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1 IntroductionSuppose we have multivariate data y1; y2; : : : ; yn consisting of n points in p dimensions.In this paper we propose a test statistic that can help in detecting the existence ofstructure in the data which may not be readily apparent or easily discovered by othermeans. Our statistic is easily and rapidly computed, and we envision its use as part ofthe initial phase of the exploratory analysis of raw data or the examination of residualsfrom �tted models.We now brie
y describe our general approach and the particular test statistic weare proposing. Given the data y1; y2; : : : ; yn, we �rst employ a linear transformationto remove the sample correlations between the p coordinates and standardize eachcoordinate to have mean zero and variance one. (This is often referred to as \sphering"the data.) After transforming the data, we test the hypothesis of independence of thecoordinates by discretizing each coordinate and analyzing the resulting categorical dataas a contingency table. More precisely, we discretize each of the p coordinates by usingsample quantiles to \bin" or group the values of each coordinate into d groups of equalsize. We then compute the cell counts in the resulting p-way contingency table. Wecompare the cell counts with those expected under independence and, if a formal teststatistic is desired, we employ the usual chi-squared test of independence. If we �ndevidence of dependence in the contingency table, we take this as evidence of structurein the data set. The chi-squared statistic (denoted X2 below) can serve us as a roughoverall measure of the amount of structure in the data.The chi-squared statistic X2 is easily and rapidly computed, even for large datasets containing many variables, and could be used as part of the initial phase of theexploratory analysis of raw data or the examination of residuals from �tted models.That is, the statistic X2 could be used as part of a battery of techniques which are all\quick and easy" in the sense of requiring relatively little human and computer time.For example, during the initial examination of multivariate data, one might use X2in addition to examining histograms for each of the variables, the sample correlationmatrix, and bivariate scatterplots for all pairs of the variables (and maybe other itemsas well). The hope is that our statistic X2 might reveal structure that is missed bythese other techniques. If some structure is found, one might then go on to a secondphase of analysis employing techniques which are more intensive in their use of human2



or computer time in order to better understand the nature of this structure. However,after the initial phase of the analysis, the user may decide the data appears to have asimple structure (it may look like a sample from a multivariate normal population ora population with independent variables) and that no further examination is needed.The considerations above largely determine the form of our test statistic X2. Wespherize the data in part because we assume that the user of our statistic will alsobe examining the sample correlations between the variables and will thus be awareof any correlations that do exist. Binning each of the spherized variables by use ofthe sample quantiles into d groups of equal size essentially removes the structure orinformation contained in the marginal distributions. We do this because there areeasy and well known techniques (histograms, Q-Q plots, etc.) for studying univariatemarginal distributions. We assume that the user will be applying these techniquesto study the marginal distributions of the original data, and we note that the sametechniques can also be applied to study the marginals of the spherized data. Thus, bysphering and binning the data we hope to remove that part of the structure that theuser is likely to be aware of already or can easily study by other means. The structurethat remains in the resulting contingency table is now more likely to correspond tostructure in the original data that was previously unknown to the user and not readilyapparent. We test for the existence of this structure by using the classical chi-squaredtest for independence in a contingency table.In Section 4 we present a number of examples in which this procedure is used todetect structure in data. We examine data which consists of randomly located clusters,data arising from digitized speech, and data consisting of the output of a faulty randomnumber generator. We also present two examples in which our procedure is used toexamine the residuals from �tted time series models. The chi-squared statistic is ableto detect a wide variety of di�erent types of structure. It can often �nd structure insituations where it is not very apparent and could be easily missed by a data analyst.As a general guide to judging the magnitude of X2 we use its limiting distribution(as the sample size n becomes large) when sampling from a multivariate normal popu-lation. This is given in our Theorem 2.1. After spherizing to remove the correlations, itseems reasonable to regard the multivariate normal distribution as having no remain-ing structure. Thus, the distribution of X2 for a multivariate normal population is a3



reasonable choice for a \reference" or \null" distribution. Another situation to con-sider is data sampled from a population which has independent coordinates. In thissituation the sample correlations between the variables will be small and the spherizingtransformation (typically) amounts to a small perturbation of the original coordinatesystem. Thus, the coordinates of the spherized data will be approximately independentand the contingency table of counts will usually reveal no evidence of dependence. So,the value of X2 will tend to be small in this situation. In fact, we show (via simulation,see Section 3.2) that the distribution of X2 is roughly the same for both multivariatenormal populations and populations with independent coordinates. Throughout thispaper, we shall regard both of these as \null" situations in which there is no structurein the data beyond that in the correlations and marginal distributions.Our procedure is often very e�ective at signaling the existence of multivariate struc-ture, but usually gives little information about the nature of that structure. Whenstructure is found, one may need to employ other methods (e.g., projection pursuit,cluster analysis or dynamic graphical techniques) to discover the nature of this struc-ture. We also note that our procedure cannot detect all types of multivariate structure,but only those kinds of structure which reveal themselves as some type of dependencebetween the coordinates of the sphered data. It is possible to construct examples ofdata sets which contain obvious structure which is not detected by our chi-squaredstatistic. Of course, since \structure" is such a vague and slippery concept, it seemsunreasonable to expect any procedure to detect all possible types of structure.It should be noted that we are not attempting to use the word \structure" asa precise, technical term. We call our procedure a \test for structure" mainly toemphasize the role we hope it will play in applications. If one wishes to regard ourprocedure as a test of a more formal statistical hypothesis, one can think of it as atest for dependence in the spherized coordinates. Our Theorem 2.1 then provides theappropriate adjustment to the null distribution to account for the fact that the test iscarried out on the spherized data and not on the original data.Since we know the approximate distribution of X2 when sampling from a multi-variate normal population, the statistic X2 can also be used to test the hypothesis ofmultivariate normality. The resulting test is not an omnibus test. For example, thetest has no sensitivity to non-normality in the marginal distributions of the spherized4



