0fore=1,....,k—land 0 <r < 1.

Sometimes there does not exist a CP distribution of the assumed form (A; = Ap_4 piktl
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for ¢« > k) with the given values for the first & moments. In these cases, attempting
to compute the approximation CPGk will lead to a non-legitimate solution of (15) in
which at least one of these conditions is violated.

In our work we solve the system (15) using the procedure fsolve in the symbolic
math package MAPLE. In doing this, it is useful to note that the functions ¢;(x) may

be computed symbolically from go(z) = /(1 — ) and the recursion

0
gi+1(z) = xa—xgj(f)- (18)
When k = 2, various simplifications occur and the solution to (15) has the simple
closed form

M=&(1—7) and r= M (19)

(&/&a)+1°
This solution is legitimate (leads to a valid CP distribution) whenever &, > &;. Plugging

the solution (19) into (10) leads to the approximation

26
CPG2 =1 p{ 1+(§2/§1)}' (20)

Recall that & and & are just the mean and variance of Y.

The approximations APk and CPGk were chosen partly on the basis of analytical
convenience and partly on the basis of intuition and simulation work. When p is small
and m is not too large, we thought it would be very rare for S (defined in the paragraph
before equation (10)) to contain any large groups. This was the motivation underlying
the approximation APk; if groups of more than k values in § are extremely rare, a
CP approximation which assumes \; = 0 for ¢ > k ought to do well. In simulations
involving larger values of p or m, we observed that large groups did occur in S and that
the frequency distribution of the group sizes seemed to tail off in a roughly geometric
fashion. This was the motivation for the approximations CPGk.

In our tables, we list values for the approximations AP1-AP4, CPG2 and CPG4.
In some cases, the approximations AP2-AP4 and CPG4 cannot be computed because
there exists no CP distribution having the required form and the given moments. When
this happens, we place an asterisk in the table. On the whole, the approximations APk
did not perform well. The approximation AP1 is always larger than p and is often
far from p. However, AP1 is very easily computed, so it might be useful as a rough

approximation to p. The approximation AP2 tends to be smaller than p, but is usually
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a considerable improvement on AP1. The approximations AP2-AP4 often cannot be
computed; they generally fail to exist when m or p is large. However, when AP3 and
AP4 do exist, they are usually good approximations for p. Approximations CPG2 and
CPG4 seem to be very reliable. CPG2 is very similar to MC2, but MC2 does a little
better when n is small or p is close to 1. For small n, there are many cases in which
CPG4 cannot be computed. But for large n, we were able to compute CPG4 except
in a few cases with p close 1. When CPG4 exists, it is usually better than both CPG2
and MC2. The overall performance of CPG4 also seems to be superior to that of the
approximations Glaz, Naus, and WN listed in our tables. However, our comparisons

have so far been limited to m < 10, so we cannot draw any definite conclusions yet.

3 The Moments of Y

3.1 Notation

In our calculation of the moments, we rely extensively on properties of spacings. The
spacings S1, S9, ..., 5,41 are simply the lengths of the spaces between consecutive order
statistics X(;. More precisely, for n random points on the unit interval (or n 41 points
on the circle), we define S; = Xy — Xy for 1 <2 <n+ 1. (Reminder: for points
on the interval we are taking X(o) = 0 and X1y = 1.) Huffer (1988) and Lin (1993)
have developed a general approach to calculating probabilities involving several linear
combinations of spacings. Lin (1993) has devised algorithms and written computer
programs which implement this approach. By re-expressing Y in terms of spacings, we
are able to use these results and computer programs to compute the moments of Y.

The following notation is useful for representing sums of spacings: For any A C
{1,2,...,n+ 1}, define

S(A) =) S;.

1EA
Let é; denote the particular subset {7 + 1,7 + 2,...,7 4+ m — 1} so that we may write
Xigm—-1) — X5 = S(6) . As in section 2.3 we define the event B; = { X(i1p—1) — X(j) <
d} = {S(6;) < d}. Then we have

Y = Z]Bz‘
with the range of summation being 1 <¢ <n—-m+1for ¥, and 1 <: <n+1 for
YC . Now define PZ == P(BZ), Pi,j == P(BZ N B]‘), Pi,j,k == P(BZ N B]‘ N Bk), etc. The

12



moments of ¥ can be easily expressed in terms of these quantities. For example the

third moment is just
EY?=3"3"N"Pix. (21)
i ik

The results of Huffer (1988) and Lin (1993) can be used to evaluate quantities
like P;jr = P{S(6) < d,5(6;) < d,5(6x) < d}. We have used these results to
find convenient closed form expressions for EY = 3, P; and EY? = 3, P; ;. These
formulas are given in section 3.2 below. The derivation of these formulas is presented
in Appendix B.

For the third and fourth moments we have been less ambitious. Instead of giving
general formulas for £Y? and EY*, we have devised a procedure which uses the com-
puter programs of Lin (1993) to produce formulas valid only for a given value of m.
These formulas consist of piecewise polynomials in the argument d. To illustrate the
final product of our methods, in Section 3.4 we give the explicit formulas for EY} and
EY} when m = 4.

Essentially, our approach is to use the programs of Lin (1993) to find exact ex-
pressions for the terms P, occurring in equation (21), and then add these various
terms together to obtain an exact expression for £FY?. Implementing this exactly as
stated above would be highly inefficient because many of the terms P, ;; are identical
and the computer program would waste time computing the same quantities over and
over. The reason so many terms are identical is that the spacings 51,55, ..., 5,41 are
exchangeable random variables. Thus, the joint distribution of (S(6;), S(6;), S(6%)) de-
pends on ¢, 7, k only through the pattern of overlaps among the sets ¢6;,0;, 0, that is,
the distribution depends only on the values |6; N é;|, [6; N k|, |6; N k|, and |6; N é; N bk
After combining identical terms in (21) and the corresponding formula for EY™?, we
obtain the “reduced” expressions reported in section 3.3. It is these expressions which
are then evaluated by the computer programs. The process of going from the original
formula (such as (21)) to the “reduced” formula is basically one of counting identi-
cal terms and is accomplished by elementary combinatorics. The derivations for the
formulas in section 3.3 are given in Appendix C.

The formulas in Sections 3.2 and 3.3 are complicated, but it is important to note
that the complexity does not increase with the sample size n. The number of terms in

these formulas depends only on the value of m. Thus, the computer time involved in
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calculating the moments will be roughly the same for all n.

3.2 Formulas for the First and Second Moments

In this section, we state formulas for the first and second moments of the number of
the clumps. The proofs are given in Appendix B.
The following notation will be used in both interval and circular cases. For fixed n

and d define i
OEDY (j) di(1 — dy"i (22)

and '
K3

ZZL:( | )d’“*’ —2d)5 R (23)

The values ((¢) are cumulative binomial probabilities, and F'(¢,7) are cumulative tri-

nomial probabilities.