data. However, our chi-squared statistic is based on di�erent principles than the ex-isting procedures currently in use, and it is sensitive to di�erent types of departuresfrom multivariate normality. (See Sections 4.2 and 4.4.) Thus, our statistic should beuseful as part of a battery of tests for multivariate normality.The remainder of the paper is organized as follows. In Section 2 we give a precisede�nition of the chi-squared statistic. We also give the limiting distribution of thisstatistic when our data is sampled from a multivariate normal population. In Section3 we use simulation studies to examine the \null" behavior of the chi-squared statistic.That is, we study the distribution of the statistic in those situations (multivariatenormal populations and populations with independent coordinates) we regard as beingwithout structure. We �nd that the limiting distribution derived for a multivariatenormal population o�ers a good general approximation to the null distribution of ourstatistic. In Section 4 we provide a number of examples to illustrate how our procedurecan be used in practice. Our statistic X2 is not a�ne invariant. Consequently, di�erentchoices of the spherizing transformation lead to di�erent values of X2. Section 5 givessome discussion concerning this lack of invariance.2 The Chi-Squared StatisticSuppose we have data y1; y2; : : : ; yn which are p� 1 vectors. Let the data matrix Y bethe n� p matrix whose i-th row is yi.To look for structure in Y , we employ the following procedure. First, we apply alinear transformation to \sphere" the data. This creates a transformed data set Z inwhich the coordinates (columns) are uncorrelated and have mean zero. More formally,the n� p matrix Z = (zij) of transformed data is de�ned byZ = QeY R(S); (2.1)where Qe = In � eet=n and R(S) is a p� p matrix chosen so that ZtZ=n = Ip. Herewe use In and Ip to denote identity matrices with the indicated dimensions, and e todenote a column vector of ones. We require the matrix R(S) to be a function of thesample covariance matrix S de�ned by S = n�1Y tQeY . If we let zi denote the i-throw of Z, we can write our transformation as zi = Rt(yi � �y) for i = 1; : : : ; n; where�y is the sample mean vector �y = n�1Y te : Transformations of this type are frequently5



employed in statistics, and in particular, have often been used in the construction oftests for multivariate normality.There are many possible choices for the function R = R(S). Any choice satisfyingRtSR = I will give ZtZ=n = I : A principal components transformation of the data Ycorresponds to choosing a particular matrix R of the form �D where � is an orthogonalmatrix and D is a diagonal matrix. A Gram-Schmidt transformation takes R to beupper triangular. Another commonly used transformation uses R = S�1=2. In ourwork, it is important that the matrix R be chosen in a way which depends only on Sand not directly on the raw data Y ; this is required for the validity of Theorem 2.1.Also, as a general rule, we recommend using transformations which are continuous asa function of S and satisfy R(D) = D�1=2 for any diagonal matrix D. (This point isdiscussed in Section 3.2.) The Gram-Schmidt transformation and R(S) = S�1=2 satisfythis rule, but the principal components transformation does not.After obtaining the transformed data Z, we discretize each column of Z by dividingthe values in each column into d groups (labeled 1; 2; : : : ; d) of equal size n=d. If n is notdivisible by d, the group sizes will not be exactly equal. This produces an n�p matrixT = (tij) whose entries tij are all integers in f1; 2; : : : ; dg. A more precise de�nition ofT is given by tij = k; if (k � 1)n=d < rij � kn=d; (2.2)where rij is the rank of zij among the values z1j; z2j; : : : ; znj in the j-th column.We now form a contingency table from the n rows of the discretized matrix T . Thiscontingency table contains dp cells corresponding to the possible p-tuples of integers inf1; 2; : : : ; dg. We have n observations distributed among these dp cells. Under the nullhypotheses that we consider, the expected number of observations in any given cell isapproximately n=dp. We use � = (�1; �2; : : : ; �p) with 1 � �i � d for all i to denote aparticular cell in our table. For each cell �, the cell count U� is given byU� = nXi=1 Ifti = �g; (2.3)where ti is the i-th row of T . Some information about the structure in the data set Ycan be gleaned from a direct examination of the distribution of the cell counts; see theexamples in Section 4. As a summary measure for the amount of structure in the data(or for the degree of departure from multivariate normality), we use the chi-squared6



statistic X2 de�ned by X2 =X� (U� � n=dp)2n=dp : (2.4)This statistic can be rapidly computed even for very large data sets.When sampling from a multivariate normal distribution, the limiting distribution ofX2 (given below) is that of a weighted sum of independent chi-square random variableswith appropriate degrees of freedom. In most applications, the number of cells dp isfairly large. In this case, the limiting distribution is approximately normal and thez-score z = X2 � �x2�x2 (2.5)can be used to give a simple test for structure. Here �x2 and �x2 are the mean and thestandard deviation of the limiting distribution of X2.The choice of d is somewhat arbitrary. In exploratory work we often try manydi�erent values of d since we do not know in advance what type of structure there mightbe in the data and on what scale this structure might be most easily observed. Wegenerally prefer to have a fairly large number of cells and, at the same time, an averagecell count n=dp which is not too small. If we wish to use the limiting distribution of thechi-squared statistic for testing purposes, our simulation work seems to indicate thatthe usual guidelines apply: the limiting distribution is fairly accurate when n=dp � 5.If the number of cells is su�ciently large, it is reasonably good even for n=dp = 1.Since dp grows rapidly with p, for high dimensional data sets we are often forced touse small values of d in order to avoid extremely small average cell counts.The following theorem gives the limiting distribution of the chi-squared statisticX2 when the data Y is sampled from a multivariate normal population. A detailedproof of this result may be found in Hu�er and Park (1999).Let � and � denote the density and cdf of the standard normal distribution. Fori = 0; 1; : : : ; d; we de�ne �i = ��1(i=d). Note that �0 = �1 and �d =1. Now de�ne i = �(�i�1)� �(�i) for 1 � i � d, and c =  dXi=1 2i!2 (2.6)with the convention �(�1) = 0.Theorem 2.1 If y1; y2; : : : ; yn are i.i.d. N(�;�) with � nonsingular, then7