Interval Case

E(Y7) = (n—m+ [l — G(m —2)]. (24)

Forn >2(m—1),

EYH) =EY)+ (n—m+1)(n—m)[l —2G(m —2)]

+4Z —i—=2)[n—m—(m—i—1)(m—1i—3)/2]G(:)

—23 [0 —2m +3) — (m — i — 3)(m — j — 3)F (i)

i=0 j=0

—|—(n—277_1—|—3)(n—Zm—I—Z)F(m—Z,m—Z). (25)

Glaz and Naus (1983) study the number of clumps for random points on the unit
interval. They derive the expectation, variance and approximate distribution of Y7 in
terms of the quantities P; and F;; and give exact expressions for F; and F;;. The
formula they give for E'Y? is more complicated than ours and the number of terms in
their formula grows with the sample size n. This makes their formula difficult to use

for large n.

Circular Case
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EYe)=(n+1)[1 —G(im—2)].
Forn > 2(m —2),

E(Y2) = E(Ye) + n(n + 1)[1 — 2G(m — 2)]

+A(n+1) 3 (m—i = 2)G(i) = 2(n + 1) > F(i,5)

=0 =0 7=0

+(n+1)(n—2m+4)F(m—2,m—2). (26)

3.3 Expressions for the Third and Fourth Moments

Interval Case

The expressions for E(Y}) and E(Y}') given below are valid for all n so long as
empty sums (where the lower limit exceeds the upper limit) are taken to be zero, and
binomial coefficients (Z) are defined to be zero whenever a < b. We also use the

notation (x)4 = max(x,0).

el . n—2m+3
E(YIS) =E(Y7)+6 Z(n—m—z—l—l)+P07i—|—6( 5 )P07m_1

=1

m=2idm=2 , "2 n—-2m—i1+3
+6Z Z (n_m_]+1)+P0,i,j‘|’122 ( 9 )Po,i,z’-|—m—1
=1 j=i+1 =1
n—3m-+5
+ 6( 3 )Po,m—mm—z . (27)
= . n—2m+3
E(}/I‘l) :E()/I)—I—lll Z(n_m_l+1)+P0,i+14( )Po7m_1
=1
m—21+m—2 . m—2 _9 o 4 3
+ 36 Z Z (n—m—jg+ 1) P, +72 Z (n m2 ! Poiivm—1
=1 j=14+1 =1

n — 3m + 5 m—2 i+m—2 j+m—2
+ 36( )Po,m—mm—z + 24 Z Z Z (n—m+1—=Fk)1FPoijxr

m—2 1+m—2 (n —9m _] _I_ 3

+48 > 5 )PO,i,j,j-I—m—l

=1 j=14+1

m—2 :
—3m—14+5H
+ 72 Z (n m3 ' )Po,¢,¢+m—1,z’+2m—2
=1
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m2m=2 i 9m—i—j+3
+ 24 ( 5 J Poiitm—titm—1+;
=1 j=1
n—4m+7
+ 24( 1 )Po,m—1,2m—2,3m—3 . (28)

Circular Case

In the circular case, it is possible for the spacings involved in quantities like P, ;
and P; ;s to “wrap around” the circle. The formulas we give below are valid provided

there is no “wrapping around” and the conditions on n ensure this does not occur.

For n > 3(m —2),

m—2
E(YZ)=EXYc)+6(n+1)> Poi+3(n+1)(n—2m+4)Pyu
i=1
m—21+m—2 _
+6(n+1)>. > Po;+6(n+1) Z (n—2m+4 —10)Positm1
=1 j=i+1 =1
+(n+1)(n—3m+6)(n—3m+ 5)P07m_172m_2 ) (29)
For n > 4(m —2),
m—2
E(YH)=EYe)+Mn+1) > Poi+Tn+1)(n—2m+4)Py
i=1
m—21+m—2 _
—|—36n—|—1 Z Z P02]+36n—|—1 Zn—2m+4—i)P07i7i+m_1
=1 j=i+1 =1

+6(n+1)(n—3m—6)(n —3m+ 5)P07m_172m_2

m—2i+m—2 j+m—2

+24n 4+ 1> > > Posx
=1 j=i+1 k=j+1
m—21+m—2
+24n+1) > > (n—2m+4 = j)Posjjtm-
=1 j=i+1
m—2

+12(n 4+ 1) Z (n—=3m+6—4)(n—3m+5—19)Po;itm-1itam—2
=1
m—2m—2

+12(n+1) Y Y (n—2m~+4—i—J)Poiitm-titm-1+/

=1 j=1

+(n+1)(n—4m+8)(n—4m +T)(n —4m + 6)Po.m—12m-23m—3 - (30)

3.4 Example

To illustrate the results of the preceding section, we shall give explicit formulas for

EY}? and EY} when m = 4. These formulas are valid for all n and d. The formulas

16



are written in terms of functions b and R which are defined for integers 5, £ > 0 by

bk ={ "

(n_j) forn>j3+k,

0 forn<j+k.

and

(") (1 = kd)*=i for kd < 1.,

R(j, k) =
0

for kd > 1.

(31)

(32)

Substituting the value m = 4 into (27), we find that E(Y}) is equal to the following

suimn:

b(g, 1)P0 —|— 61)(4, 1)P071 —I' 66(5, 1)P072 —I' 66(5, 2)P073 ‘|‘ 66(5, 1)P07172 —|— 61)(6, 1)P07173

The program of Lin (1993) has been designed so that it can be conveniently used to

evaluate sums of this form. It can also handle a broad array of other problems involving

linear combinations of spacings. The output of Lin’s program is an algebraic expression

written in a form suitable for reading by the symbolic math package MAPLE. In this

example we obtain the following expression for F(Y}):

(+46%b(7,3)+30%b(7,2)+61*b(7,1)+37*b(7,0)+19%b(6,0)+7*b(5,0)+1*b(4,0))

+(=18%b(7,3)-12%b(7,2)+29%b(7,1)+23%b(7,0)-1%b(6,0) -13%b(5,0)

-1*%b(4,0))*R(0,1)

+(-18%b(7,3)-60%b(7,2)-73*b(7,1)-31*b(7,0)-7*b(6,0)-1*b(5,0)

-1*%b(4,0))*R(1,1)

+(-18*b(7,3)-84%b(7,2)-157*b(7,1)-91*%b(7,0)-43*b(6,0)-13*b(5,0)

-1*%b(4,0))*R(2,1)

+(+18%b(7,3)-66*b(7,2)-54*b(7,1)-60%b(7,0)-18%b(6,0)+6*b(5,0))*R(0,2)
+(+36%b(7,3)-36*%b(7,2)-78*b(7,1)-66%b(7,0)-30*%b(6,0))*R(1,2)
+(+72x%b(7,3)+72%b(7,2)+18%b(7,1)-18%b(7,0)-18*b(6,0) )*R(2,2)
+(+108*%b(7,3)+252*b(7,2)+174xb(7,1)+48*b(7,0) )*R(3,2)
+(+108*%b(7,3)+324*b(7,2)+282%b(7,1)+72*b(7,0) )*R(4,2)

+(-6%b(7,3)+48%b(7,2)-36*b(7,1))*R(0,3)
+(-18%b(7,3)+96%b(7,2)-36%b(7,1))*R(1,3)
+(-54%b(7,3)+168*b(7,2)-24xb(7,1))*R(2,3)

17



+(-144%b(7,3)+216%b(7,2) )*R(3,3)
+(-324%b(7,3)+144%b(7,2) )*R(4,3)
+(-540%b(7,3) )*R(5,3)
+(-540%b(7,3) )*R(6,3)