(a) The distribution of X2 does not depend on � or � (that is, X2 is ancillary), oron the choice of the transformation R(S).(b) As n!1, the distribution of X2 converges to that of W1 + (1� d2c)W2 whereW1 and W2 are independent chi-squared variates with degrees of freedom�1 = dp � 1� p(d� 1)� p(p� 1)=2 and �2 = p(p� 1)=2 respectively.Distributions like that in part (b) of our Theorem have been well known in thecontext of chi-squared tests since the work of Cherno� and Lehmann (1954). Ourresults are similar in character to those of Watson (1957) dealing with goodness-of-�tfor the univariate normal distribution. However, we note that our statistic X2 does nothave a precise univariate analog; when p = 1 the statistic X2 is degenerate (constantwith probability one).The limiting distribution does not have a convenient closed form for either thedensity or the cdf, but it is still possible to obtain a great deal of information aboutthis distribution. For example, it is routine to compute moments and cumulants of allorders. The mean and variance needed in (2.5) are given by�x2 = �1 + (1� d2c)�2 and �2x2 = 2�1 + 2(1� d2c)2�2 : (2.7)Weighted sums of chi-squared variates arise frequently in statistics and there has beenmuch work on obtaining numerical approximations to their distributions. The cdfmay be evaluated by numerical inversion of the characteristic function (Imhof (1961),Farebrother (1990)). There are also good approximations based on matching moments(Solomon and Stephens (1977)). Finally, we note that it is easy to simulate from thelimiting distribution, so that many questions can be given quick approximate answersvia simulations.Park (1992) studies a number of closely related chi-squared statistics which arearrived at by using di�erent initial transformations and methods of discretization thanthose in (2.1) and (2.2). He obtains results analogous to Theorem 2.1 for these statistics.3 Simulations of Null BehaviorIn this section, we present simulation results to illustrate the validity and accuracy(in �nite samples) of the limiting distribution of X2. We consider two situations:8



sampling (1) from a multivariate normal population, and (2) from populations withindependent coordinates. We �nd that the limiting distribution in Theorem 2.1 givesa good approximation to the true distribution of X2 in both of these situations.3.1 Sampling from the Multivariate Normal DistributionWe have performed numerous simulations to study the distribution of X2 when sam-pling from a multivariate normal population. All gave very similar results. In thissection we present the results of one such study. Part (a) of Theorem 2.1 states that,for given values of n, d and p, the distribution of X2 is the same for all choices of �,�, and method of transformation R(S). For the simulations described below, we take� = 0, � = I, and choose the Gram-Schmidt transformation (taking R(S) to be uppertriangular). Our simulated data matrices Y are thus simply matrices whose entries arei.i.d. standard normal random variables.In these simulations we take the number of coordinates p to be four, and the numberof categories d to be three. Thus, our X2 statistics are computed from a contingencytable of counts which has 34 = 81 cells. In this situation, the limiting distributiongiven in Theorem 2.1 becomes �2(66) + 0:3708�2(6). We shall consider three di�erentsamples sizes, n = 81, 405 and 810, which we refer to as small, moderate and largesamples respectively. These sample sizes correspond to having an average of 1, 5 and10 observations per cell respectively.For each sample size n, we generated 500 n � 4 matrices Y and computed thevalue of X2 for each of them. These 500 values were ordered and then plotted againstthe expected order statistics (see the remarks below) of a sample of size 500 fromthe limiting distribution. The resulting quantile-quantile plots are displayed in Figure1. Each of our quantile-quantile plots displays the reference line having slope 1 andintercept 0. This represents the \ideal" case in which the empirical and theoreticaldistributions coincide. Examining the plots, we see that the limiting distribution is agood approximation in the moderate and large sample cases. The discreteness of theX2statistic is apparent in the small sample case. Also, in this case the actual distributionis somewhat less dispersed than the limiting distribution. However, we feel that thelimiting distribution �ts well enough to serve as a useful rough approximation.9



Position of Figure 1The \expected order statistics" (labeled as \theoretical quantiles") we use in ourplots are approximations obtained as follows: It is straightforward to generate randomvariates from any distribution expressible as a weighted sum of chi-squared variates.Thus, we simply generated 100 samples of size 500 from the limiting distribution andaveraged the order statistics of these 100 samples to obtain estimates of the expectedorder statistics. We found that 100 samples give a reasonably accurate estimate.Finally, we compare the sample moments of X2 in the small, moderate, and largesample cases to those from the limiting distribution in Table 1. The sample mean andTable 1: Sample moments of X2 from the small, moderate, and large sample sizes andthose from the limiting distributionsmall sample moderate sample large sample limiting dist.mean 69.06 68.07 67.59 68.22s.d. 10.40 11.16 11.05 11.56standard deviation are quite close to those from the limiting distribution except for apossibly under-estimated sample standard deviation for the small sample case. Thus,this table con�rms the �ndings in the quantile-quantile plots.3.2 Distributions with Independent CoordinatesWhen our data is sampled from a population which is not multivariate normal, thesituation becomes complicated. We no longer have an invariance result like part (a)of Theorem 2.1, and the distribution of X2 will typically depend on both the par-ent population and on the particular choice of R(S). We regard multivariate normaldistributions and distributions with independent coordinates to be equally lacking instructure and would prefer that our X2 test not distinguish between these two sit-uations. Our simulations indicate that, in fact, this is roughly the case. With anappropriate choice of the transformation R(S), the limiting distribution of Theorem2.1 continues to be approximately valid for distributions with independent coordinates.Another way to state this conclusion is the following: If we regard X2 as a statistic10



for testing the hypothesis of multivariate normality, it will give a test which has lowpower not only for alternatives close to the multivariate normal distribution, but alsofor alternatives for which the coordinates are close to being independent.Before presenting our simulation results, we give an informal argument indicatingwhy we expect that the limiting distribution of X2 under independent coordinates willnot be radically di�erent from the distribution under multivariate normality, at leastwhen R(S) is appropriately chosen. Suppose the transformation R(S) is \smooth" asa function of S. Assume also that R(D) = D�1=2 for any diagonal matrix D. Both theGram-Schmidt transformation and R(S) = S�1=2 satisfy these assumptions. Let thedata y1; y2; : : : ; yn be i.i.d. from a p-variate distribution with independent coordinates.The covariance matrix � will then be diagonal. As the sample size n goes to in�nity,we will have S ! � so that our assumptions on R ensure that R(S)! R(�) = ��1=2.It then seems reasonable that the limiting distribution of X2 will be not too di�erentfrom that of the related chi-squared statistic ~X2 constructed using the �xed matrix~R = ��1=2 in place of R(S) in equation (2.1). But the statistic ~X2 is essentiallyidentical to the standard chi-squared test for independence in contingency tables andit is not hard to see it has the usual �2(dp � 1� p(d � 1)) limiting distribution. (SeePark (1992) for a proof of this assertion.) When the number of cells dp is su�cientlylarge, this distribution will be close to the limiting distribution given in Theorem 2.1.This gives us our desired conclusion.We now present our simulation results. In all of the simulations we now describe,we take p = 4, d = 3 and n = 405; this is the \moderate sample" case used earlier.Each value of X2 is computed from a 405 � 4 matrix whose entries are i.i.d. from aspeci�ed parent distribution. Four di�erent parent distributions are used: the normaldistribution, and three di�erent log-normal distributions with increasing degrees ofskewness. To be more precise, a log-normal random variate y is generated as y = eXwhere X � N(0; �2) and �2 takes on one of the three values 0:1; 0:5 or 1:0. These valuesof �2 produce values of the standardized skewness 
1 = E(y��)3=(E(y��)2)3=2 equalto 1.01, 2.94 and 6.18 respectively, corresponding to moderate, large, and very largeamounts of skewness. For convenience, we refer to the four parent distributions bynumber as 0, 1, 2, 3. We note that distribution 3 has both very large skewness and avery heavy right tail. 11



Figure 2 gives a number of boxplots each summarizing the distribution of 200 valuesof X2; the box gives the median and quartiles, and the whiskers indicate the 5% and95% points of the distribution. The boxplots are divided into three groups according tothe transformation R(S) used: Gram-Schmidt, symmetric (R(S) = S�1=2), or principalcomponents. In each group, the four boxplots represent the distribution of X2 underthe four parent distributions 0 { 3. Distribution 0 is provided as a reference point.We see that, for the Gram-Schmidt and symmetric transformations, the introductionof moderate amounts of skewness (distribution 1) has little impact on the distributionof X2. Even a large amount of skewness (distributions 2 and 3) has fairly modeste�ects. The situation is radically di�erent for the principal components (PC) trans-formation. Here even a moderate amount of skewness produces a substantial changein the distribution of X2. This is because the PC transformation does not satisfy thecondition R(D) = D�1=2 mentioned above. In our simulation setting, if we let n!1,the PC transformation produces a matrix R(S) which converges in distribution to ascalar multiple of a random orthogonal matrix; R(S) does not converge to the \correct"transformation. Position of Figure 2We have obtained similar results in other simulations using parent distributionsdi�erent from the log-normal. For example, we have investigated the case where theentries in Y are i.i.d. uniform random variables. In this case, the distribution of X2is virtually indistinguishable from the limiting distribution in Theorem 2.1 when weuse the Gram-Schmidt transformation or R(S) = S�1=2, but is radically di�erent whenwe use the PC transformation (see Figure 3 in the Appendix). In conclusion, whenusing X2 as a test for multivariate structure, one should use either the Gram-Schmidttransformation or R(S) = S�1=2. When this is done, the limiting distribution inTheorem 2.1 o�ers a reasonable guide for using X2. The PC transformation shouldprobably be avoided. (If your goal is the more narrow one of testing for multivariate12



normality, then there is no longer any reason to exclude the PC transformation.)As a practical matter, when applying our X2 test to data Y having columns whosedistributions are highly nonnormal, it is probably a good idea to �rst transform thecolumns to make them approximately normal. There are a couple of reasons for this.First, our procedure uses the sample covariance matrix S which can be highly vari-able for heavy-tailed distributions. Secondly, it seems likely that transforming thecolumns will make the null distribution of X2 closer to the distribution it would havefor multivariate normal populations.4 ExamplesWe now present examples to show how our procedure might be used in applications.Until now, our discussion has dealt exclusively with the chi-squared statistic X2. Inour examples, we give the value of X2, but we also present additional informationsummarizing the observed distribution of the cell counts U� de�ned in (2.3). To aid ininterpreting this summary information, we introduce a simple Poisson approximation.We wish to explain and illustrate this new material on data without any structure (toobserve the \null" behavior) before using it in examples with structure. For this reason,our �rst example will use data generated from a multivariate normal distribution.For all the examples which follow, we shall use the Gram-Schmidt transformationas our choice for R(S).4.1 Sampling from the Multivariate Normal DistributionIn this example, Y is a 1215� 5 matrix composed of independent columns generatedfrom the standard normal distribution. Our procedure leads to the output in Table2. We have chosen to set d = 3; this means we have divided the data space intodp = 35 = 243 cells. There are n = 1215 observations, so that the average number ofobservations per cell is n=dp = 5.The last three lines of the output give the value of X2, the mean and standarddeviation of the limiting distribution in Theorem 2.1, and the z-score computed asin equation (2.5). The z-score of 0.51 would lead to our concluding that their is nostructure in this data. This agrees with the known truth in this case.The output in Table 2 also lists the \observed" frequency distribution: two cells13