This expression can now be numerically evaluated by MAPLE for various values of n

and d. Some simplifications of this formula are possible. For example, the leading term
(+46%b(7,3)+30*%b(7,2)+61xb(7,1)+37*b(7,0)+19%b(6,0)+7*b(5,0)+1*b(4,0))

can be shown to be simply (n — 3)3. However, we do not know a good general way to
recognize such simplifications.
The fourth moment is obtained in a similar fashion. Substituting m = 4 into (28),

we find that E(Y}') is equal to

5(3, 1) Py + 14b(4,1) Py + 14b(5,1) Py 5 + 14b(5,2) Po s

4+ 36b(5,1) Py + 36b(6,1) Py 3 + 36b(6,1)Poqs + 36b(7,1) Py 24

4+ T26(6,2)Poqa 4 T26(7,2) Py o5 + 366(7,3) Posg

4+ 24b(6,1)Poq2s + 24b(7, 1) Po 104 + 24b(7,1) Py 1 3.4 + 24b(8,1)Po 135
4+ 24b(7,1)Pogsa + 24b(8,1)Po 255 + 24b(8,1) Py 545 + 24b(9,1) Py s
4+ 48b(7,2)Po1as + 486(8,2) Py 136 + 486(8,2) Py g a6 + 486(9,2) Py g7
+ 6(8, 3)Poqar+ 726(9,3) Poass + 24b(7,2) Poqas + 24b6(8,2) Po 146
4+ 24b(8,2) Py s + 24b(9,2) Py 5.7 + 24b(9,4) Py s -

which can be re-expressed as the following algebraic expression:

(+24%b(9,4)+180%b(9,3)+590*b(9,2)+1105%b(9,1)+671xb(9,0)
+369%b(8,0)+175%b(7,0)+65%b(6,0)+15*b(5,0)+1*b(4,0))
+(-96%b(9,4)-252*%b(9,3)+92*b(9,2)+923*b(9,1)+675%b(9,0)
+367*b(8,0)+95*b(7,0)-45*b(6,0)-29%b(5,0)-1*b(4,0))*R(0,1)
+(-96%b(9,4)-540*%b(9,3)-1252*b(9,2)-1521%b(9,1)-713*b(9,0)
-253*b(8,0)-45%b(7,0)+7*b(6,0)-1*b(5,0)-1%b(4,0))*R(1,1)
+(-96%b(9,4)-684*b(9,3)-2116*%b(9,2)-3709%b(9,1)-2181*b(9,0)
-1145*%b(8,0)-505%b(7,0)-165*%b(6,0)-29*b(5,0)-1%b(4,0))*R(2,1)
+(+144%b(9,4)-324%b(9,3)-1306*b(9,2)-864*b(9,1)-434*b(9,0)
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-616*b(8,0)-270%b(7,0)-20*b(6,0)+14*b(5,0))*R(0,2)
+(+288%b(9,4)+216%b(9,3)-1220%b(9,2)-2596*b(9,1)-1448*b(9,0)
-852*b(8,0)-400%b(7,0)-92*%b(6,0) )*R(1,2)
+(+576%b(9,4)+1728*b(9,3)+1496%b(9,2)-56%b(9,1)-400*%b(9,0)
-168*b(8,0)-200%b(7,0)-64*b(6,0))*R(2,2)
+(+864%b(9,4)+4104*b(9,3)+7668%b(9,2)+7164%b(9,1)
+2736%b(9,0)+684*b(8,0)+156*b(7,0))*R(3,2)
+(+864xb(9,4)+4968*b(9,3)+11556%b(9,2)+13812%b(9,1)
+6360*b(9,0)+2148*b(8,0)+348%b(7,0))*R(4,2)
+(-96%b(9,4)+684*b(9,3)-24*b(9,2)-876%b(9,1)-936%b(9,0)
-120*b(8,0))*R(0,3)
+(-288%b(9,4)+1188*b(9,3)+1176*b(9,2)-180%b(9,1)-744*b(9,0)
-120*b(8,0))*R(1,3)
+(-864xb(9,4)+1404*b(9,3)+3528*b(9,2)+2124%b(9,1)-144*b(8,0) )*R(2,3)
+(-2304%b(9,4)-864*b(9,3)+4512%b(9,2)+5088%b(9,1)+1392*b(9,0))*R(3,3)
+(-5184%b(9,4)-9720*%b(9,3)-3360%b(9,2)+2568%b(9,1)+1344*b(9,0) )*R(4,3)
+(-8640%b(9,4)-24840%b(9,3)-20160%b(9,2)-5640*%b(9,1) )*R(5,3)
+(-8640%b(9,4)-29160*b(9,3)-27360%b(9,2)-7560*%b(9,1) )*R(6,3)
+(+24%5(9,4)-288*b(9,3)+648*b(9,2)-288%b(9,1)+24*b(9,0))*R(0,4)
+(+96%b(9,4)-864*b(9,3)+1296*b(9,2)-288*b(9,1))*R(1,4)
+(+384%b(9,4)-2448*b(9,3)+2112%b(9,2)-144%b(9,1) ) *R(2,4)
+(+1440%b(9,4)-6048*b(9,3)+2448*b(9,2))*R(3,4)
+(+4896%b(9,4)-12096*b(9,3)+1584*b(9,2))*R(4,4)
+(+14400%b(9,4)-17280*b(9,3))*R(5,4)
+(+34560%b(9,4)-12960*b(9,3))*R(6,4)
+(+60480%b(9,4))*R(7,4)
+(+60480%b(9,4))*R(8,4)

This expression appears rather bulky, but it is easily handled by MAPLE, and compu-

tations using this formula are fast and accurate.
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Appendices

A Tables

Tables 1, 2, 4, 6, 8 give examples of all the bounds and approximations investigated
in this paper. Recall that LB and UB are defined in Section 2.1, MC2 is defined in
Section 2.2, and AP1-AP4, CPG2 and CPG4 are defined Section 2.3. These tables
consider a variety of sample sizes n, but are restricted to m < 10. For small values
of n (say, n < 20) there is no need for approximation; exact values of P(m;d,n) may
be computed or found in the tables of Neff and Naus (1980). We have included Table
1, which uses n = 20, in order to have one table in which our approximations are
compared with the exact values. In this table the numbers in the column labeled Prob
are the exact values of P(m;d,n) computed using the programs of Lin (1993). In
Tables 2, 4, 6, 8 the values in the Prob column are estimates based on simulations with
1,000,000 trials. There are two exceptional cases (indicated by ) in Table 2 where the
values given are exact.

Tables 3, 5, 7, 9 are (for the most part) excerpts from the tables of Glaz (1989).
Glaz (1992) refines the methods of Glaz (1989), and we have used values from this
later paper when they are available. In Table 5 the values marked i are from Glaz
(1992). The column labeled GCP in Table 5 is taken from Glaz et al. (1994) and gives
values for the compound Poisson approximation described in Equations (3.3)—(3.5) of
this paper. The columns labeled Glaz, Naus, WN are the approximations given by Glaz
[1989, eq. (3.3)], Naus [1982, eq. (6.1)] and Wallenstein and Neff [1987, eq. (1)]. The
lower bound KLB and upper bound GUB are taken from Equations (2.12) and (2.9) of
Glaz (1989). (Glaz (1989) only gives KLB for n = 25, so this column is missing from
most of our tables.) The values in column Prob are the same values used in our Tables
2,4, 6, 8. For easy comparison, we have chosen the same values of n, m, d used by Glaz
(1989), and have constructed Tables 2, 4, 6, 8 so that they exactly parallel Tables 3,
5, 7,9.

The approximations MC2 and CPG2 use only the first two moments of Y; and can
easily be computed for larger values of m. In Tables 10, 11, 12, 13, we study the
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performance of MC2 and CPG2 for m > 10. For comparison we include in our tables
the values of Glaz, Naus, WN, KLB, GUB described above. These values were taken from
Glaz (1989). In Tables 10, 11, 12, 13, the values of Prob were also taken from Glaz
(1989); they are estimates from simulations with 20,000 trials.
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Table 1: Approximations to P(m;d,n) for n = 20

d Prob API AP2 CPG2 MC2  AP3 AP4 CPG4 LB UB

005 07428 07737 07420 .07433 .07432 07428 .07428 07428 .07428 .07430

01 24801 26175 24788 24869 .24845 .24797 « * 24788 24894
05 99619 99139 * * 99637 x * * 96758 > 1
01 01567 .01692 .01558 .01568 .01568 .01568 .01567 .01567 .01567 .01568
05 65524 72286 .65652 .66692 66179 * * 62642 70729
0099770 199588 * 99789 x * * 97189 >1

.01 .00064 .00068 .00064 .00064 .00064 .00064 .00064 .00064 .00064 .00064
05 17752 22464 16585 17934 17868 17919 17753 17772 17589 18360
10 80160 .88084 .80573 .82268 81166 * * 73514 .92046
05 .02984  .03787 02778 .02994 .02991 .03028 .02976 .02985 .02972 .03023
10 35340 47671 30464 36241 35803 35877 .35743 35746 33719 .37929

@@@@OOOOOOOO\I\I\I\IOJOJOJOTOTOT%%%WWW3

A5 83405 .92210 83407 .86040 .84419 « * * 76148 .99280
05 .00377 .00460 .00359 .00377 .00377 .00380 .00376 .00377 .00376 .00379
10 10091 .14576  .08109 .10208 .10159 =* * 10135 .09907  .10544
A5 43985 .61027 45594 44654 44683 * 40217 48870
200 083381 93550  .82161 .86455 84238 * * 75603 .99336
05 .00038 .00044 .00036 .00038 .00038 .00038 .00038 .00038 .00038 .00038
A0 .02182 03054 01846 .02193 .02188 * 02186 .02161 .02256
A5 015982 24810 16315 16146 * 16215 .15304 17047
20 47596 .67600 A9725 48287 x * * 42550 .53459
10 00376 .00498 .00337 .00376 .00376 .00386 x 00376 .00373 .00382
A5 .04479 06859 04528 .04507 * 04506 .04387 .04679
200 19701 32003 20289 19952 * 20303 18527 21412
25 48419 70528 50940 49047 x * * 43407 .54629
10 .10 .00052 .00066 .00049 .00052 .00052 .00053 .00052 .00052 .00052 .00053
10 .15 .01008 .01451 .00822 .01013 .01011 = * 01010 .00997 .01042
10 .20 .06410 .10399 = 06523 06469  * * 06486  .06191 .06748
10 .25 21622 .36248 22464 21946 * * 20047 23671

Note: P(m,d,n) (Prob) is exact.

* indicates the approximation is not defined for this case.
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Table 2: Approximations to P(m;d,n) for n = 25

m d Prob AP1 AP2 CPG2 MC2  AP3 AP4 CPG4 LB UB
3 .01 425077 44703 42539 42673 42613« * * 42326 43311
4 .01 .03825 .04201 .03780 .03819 .03818 .03817 .03815 .03815 .03814 .03819
4 .05 .90919 93897 .91691 .91942 91499 * * 84476 > 1
5 .05 41014 51125 38308 41736 .41445 41103 = 39565 43833
5 .10 98544 99302 .99010 .99032 98791 x * * 93264 > 1
6 .05 .09916 .13351 .08743 .09990 .09968 .10246 * 09941 .09817 .10317
6 .10 .72834  .85912 .68723 .75167 .73965 .70834 * 65721 .86571
7 .05 01714  .02278 .01562 .01735 .01734 .01780 =* 01734 .01722  .01772
7200 99811 99931 99913 .99914 99814 «x * * 96774 > 1
g .10 10132 15682 x 10239 10193 * * 10222 .09770  .10819
9 .10 .02527 03771 «x 02521 02516  « * 02523 .02464 .02631
10 .20 .315097 .52687 «* 32620 31893 * * * 27775 36342

Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials except for the values indicated by { which are exact.

* indicates the approximation is not defined for this case.

Table 3: Approximations to P(m;d,n) for n = 25

m d Prob Glaz Naus WN KLB GUB
3 .01 425077 424 402 509 379 510
4 .01 .03825 .038 .038 .039 .038 .039
4 .05 .90919 879 827 >1 .697 >1
5 .05 .41014  .391 377 455 314  .456
5 .10 .98544 953 925 >1 815 >1
6 .05 .09916 .097 .096 .101 .081 .101
6 .10 .72834  .667 .646 .880 .527 .894
7 .05 .01714 .017 .017 .017 .015> .017
7T .20 99811 969 970 >1 8 >1
8 .10 .10132 .099 .099 .102 .076 .102
9 .10 .02527 .025 .025 .025 .019 .025
10 .20 315091 .298 .299 317 216 .324

These approximations and bounds are Glaz (1989, eq. 3.3),

Naus (1982, eq. 6.1), Wallenstein and Neff (WN) (1987, eq. 1),

Glaz (KLB) (1989, eq. 2.12), and Glaz (GUB) (1989, eq. 2.9).
All the values are taken from Glaz’s (1989) Table 1.
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Table 4: Approximations to P(m;d,n) for n = 100

m d Prob API1 AP2 CPG2 MC2  AP3 AP4 CPG4 LB UB
3 .001 .35218 .36525 35139 .35203 .35196 .35180 .35180 .35180 35119 .35554
3 .005 .99977 .99985 .99982 .99982 99981 * * 97852 >1
4 .001 .01373 .01448 .01378 .01381 .01381 .01382 .01381 .01381 .01381 .01382
4 .005 .68032 .74538 .67054 .68372 .68287 .68127 .68092 .68093 .63779 .77320
4 .01 .99823 .99955 99838 .99864 .99851 * * * 95941 > 1
5 .005 12481 14840 .12020 .12502 .12499 12575 12479 .12493 12433 12728
5 .01 .72584 82863 .68908 .73249 73079 .73218 .72763 .72810 .65097 .88299
6 .01 .21309 .27825 18820 .21311 .21293 =« * 21296 20797 22548
7 .01 .03762 .04900 .03339 .03723 .03723 .03856 «x 03734 .03703 .03868
8 .01 .00523 .00659 .00475 .00515 .00515 .00529 «x 00517 .00514 .00529
9 .05 99744 99999 x 99899 199846 x * * 94566 > 1
10 .05 .92437 .99679 93914 93303 x * * 80081 >1

Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials.