Table 2: Output from a normal distribution************************************************************For d = 3,The frequency distribution of the cell counts is:0 1 2 3 4 5 6 7 8Observed 2.00 7.00 16.00 35.00 51.00 48.00 26.00 25.00 13.00Expected 1.64 8.19 20.47 34.11 42.64 42.64 35.53 25.38 15.869 10 11 12 13 14 15 16Observed 13.00 4.00 1 2.00 0.00 0.00 0.00 0.00Expected 8.81 4.41 2 0.83 0.32 0.11 0.04 0.01The moments of the distribution of cell counts are:mean variance skewness kurtosisObserved 5 4.8642 0.51786 0.19229Expected 5 5.0000 0.44721 0.20000Observed X^2 value = 236.4Asymptotic mean and s.d. of X^2 = 225.71 21.14z-score for X^2 = 0.51************************************************************are empty, seven cells contain exactly one observation, 16 cells contain exactly twoobservations, etc. Let Nk be the number of cells containing exactly k observations,that is, Nk = P� IfU� = kg. As a rough standard for comparison, the output givesan \expected" frequency distribution computed using a simple Poisson approximation:Nk is compared with Ek = dp�ke��=k! where � = n=dp. The output summarizesthe observed distribution of cell counts by giving the sample moments: the mean,variance, standardized skewness (�3=�3), and standardized kurtosis (�4=�4�3). Theseare compared with the corresponding moments of the Poisson distribution with mean� which are labeled the \expected" moments.The Poisson approximation is based on the following rationale. In most of theapplications of our methods, the number of cells dp is quite large. The cells are (at leastapproximately) equally likely, that is, an observation (row of Y ) has an approximateprobability 1=dp of belonging to any given cell. Moreover, the n observations areroughly independent with regard to their cell membership. (They are not exactlyindependent, the initial transformation (2.1) and the method of discretization (2.2)14



impose some dependence.) We have a large number n of observations, each with asmall probability 1=dp of belonging to any given cell �. Thus, we expect the number ofobservations U� belonging to cell � to have approximately a Poisson distribution witha mean of � = n=dp. The values U� should behave roughly like a random sample of sizedp from a Poisson distribution with mean �. This implies that the number of cells Nkcontaining exactly k observations should have approximately a binomial distributionwith mean Ek = dpPk and variance Vk = dpPk(1 � Pk) where Pk = �ke��=k!. Ouroutput lists the observed values Nk and the expected values Ek.The observed frequency distribution of the cell counts in Table 2 is close to theexpected frequency distribution. Similarly, the observed moments are close to theexpected moments. This has been our general experience; the Poisson approximationfairly accurately describes the distribution of the cell counts when there is no structurein the data and the number of cells dp is large. To back up this claim we present theresults of a simulation. The analysis in Table 2 was repeated 1000 times. The resultsare summarized in Table 3. This table gives the sample mean and standard deviationfor the values Nk obtained in the simulation and compares these with the \expected"mean Ek and standard deviation pVk obtained from the Poisson approximation. The\expected" values from the Poisson approximation are seen to supply a good �rst orderapproximation to the actual means and standard deviations. Intuitively, the e�ect ofthe sphering (2.1) and the discretization (2.2) into groups of equal size is to somewhatreduce the overall variability of the cell counts and to introduce some small negativedependence between the cell counts. This causes some systematic departure from thePoisson approximation. In Table 3, the simulation means �Nk are more peaked about� = 5 than \expected" (that is, �Nk > Ek for k near 5, and �Nk < Ek for k in the tails),and the simulation standard deviations are almost uniformly somewhat smaller thanthe \expected" values pVk.One �nal comment on the simulation results: It is not stated in Theorem 2.1, butin fact the joint distribution of the cell counts U� does not depend on � or � (seeHu�er and Park (1999)). This is what gives us license to take � = 0 and � = I in oursimulations; the results would be the same for any � and �. Similarly, the choice ofthe transformation R(S) has no e�ect on the joint distribution of the cell counts.When we use our procedure on real data, a large value of X2 indicates there is15



Table 3: Results of simulation: 1000 repetitions with n = 1215, p = 5, d = 3 andnormally distributed data.0 1 2 3 4 5 6 7 8 9 10Mean of N(k) 1.39 7.40 19.36 33.81 43.55 44.25 36.75 25.94 15.56 8.31 4.05Expected Mean 1.64 8.19 20.47 34.11 42.64 42.64 35.53 25.38 15.86 8.81 4.41S.D. of N(k) 1.18 2.50 3.96 4.79 5.67 6.02 5.40 4.42 3.57 2.70 1.88Expected S.D. 1.28 2.81 4.33 5.42 5.93 5.93 5.51 4.77 3.85 2.91 2.0811 12 13 14 15 16Mean of N(k) 1.70 0.61 0.21 0.06 0.02 0.01Expected Mean 2.00 0.83 0.32 0.11 0.04 0.01S.D. of N(k) 1.23 0.77 0.46 0.25 0.12 0.09Expected S.D. 1.41 0.91 0.57 0.34 0.20 0.11structure in the data, but tells us nothing about the type of structure. Comparingthe frequency distribution of the observed cell counts with the \expected" distributiongives us some information concerning the type of structure. In particular, we can seewhether the large X2 is due to just a few cells with very large counts (perhaps due to asingle clump in the data), or whether it re
ects a more global change in the frequencydistribution (suggesting a more extended form of structure).In very large samples, the limiting distribution of X2 may no longer be useful fortesting; it will often detect structure which is statistically signi�cant, but too smallto be of practical importance. In this situation, it may be useful to rescale the X2statistic so that its magnitude is a meaningful measure of the degree of structure inthe data. The \observed" variance of the cell counts, which equals (n=d2p) �X2, is auseful rescaling. For very large samples, an informal comparison of the \observed" and\expected" variance of the cell counts may be preferable to a formal test based on thelimiting distribution of X2. (The Poisson approximation for the \expected" varianceof the cell counts is simply � = n=dp.)4.2 An Example with Randomly Located ClustersWe now consider a data set consisting of many randomly located clusters in dimensionp = 5. There are n = 405 observations made up of 135 clusters of size 3. Thecluster centers (denoted �1; �2; : : : ; �135) are independently generated from N(0; I5).16