* indicates the approximation is not defined for this case.

Table 5: Approximations to P(m;d,n) for n = 100

m d  Prob Glaz Naus WN GUB GCP
3  .001 .35218 .351 347 4260 426
3 .005 .99977 .999 998 >1 >1
4 .001 .01373 .014 014 014 .014
4 .005 .68032 .670 657 >1 >1
4 .01 .99823 .997 992 >1 >1 9967
5 .005 .12481 .124 A24 0 131 132
5 .01 .72584 .710: .694 >1 > 1% 7144
6 01 .21309 .210% 208 232 .232% 2123
7T .01 .03762 .037f .037 .038 .038% .0376
8 .01 .00523 .0052% 00521 .0052
9 .05 .99744 .983 979 >1 >1
10 .05 .92437 .888f .863 >1 >1

All the approximated values are taken from Glaz’s (1989) Table 2

except GCP which is taken from Table 1 (3.4) of Glaz ed al. (1994)
and values indicated { which are taken from Glaz’s (1992) Table 1.
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Table 6: Approximations to P(m;d,n) for n = 500

m d Prob AP1 AP2 CPG2 MCOC2 AP3 AP4 CPG4 LB UB
4 .001 .99735 .99919 .99682 .99745 .99742 .99734 .99733 .99733 .95048 >1
5 .001 50888 57725 .49307 .50886 .50875 51141 50812 .50863 .49128 .55021
6 .001 .06873 .08042 .06604 .06830 .06830 .06830 .06829 .06837 .06820 .06915
8 .005 .97756 .99897 « 97876 97825 98007  .87H4T > 1
9 .005 .68108 .86927 =« 67903  .67836 68584 .HT7121  .94967
10 .005 .27074 41673 26699 26688 27148 .23490  .32096
Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials.
* indicates the approximation is not defined for this case.
Table 7: Approximations to P(m;d,n) for n = 500

m d Prob Glaz Naus WN GUB

4 .00 .99735 997 996 >1 >1

5 .001 .50888 .505 .503  .700 .700

6 .001 .06873 .069 .068 .071 .071

8 .005 97756 970 968 >1 >1

9 .005 .68108 .670 .66 >1 >1

10 .005 .27074 .268 .266 .309 .311

All the approximated values are taken from Glaz’s (1989) Table 3.

Table 8: Approximations to P(m;d,n) for n = 1000

m d Prob AP1 AP2 CPG2 MCOC2 AP3 AP4 CPG4 LB UB
6 .001 .92690 .97318 .89412 .92743 .92724 * 92735 82754 > 1
7 .001 .35264 .44264 .31704 .35192 .35188 « * 35298 .33922  .38489
8 .001 .06081 .07817 .05504 .06049 .06049 .06256 = 06077 .06026 .06302
9 .001 .00767 .00990 .00727 .00783 .00783 .00803 = 00786  .00782 .00804

Note: P(m,d,n) (Prob) was estimated from 1,000,000 trials.

* indicates the approximation is not defined for this case.
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Table 9: Approximations to P(m;d,n) for n = 1000

d  Prob Glaz Naus WN GUB
001 .92690 .923 921 >1 > 1
001 .35264 .351 341 432 432
001 .06081 .061 .061 .063 .063
001 .00767 .0079 .0078 .0079 .0079
All the approximated values are taken from Glaz’s (1989) Table 4.

© 0w -1 |3

Table 10: Approximations to P(m;d,n) for n = 25

m d Prob CPG2 MC2 Glaz Naus WN KLB GUB

12°.20 .043 .04335 .04308 .043 .043 .043 .031 .043

Note: Prob, Glaz, Naus, WN, KLB, GUB are taken from Glaz’s (1989) Table 1.

Table 11: Approximations to P(m;d,n) for n = 100

m d Prob CPG2 MC2 Glaz Naus WN GUB
12 .05 .353 .35903 .35712 345 338 .399 .413
14 .05 .060 .05761 .05756 .059 .058 .060 .061
14 .10 999 99983 .99953 984 981 >1 >1
16 .10 .858 .88372 .87070 .800 .783 >1 >1
18 .10 408  .41394 .40925 .401 .383 449 494
20 .10 .116 .11460 .11420 .121 .115 .120 .128
22 .10 .025  .02307 .02304 .025 .024 .024 .025
26 .20 900 .92391 .90099 839 830 >1 >1
28 .20 B85 .B9467 .BT7T744 .69 542 619 775
Note: Prob, Glaz, Naus, WN, GUB are taken from Glaz’s (1989) Table 2.
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Table 12: Approximations to P(m;d,n) for n = 500

m d Prob CPG2 MC2 Glaz Naus WN GUB
11 .01 .998 99870 .99854 .996 995 >1 >1
12 .005 .019 .01753 .01753 .018 .018 .018 .018
12 .01 935 .93285 .93142 918 910 >1 =>1
13 .01 .665 .65461 .65349 .651 640 >1 >1
14 .01 341  .32922 .32893 .336 .329 .397 .408
15 .01 135 .13208 .13204 .137 .135 .144 .148
16 .01 .048 .04611 .04610 .048 .048 .049 .049

Note: Prob, Glaz, Naus, WN, GUB are taken from Glaz’s (1989) Table 3.

Table 13: Approximations to P(m;d,n) for n = 1000

m d Prob CPG2 MC2 Glaz Naus WN GUB
12 .005 .996  .99603 .99585 .994 992 > 1 > 1
13 .005 .891  .88777 .88700 .885 .877 >1 > 1
14 .005 .575  .B6259 .56218 572 562 822  .846
15 .005 .267  .25601 .25593 .266 .261 .302  .308
16 .005 .098  .09471 .09470 .099 .098 .103  .104
17 .005 .032 .03095 .03095 .033 .032 .033 .034
18 .005 .010  .00930 .00930 .0097 .0096 .0097 .0098
19 .005 .0025> .00261 .00261 .0027 .0027 .0027 .0027

Note: Prob, Glaz, Naus, WN, GUB are taken from Glaz’s (1989) Table 4.
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B Derivation of the First and Second Moments

Before beginning the proofs, we need some preliminaries. First, we note the following

facts:

P, = F forall ¢,
Pi,i-l—j = POJ‘ for all i,j, (33)

Piiy; = Pomoy for j>m—1.

Here 2 and j are positive integers which satisfy certain obvious restrictions, for example,
for random points on the interval, F; ; is not defined except when both 7 and j are less
than n — m + 3. These facts are simple consequences of the exchangeability of the
spacings. In particular, the condition § > m — 1 in the third fact ensures that B; and
B4 ; involve disjoint sets of spacings.