The members of cluster i are generated from N(�i; �2I5), with � = 0:25. In bivariatescatter-plots, there is no obvious structure in the data set. However, our method clearlysignals the existence of structure.Applying our method with d = 3 leads to the output in Table 4. The chi-squaredTable 4: Output from randomly located clusters************************************************************For d = 3,The frequency distribution of the cell counts is:0 1 2 3 4 5 6 7 8 9Observed 63.0 73.00 43.00 33.00 18.00 4.00 8.00 1.00 0.00 0.00Expected 45.9 76.49 63.75 35.41 14.76 4.92 1.37 0.33 0.07 0.01The moments of the distribution of cell counts are:mean variance skewness kurtosisObserved 1.66667 2.43621 1.02379 0.64896Expected 1.66667 1.66667 0.77460 0.60000Observed X^2 value = 355.2Asymptotic mean and s.d. of X^2 = 225.71 21.14z-score for X^2 = 6.13************************************************************statistic is highly signi�cant with a z-score of 6.13. This large value is caused by thelarger than expected number of cells with U� = 0 and U� � 6.We have experimented with many variants of this example, using di�erent dimen-sions p, numbers of clusters, cluster sizes, and cluster dispersions �. Our proceduredoes very well at detecting this type of structure. In this example, we chose � = :25because, with this value, there is no structure visible in the bivariate scatter-plots. Asone tries smaller and smaller values of �, the chi-squared statistic becomes more andmore sensitive, that is, the values X2 become progressively larger. However, for forsu�ciently small values of � (say, for � � :10) the clustering becomes fairly evident inthe bivariate scatter-plots, so that a procedure such as ours is less necessary.This example can also be viewed in the narrower context of testing for multivariatenormality. The data in this example have univariate marginals which are roughlynormal and no apparent structure in the bivariate scatter-plots, so one might suspectthe data comes from a multivariate normal population and wish to test this hypothesis.17



There are many statistics in the literature for testing multivariate normality. Theseare reviewed by Gnanadesikan (1977, pp. 161{175), Mardia (1980), and Koziol (1986).Romeu and Ozturk (1993) studied the performance of a number of statistics. Threestatistics which performed well in their study were the skewness and kurtosis testsof Mardia (1970, 1980) and the Qn test (with Cholesky-implementation) of Ozturkand Romeu (1992). We have conducted simulations comparing our statistic X2 withthese three tests on data similar to that in this example. In our simulations, X2 andMardia's skewness test did well, and Mardia's kurtosis test and Qn did badly. Forthe exact situation in this example (� = :25, p = 5), the test based on X2 is morepowerful than Mardia's skewness test. (See Figure 4 in Appendix.) As we vary �, we�nd that X2 is more powerful than Mardia's skewness test for � � :30 (very roughly).In our simulations, it seems that something like this holds in general; X2 is betterfor `small' �, and Mardia's skewness test is better for `large' �. However, the cuto�between `large' and `small' � varies with the dimension p, the number of clusters, andthe cluster sizes. In our simulations, the values of X2 and Mardia's skewness test wereessentially uncorrelated. (See Figure 5 in Appendix.) This lends empirical support tothe notion that the two statistics are looking at di�erent aspects of the data.4.3 An Example using Speech DataThe data matrix in this example is 3393 � 10. The data was obtained by samplingfrom a much larger matrix of digitized speech data consisting of 10 dimensional `lpc'vectors. The lpc vectors in this sample correspond to `unvoiced' sounds.For our purposes, the exact nature of the lpc vectors is unimportant, but we cangive some rough idea of what they are. In digitizing speech, the intensity of speechsounds is recorded at regular intervals of time (say, 10,000 times per second) and theresulting measurements are viewed as a time series. The time series is then brokendown into small chunks (sub-series), each representing a fraction of a second of speech.An autoregressive process of order 10 is �t to the data in each chunk. The lpc vector isa one-to-one function of the vector of estimated autoregressive coe�cients. Using onlythe lpc vector, one can fairly accurately reproduce the sound in the chunk. Thus, thesequence of lpc vectors allows us to compress the speech data.The collection and analysis of this data set was motivated by an attempt to further18



compress the speech data by quantizing the space of lpc vectors. By \quantizing" wemean breaking down the 10 dimensional space of the lpc vectors into disjoint regions.Then, when recording speech data, we throw away the lpc vectors and record only whichregions they lie in. If the regions are chosen appropriately, the remaining informationwill su�ce to approximately reconstruct the speech.The method one employs to quantize the space of lpc vectors depends on whetheror not the distribution of lpc vectors has structure and on the nature of this structure.A procedure such as ours is a helpful �rst step in this investigation.Examination of a histogram reveals that the �rst coordinate of the lpc vectors ishighly skewed to the left. Also, the bivariate scatter-plots of the �rst coordinate versusthe other coordinates reveal some de�nite nonlinear patterns. (These plots are notincluded here.) There is obvious structure involving the �rst coordinate, so we shallomit this variable and see if any structure exists in the remaining nine. Inspecting amatrix of scatter-plots for variables two through ten reveals no obvious structure orpattern. However, applying our procedure to this 3393� 9 matrix leads to the outputin Table 5.Examining the frequency distribution, we see there is one cell containing 29 obser-vations and several cells containing more than 20. If there is no structure in this dataset, we do not expect to see any cells with more than 20. (The expected frequencyis less than .01.) Also there are 78 cells containing 0, 1, or 2 observations, which ismuch more than expected. In other words, the observed frequency distribution is moredispersed than the expected frequency distribution. This gives strong evidence for thepresence of structure in this data. This conjecture is supported by the z-score and theratio of the observed variance to the expected variance.After discovering structure in variables two through ten, we would like to determinethe nature of this structure. Since the data we are examining is high-dimensional, thisis not an easy task. Our methods can help us by suggesting subsets of the variableson which to focus our attention. In the course of computing the output in Table 5,we calculated and stored the ranks rij (see (2.2)) for the spherized data obtained fromvariables two through ten. Using this 3393� 9 matrix of ranks, we computed the X2statistic and corresponding z-score for each of the 501 subsets of two or more columnsfrom this matrix and each of the values d = 2; 3; 4; 6, producing 2,004 z-scores in19