[t is also convenient to introduce the auxiliary quantity Q(z, j, k) defined as follows.
Let Aq, Ay, Ag be disjoint subsets of {1,2,...,n + 1} having sizes |Aq| = 1,0, =
7, | D3] = k. Define

QUi j. k) = P{S(A1) + S(Ds) > d, S(As) + S(As) > d} (34)

The values ¢, j, k can be zero in which case we take S(()) = 0. This definition implicitly
relies upon the exchangeability of the spacings.
The quantity Q(, j, k) is useful mainly because it satisfies the following recursion:

When 2, and k are positive,

Q(ivjv k) = Q(l - 17j7 k) + Q(lvj - 17k) - Q(ivjvk_ 1) (35)

This is proved in Huffer (1988), see equation (10). Given values for the boundary
terms (0,7, k), Q(¢,0,k) and Q(¢,4,0), this recursion completely determines (). The
boundary terms are easily evaluated using elementary properties of spacings. In terms

of the functions (7 and F defined in (22) and (23), these boundary terms are
Q(0,7,k) = Q(4,0,k) = P{S1+ -+ Sk >d} =Gk - 1), (36)
Q(,7,0) = P{S1+---+5>d,Sip1+--+ 54, >d}=Fu—-1,7—-1). (37
We shall need the following two facts in our arguments. They are derived using the

recursion and boundary terms given above. We shall defer the proofs of these facts

until the end of this section.
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Lemma 1 Forn > 2(x — 1),

§Q(k,k,x - 222(1; _1—)a6) — z__jsz(@])
Lemma 2 For n > 9z — 1), _ o
S HQU k8 = Blla—i= 1P o= D60
—ggw—i—z)(m =2+ (e = DIFGL).

Finally, we note that the quantities P; and P, ; are easily re-expressed in terms of

F .G and Q). Tt is clear that
Po=P{S(6p) <d} =1—P{S(b) >d} =1—-G(m —2). (38)
Also, by switching to complementary events and using (34) we see that

Por = P{S(60) <d,S(6;) < d}
= 1 —P{S(bo) > d} — P{S(6x) > d} + P{S(b0) > d, S(6s) > d}
= 1-2G(m —=2)+Q(k,k,m —1—Fk) (39)

for k <m — 1. When k = m — 1, fact (37) implies
Pomo1=1—-2G(m—=2)4+ F(m—2,m —2). (40)

Interval Case

We may now proceed with the proofs. Using (33) and (38) it is immediate that

n—m-1

E(Yr) = Z P=(n—m+1)Ph=(n—-—m+1)[l —G(m —2)].

Noting that P;; = F;, the second moment of Y7 can be written as
n—m+1n—m+41
EY/)= >, > Py=BEYD)+2) Py (41)
=1 7=1 1<

For any k£ > 0, the number of pairs (¢,7) with j —¢ =k is equal ton —m —k + 1. A
short combinatorial argument shows that the number of pairs (¢,7) with j —¢ > m —1

is equal to (n_2;”+3). Thus using (33) leads to

m—2 _ 2
EYf:EYI—I-QZ(n—m—k—l-l)Po,k—l-Q(n ?+3)Po,m-1- (42)
k=1
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Now substituting for Fy ) and Py -1 using (39) and (40), and then doing some manip-

ulations we obtain
EYI2 =EYi+(n—m+1)(n—m)(l —2G(m —2))
+(n—=2m+3)(n—2m+2)F(m—2,m—2)

m—2 m—2
+2n—m+1) > Qkk,m—k—1)—=2> kQ(k,k,m —k—1).
k=1 k=1

The remaining sums can be evaluated using Lemmas 1 and 2 with © = m — 1. This

leads to the desired result given in (25).

Circular Case

The arguments are very similar to those in the interval case. Using (33) and (38) it
is immediate that

E(Ye) = zjj P=(n+ 1)1 —Gm—2).

The second moment can be written as
n+1 n+1

EYZ) =3 > Pj=EYo)+> Pi.

=1 j=1 i£]
Employing (33), we may combine equal terms to obtain

m—2

=E(Ye)+2n+1) > Por+(n+1)(n—2m+4)Pou_1. (43)

This expression is valid only for n > 2(m — 2).

When n > 2(m — 2), the coefficient (n + 1)(n — 2m 4 4) in (43) is the number of
ways to select two disjoint sets ¢; and é; of m — 1 consecutive spacings. It is obtained
by the following argument. Since we have n + 1 spacings on the circle, we have n 4 1
ways to select the first set ¢;. Once we have chosen the first set of spacings, we have
only (n+1) — (m — 1) spacings left. The number of ways to choose m — 1 consecutive
spacings from these is (n + 1) — (m —1) — (m —2) = (n — 2m + 4).

The coefficient 2(n 4 1) in (43) is the number of ways to choose two sets ¢; and 6; of
m — 1 consecutive spacings having a given number k(< m — 2) of spacings in common.
There are n 4+ 1 ways to choose ¢;. Given ¢;, there are two ways to choose ¢, .

Substituting (39) and (40) for Py and Fy,,—1 in (43) and then doing some manip-

ulations we obtain
EYZ) = E(Ye)+nn+1)(1 =2Gm —2))+ (n+1)(n—2m+4)F(m —2,m —2)
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m—2

+2n+1) > Q(k,k,m—k—1).

k=1

Now applying Lemma 1 with © = m — 1 gives us the result (26).
Proving the Lemmas
Our proofs of lemmas 1 and 2 will be based on the following fact.
Lemma 3 If
S(a,y) = f(a,y) + S(e = Ly)+ 5@,y —1) = S(z - Ly —1)

for integers x > ¢,y > ¢, and S(x,¢) = S(c,y) =0 forx > ¢,y > ¢, then

Sy = 33 fli)

i=c+1 j=c+1

This fact has an easy induction proof (which we omit). Note that the relation
S(l’,y)—S(l‘— 17?/) —S(l’,y—l) —I-S(l’—l,y— 1) = f(xvy)

is a discrete version of

05 ith solution S Cdu [ d
920y = f(x,y) with solution (:zj,y)—/c U/c v f(u,v).
Proof of Lemma 1:
Define
zAy—1
S(e,y)= Y Qlz —ky—kk),
k=1

where @ A y = min(z,y). This definition is motivated by the fact that

Slx,z) = QUZ_:Q(:L' — ke —k k)= QUZ_:Q(k,k,:Jc — k).
k=1 k=1

Write z = (¢ A y) — 1. The recursion (35) implies

z

Sy) = S Q-1 by —k k)4 Qe — by — 1 — kb
k=1 k=1
Y Qe by -k k- 1)
k=1
= ](:L'Sy)Q(O,y—x—l—l,x—1)—|—S(:L'—1,y)
+(z > y)Q(x —y+ 1,0,y — 1)+ S(x,y — 1)

—Q(l’—l,y—l,())—»g(l'—l,y—l)
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so long as we take S(1,y) = S(«x,1) =0,

= flz,y)+ Sz —-1Ly)+ S(z,y —1) = Sz -1,y — 1)

with
fla,y) = (1 4+ 65)Ge Ny —2) — F(az =2,y — 2).
Therefore,
c
S(ry) =3 fli,))
1=2 j=2
and with a little manipulation we see that
r—2 r—2 r—2x-2
S(x,x) = DY GE)+ D (22 =3 =20)G() = D> F(i,j)
=0 =0 1=0 j=0
z—2 r—2x-2
= 2 (=G - X 3 Fli).
=0 1=0 j=0
Proof of Lemma 2
Define
zAy—1
S*(l',y) = Z (l‘ /\y - k)Q(l‘ - kvy - kvk)
k=1
This definition is motivated by the fact that
z—1 z—1
S x,x) =D (v —k)Q(z — ko — k. k) = > kQ(k, k,x — k).
k=1 k=1