Table 5: Output from speech data************************************************************For d = 2,The frequency distribution of the cell counts is:0 1 2 3 4 5 6 7 8Observed 9.00 26.00 43.00 57.00 47.00 51.00 47.00 48.00 40.00Expected 0.68 4.49 14.89 32.89 54.48 72.21 79.76 75.51 62.559 10 11 12 13 14 15 16 17 18Observed 41.00 28.00 21.00 13.00 10.00 7.00 2.00 5.00 2.00 4.00Expected 46.06 30.52 18.39 10.15 5.18 2.45 1.08 0.45 0.17 0.0619 20 21 22 23 24 25 26 27 28 29Observed 2.00 1.00 1 1 1 4 0 0 0 0 1Expected 0.02 0.01 0 0 0 0 0 0 0 0 0The moments of the distribution of cell counts are:mean variance skewness kurtosisObserved 6.62695 19.09716 1.36521 3.10011Expected 6.62695 6.62695 0.38846 0.15090Observed X^2 value = 1475.45Asymptotic mean and s.d. of X^2 = 487.41, 30.94z-score for X^2 = 31.93************************************************************all. (This took about 2 minutes on our computer system.) There were a number oflow-dimensional subsets of the variables with large z-scores, a few of which are listedbelow. These particular subsets are good candidates for more detailed study. Let Zidenote the i-th column of the spherized data. The X2 statistic for (Z1; Z3; Z4; Z5) withd = 3 had a z-score of 49.3. The X2 statistics for the subsets (Z4; Z5) and (Z3; Z8) withd = 4 had z-scores of 35.3 and 25.9 respectively. Finding pairs of variables with verylarge z-scores like this was somewhat surprising to us, since there was little apparentstructure in the matrix of scatter-plots. (Perhaps the small and rather crowded plotswhich one gets when creating a scatter-plot matrix for a large high-dimensional dataset should not be relied upon except to reveal very gross features of the data.)After locating plausible subsets of the variables, we can then bring other techniquesto bear to investigate these subsets. For example, dynamic graphical methods (such20



as \spinning" and \brushing") are now widely available in commercial software andprovide very natural and intuitive ways to investigate the structure in relatively low-dimensional data sets. Applying these methods to the subsets found above, we �ndthere is a great deal of structure in the data which is associated with the omitted �rstvariable. For example, the non-normality in the scatter-plot of Z4 versus Z5 can belargely explained by viewing it as a superposition of two separate groups of pointscorresponding to the cases with high and low values of the �rst variable.4.4 Examining a Faulty Random Number GeneratorWe will now show that our procedure can detect the structure in simulated data whichresults from the use of a faulty random number generator. RANDU is a linear con-gruential generator which generates a sequence of integers fVig according to the ruleVi+1 = 65539Vi mod 231. Taking Ui = Vi=231 produces a sequence fUig of pseudo-random uniform variates. RANDU has a major defect: Marsaglia (1968) showedthat the triples (Ui; Ui+1; Ui+2) produced by RANDU lie on 15 parallel hyperplanes.Given a sequence of pseudo-random uniform variates fUig, the Box-Muller method pro-duces a sequence fZig of pseudo-random normal variates by using the transformation(Zi; Zi+1) = (�2 logUi)1=2(cos(2�Ui+1); sin(2�Ui+1)) for odd values of i. We shall useRANDU in combination with the Box-Muller method to generate normal variates. TheBox-Muller transformation is highly non-linear and will deform the hyperplane struc-ture produced by RANDU into something very peculiar. We will see if our method candetect this structure; there is no apparent structure in bivariate plots of (Zi; Zi+1).We applied our method to a 50625�4 data matrix Y in which each row consisted offour consecutive normal variates produced by the procedure described above. Settingd = 15, we obtained the output given in Table 6. The distribution of the cell countsand the z-score of 46.14 for the statistic X2 give very clear evidence of structure. Thereis nothing very special about the choice of p = 4 and d = 15 employed in this example;many other choices also lead to the same conclusion that structure exists. However, inthis situation, we do need to take a fairly large value of d in order to detect structure.It is interesting to note that none of the three tests of multivariate normality (Mardia'sskewness and kurtosis tests and Ozturk and Romeu's Qn) mentioned in Section 4.2detect anything unusual in this data. 21