Write z = (¢ A y) — 1 again. The recursion (35) implies

z

S*(x,y) = Z(:z;/\y—k)@(:z;—l—k,y—k,k)

k=1

S Ay B)Q(r— iy —1— k)

—kZZ:(:z;/\y—k)Q(x—k,y—k,k—l)

= I(l‘_lé PIQO,y—a+1La—1)+ 5 —1Ly)]+5(z—1y)
(x> y)[Qz—y+ 1,0,y = 1)+ S(@,y = )] + 5 (2,y — 1)
(e Ay —DQr — 1,y —1,0) = Sz — 1,y — 1)

so long as we take S*(1,y) = S*(x,1) =0,
= f(x,y)+ 5 (x—1Ly)+ S (x,y—1) = S (. — Ly — 1)
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with

[ay) = (T46)G(@ Ay —2)+ I(x <y)S(x —1,y)

+I(x > y)S(x,y — 1) — (x Ay — 1)F(x — 2,y — 2)

= (1468,)GxAy—2)+1(z <y)[S
1z 2 y) [S(x,y —1) = S(z,y)] +
—(x Ay —1)F(z—2,y—2)

= floy)+ 1z <y)[S(x — Ly)— Sz, y)]
+(z 2 y) [S(z,y —1) = S(z,y)] + (1 + 62y) S (2, y)
—(x Ay —2)F(x—2,y—2).

1+ 59011)5(957 ?J)

Hence, by Lemma 3 we have

Se) = S )

1=2 j=2

= S(x,z)— 225(@',@') LSS S6, )+ 25(@',@')

1=2 j=2

—ii(mj—g)F(i—z,j—Q)

1=2 j=2

I LIRIES 3 STIHIED 3 MBI (NI

1=2 j=2 1=2 7=2

~ —iiiﬂk,hwfiiiﬂk@

1=2 k=2 h=2 1=2 j=2 k=2 h=2

—f:f:(mj—g)F(i—Q,j—Q).

1=2 j=2

Now expand f(k,h) using the definition (44). Collecting the terms which involve F,

we have

3030 WATHIRS ) 3 ATHIND 3 IS E REIERES
§9§($ RV E—2)F(k,]) _gfgf(x k= 1)z —h—1)F(k, k)
—gg(h/\k)F(k,h)

S>> le—k=(x—h=1)+hANk—a+hVk+2F(kh)

k=0 h=0
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r—2x—2

= S S (x—k=2)(x—h—2)+2—1]F(k,h).

k=0 h=0

The notation A V k& = max(h, k) was used in the above. Collecting the terms which

involve (G, we have

—fii(l+5kh)G(hAk—2)+fjfjij§jj(1+5kh)a(hAk—2)
= —222(@-1_@@:@“??;;1(% h)G(k — 2)

220 > Ik < kG(h-2)

1=2 j=2 k=2 h=2

_ _zgigi(i—l—k)G(k)+2§§§§G(k—2)
= —:Zj(x—k—Q)(x—k—l)G(k)—I—:Zj(x—k—l)z(x—k)G(k)
- g[(x—k—1)3+(x—k—1)]a(k).
Therefore,_
Slea) = Tlla—i= 1"+ (== D60
_ [< —i=2)(e = =2+ (= DI ).

C Expressions for Third and Fourth Moments

In this section we derive the expressions given in Section 3.3 for the third and fourth

moments of Y; and Y.

C.1 The Third Moments of YV

Interval Case: From the definition of Y; we obtain

n—m+1 n—m+1n—m+1
3
EOT) = > 2 2 Puk
Grouping together terms according to the number of distinct values in the 3-tuple

(7,7,k) and then rewriting the sums so that the indices 7, j, k are ordered (that is,
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i < j < k)leads to

n—m n—m-1 n—m-—1 n—m n—m+1
1 2 =1 j=i+1 =1  j=i+1 k=j+1

Because the spacings are exchangeable, many of the terms in (45) are equal. The
argument which follows is really nothing more than counting and combining the similar
terms. In this argument we shall freely use the exchangeability property, frequently
without explicit mention.

The first sum in (45) is the same as that in (41). Thus the argument leading to (42)

gives us
m=2 ) n—2m-+3
= E(YI)-I-GZ(n—m—Z—l-l)PO,rl-fi( 9 )Po,m—1
=1

n—m n—m-+1

n—m—1
+6 > > > Pk (46)
=1

J=i4+1 k=j+1
The triple summation in (46) can be rewritten as
> Pijks
ik
where 1 <1 < j <k <n—m+ 1. Making the change of variables r = 7 — ¢ and
s =k —j gives us

= Z Pi,i—l—r,i—l—r—l—sa

1,7,8

where ¢,7,s > 1 and e +r+s < n—m+1. Using exchangeability to simplity the above

equation yields

= Z PO,T,T—I—S .

1,7,8

Summing over ¢ leads to
= Z(n —m+1—=r—38)FPo,rts, (47)
where r,s > 1 and r +s < n —m.

If n > 3(m — 1), the summation (47) can be separated into four parts. The sum is
first broken into two parts depending on whether or not ég intersects é,. Each of these
parts is in turn broken in two depending on whether or not ¢, intersects 6,;,. The
resulting four parts can be written in short as

PIEED DD DEE D DS DY

7,8 r<m-—2 r<m-2 r>m—-1 r>m-1
s<m—2 s>m—1 s<m—2 s>m—1
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The second and third sums are the same by symmetry, so that we have

= > 2>+ >

r,s<m—2 r<m—2 r,s2>m—1
s>m—1

where r,s > 1 and r +s < n —m.

We now examine these three terms. For convenience, we shall call them (a), (b) and
().

m—2m—2 m—2r+m—2

= Z Z n—m+1—r—3s)Fyr4s = Z Z (n—m+1—1)FPo,+.

r=1 s=1 r=1 t=r+1

m—2n—m-—r

:Z Z n—m—l—l—r—sPoTH_s—Z Z (n—m+1—=1)Fy,+.
r=1 s=m-—1

r=1 t=r+m-—1

Because ¢, and é; are disjoint, the above sum can be simplified as

_m_z(n—Qm—r—l—i%

PTT m—1 -
9 )0,,-|— 1

r=1
Finally, we have

(¢) = Z (n—m+1—r—3)FPo,rts,

r,s2>m—1
where r+s < n—m. Because d¢, 0, and 0, are mutually disjoint, the above expression
can be rewritten as

B (n—3m+5

- Pm— m—2 -
3 )0, 1,2m—2

Combining these intermediate terms and putting them back in (45) we get the result

(27).

Circular Case: The argument for (45) when applied to Y¢ leads to

n  n+l n n+1
BOE) = EVO 465 Y Py+6Y 3 Y Puse (1)
=1 7=1+1 =1 j=i4+1 k=741

The sums in (48) can be handled in much the same way as in the derivations of
(43) and (27). We shall not give the details, but will just comment on parts of the
argument.

In the circular case the n + 1 spacings may be viewed as being arranged around a

circle. The factors of n + 1 which occur repeatedly in (29) all come from the fact that
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any collection of sets such as dg,0;,6; can be “rotated” to begin at any of the n + 1
positions on the circle.

The coefficient (n 4+ 1)(n — 2m + 4 — ¢) in the fifth term of (29) is the number of
ways to select three distinct sets ¢;, 65, 6 so that two of the sets have a given amount
of overlap and the remaining set is disjoint from these two. (Note that here we do not
consider different orderings of the sets to be distinct.) This coefficient can be derived
by extending the argument given for E(YZ). Once we have chosen the first set §;, there
is only one choice for the overlapping set ¢;. After ¢; and 0; are chosen, there are
(n+ 1) — (m — 1) — ¢ spacings left. Therefore, the number of ways to choose m — 1
consecutive spacings for 65 from theseis (n+1)—(m—1)—i—(m—2) = n—2m+4—1.

The value (n 4+ 1)(n — 3m 4 6)(n — 3m 4 5)/6 is the number of ways to select three
disjoint sets of m — 1 consecutive spacings when the ordering of the sets does not count.
After choosing the first set (in n 4+ 1 ways), there are (n +1) —(m —1) =n—m + 2
consecutive spacings remaining. Using the lemma stated below, the number of ways
to choose two nonoverlapping sets of m — 1 spacings from these remaining spacings
is ((n_m+2)_22(m_1)+2). We must now divide by 3, since any of our three sets could
have been designated the “first”. Thus, our three disjoint sets can be selected in
(n+ 1)(”_3;n+6) X % =(n+1)(n—=3m+6)(n—3m+5)/6 ways. When we plug this
into equation (48), the 1/6 cancels the 6 and we get the coefficient of the last term in
(29).

Lemma4 Let £ = {1,2,...,L}. Suppose you wish to select k disjoint subsets
Ry, Ry, ..., Ry from L having given cardinalities |R;| = r; for 1 < ¢ < k. If each set
must consist of consecutive integers, and the sets Ry, Ry, ..., Ri must be arranged from
left to right, then the number of ways this can be done is
(L—(r1+r2+---+rk)+k)
L :

Proof: For 2 < ¢ < k., let ¢g; be the size of the gap between sets R;_; and R;.
Let g1 be the number of integers (in L) to the left of Ry, and gg41 be the number
of integers to the right of Rj. FEvery choice of Ry,..., Rj corresponds uniquely to a
choice of gaps ¢1,...,gr+1 satisfying g; > 0 for all ¢ and >, 9, = L — (r1 + -+ + 711).
Counting the number of ways to choose the gaps g1, ..., gr11 is a well known elementary

combinatorics problem whose answer is given in Lemma 4.
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C.2 The Fourth Moments of Y

The derivation of the fourth moment of Y is very similar to that of the third moment.
Hence we shall just remark on parts of the proof.

Interval Case

4’ n—m n—m-1 n—m-—1 n—m n—m+1
E(Y}) = E(Y — 2— P+ 3= P .

—2n—m-—1 n—m n—m+1

i S Y Y Puw (49)

For n > 4(m — 1), we can rewrite the last summation in (49) as
- Z(n —m+ Il —r—s— t)PO,T,T—I—s,T—I—s—I—ta
7,8,0
where r, s, > 1 and r 4+ s+t < n — m. This can be separated into eight parts which

can be written in short as

PIEED DEEE D DI D DI D WIS D WIS D DS D DI

T,8,¢ m5t<m—2  rs<m—-2 ri<m-—2 r<m—2 r>m—1 rt>m—1  rs>m-1 71,5t>m-1
t>m—1 s>m—1 s, t>m—1  s5it<m-—2 s<m—2 t<m—2

It is easy to see that

X=X ad ¥ =% =

rs<m—2 r>m—1 r<m—2 ri>m—1 r.s>m—1

t>m—1 5,t<m—2 s,t>m—1 s<m—2 t<m—2
Combining these equal terms together we get
=3 42 > 1Y o+ >+ Y,
et rst<m—2 rs<m—2 r<m—2  rt<m—2 7st>m—1
t>m—1 s,i>m—1 s>m—1
where r,s,t >l andr+s+t<n—m
Following the derivation of E(Y}), we may rewrite these sums as

m—2r+m—2 w+m-—2

= Z Z Z (n—m+1—=u)Porwu

r=1 w=r+1 u=w+1

m—2r+m—2 -9 o 3
+ 2 Z Z (n m2 v —I— )PO,T,w,w-I—m—l

r=1 w=r+1

= [n— —r+5
+ 3 Z ( )PO,T,T—I—m—l,T—I—Zm—Z
m=2m=2 fn  Omo—r —t+3
+ Z ( 9 PO,T,T—I—m—l,T—I—m—l—I—t

r=1 t=1

—4m 4+ 7
+ ( )Po,m—1,2m—2,3m—3 .
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(The binomial coefficients occurring above can also be obtained by repeated applica-
tions of Lemma 4.) Putting all these terms back in (49), we obtain the result (28).

Circular Case From the definition of Y- we obtain

4’ n n+l n n+1
4 _
BEYe) = Bl¥e)+ (2121 +21131) Z; 2;1 P +3111121 Z; Z—%—lkz-:l—l Fijk
7 7=t 2 Jj=t J

n—2 n—1 n n+1

WY Y Y Y A (50)

=1 ]:Z-I—l k:]-|—1 {=k+1
For n > 4(m — 2), the last summation in (50) can be broken down into cases with
each case then being simplified as in the derivation of F(Y{). Doing this, the last

summation can be rewritten as

m—2i+m—2 j+m—2 m—21+m—2
(m+1)> > > Pugst+n+1)>. > (n=2m+4—j)Poijjtm-1
=1 j=i4+1 k=j+1 =1 j=i+1
m—2
+n+1) > (n=3m+6—1)(n—3m+5—1)/2 Po;itm1,t2m—2
=1

m—2m-—2

+n+1) > > (n=2m+4—i—7)/2 Pojitmtitm—1ts

=1 j=1

+n+D)(n—4m+8)(n—4m+ T)(n —4m +6)/24 - Po-12m—23m—3 - (51)

The first three terms in (51) can be obtained by arguments very similar to those
needed in (29).

The coefficient (n+1)(n—2m+4—i—7)/2in the fourth term is the number of ways to
select four sets 6,, 6, 6, 6, of m—1 consecutive spacings such that: 6, and 65 have a given
overlap, ¢; and ¢, have a given overlap, and ¢, U0 is disjoint from 6;Ué,. After selecting
the set 6, Ud, (in n+1 ways), we have (n+1)— (m—1)—1 spacings left. The number of
ways to choose 6;Ud, from theseis (n+1)—(m—1)—i—(m—1)—j+1 = (n—2m+4—i1—j).
We must now divide by two since either 6, U 6, or 6; U 6, could have been chosen first.

The coefficient (n 4+ 1)(n — 4m + 8)(n — 4m + 7)(n — 4m + 6)/24 is the number of
ways to select four disjoint sets of m — 1 consecutive spacings (without taking order
into consideration). The first set may be chosen in n + 1 ways. According to Lemma
4, the remaining three sets can then chosen in (n —4m+8)(n —4m+7)(n —4m +6)/6
ways. Now we divide by 4 since any of the four sets could have been designated as the
“first”. This gives us the desired coefficient.

Combining the equation (51) with the results in F(Y2) and FE(Y{) yields the final

expression (30).
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