Table 6: Application to Faulty Random Number Generator************************************************************For d = 15,The frequency distribution of the cell counts is:0 1 2 3 4 5 6Observed 21204.0 15907.0 8359.00 3420.00 1189 378.0 112.00Expected 18623.9 18623.9 9311.95 3103.98 776 155.2 25.877 8 9 10 11 12Observed 38.0 9.00 8.00 0.00 0 1Expected 3.7 0.46 0.05 0.01 0 0The moments of the distribution of cell counts are:mean variance skewness kurtosisObserved 1 1.28857 1.37112 2.53929Expected 1 1.00000 1.00000 1.00000Observed X^2 value = 65234Asymptotic mean and s.d. of X^2 = 50562.29, 318z-score for X^2 = 46.14************************************************************As a check, we repeated the analysis of this example replacing the 
awed RANDUgenerator with the default uniform generator used in S-plus. We generated four di�er-ent 50625� 4 matrices Y which led to X2 statistics with the fairly modest z-scores of2.29, 0.75, 0.51, �0:25.Our statistic X2 is primarily intended for situations where the population meanvector � and covariance matrix � are unknown. There are many situations, such asthe testing of random numbers in this example, which involve a null hypothesis where� or � (or both) are known a priori. In these situations, one may wish to use aninitial linear transformation di�erent from that given in (2.1). Park (1992) considerssome alternative transformations and gives the limiting distributions of the resultingmodi�ed X2 statistics.We have included the present example to illustrate the variety of structures whichcan be detected by our approach. When used as a test for random number generators,our statistic X2 closely resembles a well known test that Knuth (1981, Section 3.3)refers to as the \Serial test". There are also other procedures for testing random22



number generators which exploit the same underlying \cell count" idea used in the X2statistic; see Marsaglia and Zaman (1993).4.5 Examining Residuals from a Nonlinear Time SeriesIn this example, we generate a nonlinear time series, and then �t a linear time seriesmodel to this series. Since we are �tting the wrong model to the data, we expect theresiduals to contain some remaining structure. We shall analyze the residuals by stan-dard diagnostic methods (such as the time series plot and plots for autocorrelation andpartial autocorrelation functions), and, �nally, analyze the residuals by our method.Fitting a time series model creates a series of residuals. In order to apply ourmethod, we must choose a dimension p and convert the series of residuals into p-variate data. We do so by dividing the residuals into disjoint subseries (or blocks) ofp consecutive residuals and then taking each subseries as an observation yi. Thus, ifwe start with m residuals, we create an (m=p)� p data matrix Y as the input for ourmethod.A time series of length 1000 is generated by the following formulaxi = 0:4xi�1 + 0:4xi�1�i�1 + �i;where �i are i.i.d. standard normal and x0 = 0. This is a conventional bilinear modelwith a fairly small coe�cient for the bilinear term (see Priestley (1988, p.52) for details).We shall try to �t the generated time series using autoregressive models. We use aprocedure named AR in Splus to �nd one of the `best' autoregressive models. Theprocedure uses the Akaike information criterion to choose the order of the model.The Yule-Walker equations are used to estimate the autoregression coe�cients. Anautoregressive model of order 8 is chosen by this approach. We �t the AR(8) modeland then examined the residuals.The time series plot of the residuals (see Figure 6 in the Appendix) does not showany unusual pattern except for some outliers. Both the autocorrelation and partialcorrelation functions up to 30 lags (again see Figure 6 in the Appendix) are inside theerror bars at twice the standard error. A normal probability plot of the residuals (seeFigure 7 in the Appendix) does indicate some degree of non-normality, but perhapsnot enough to make us abandon the autoregressive model. These standard diagnosticprocedures do not reveal any major problems in the model �t.23



Now we apply our method. We divide the residuals into subseries of 3 consecutiveresiduals and then take each subseries as an observation. This produces a data set Yof dimension 330 � 3. Our method with d = 4 leads to the output in Table 7. Thechi-squared test (with a z-score of 7.2) gives a de�nite indication of structure in theresiduals. Examining the frequency distribution of the cell counts, we �nd 10 cells withU� � 1, and 5 cells with U� � 11. This is much more than we would expect on thebasis of the Poisson approximation.Table 7: Output from a nonlinear time seriesFor d = 4,The frequency distribution of the cell counts is:0 1 2 3 4 5 6 7 8 9 10 11 12 13Observed 1.00 9.0 4.0 7.00 5.00 10.0 11.00 5.00 4.00 3.00 0.00 2.00 2.00 0.00Expected 0.37 1.9 4.9 8.43 10.86 11.2 9.63 7.09 4.57 2.62 1.35 0.63 0.27 0.1114 15 16Observed 0.00 0.00 1Expected 0.04 0.01 0The moments of the distribution of cell counts are:mean variance skewness kurtosisObserved 5.15625 10.03809 0.80013 0.95047Expected 5.15625 5.15625 0.44039 0.19394Observed X^2 value = 124.59Asymptotic mean and s.d. of X^2 = 51.78 10.12z-score for X^2 = 7.2************************************************************After determining there is structure in the residuals, we can use other techniquesto reveal the nature of this structure. In this case, lagged plots of the residuals areuseful. (The \lag k" plot is a scatter-plot of the residuals et versus the lagged valueset�k.) The \lag 1" plot (not shown here) shows a quadratic tendency. This suggestswe abandon the autoregressive model in favor of some type of nonlinear model.4.6 An Example using Geyser DataIn this example, we look at some data concerning the eruptions of the Old Faithfulgeyser in Yellowstone National Park, Wyoming. Two time series have been recorded:24



the waiting time between eruptions and the duration of the eruptions. (This data isavailable in Splus.) We shall examine the series of durations. The data were collectedcontinuously from August 1st until August 15th, 1985. There are a total of 299 ob-servations. The times are measured in minutes (see Azzalini and Bowman (1990) forfurther details).We use the same approach as in the previous example. We shall attempt to modelthe durations as an autoregressive process. The AR procedure in Splus (used exactly asin Section 4.5) now selects an AR(2) process. We shall examine the residuals obtainedby �tting this model.Commonly used residual diagnostics display no obvious problems. The residualautocorrelation and partial autocorrelation functions are fairly well behaved, and theresiduals are approximately normally distributed (see Figures 8 and 9 in the Appendix).However, our method points strongly to the existence of structure in the residuals. Inapplying our method, we divided the residuals into subseries of 3 consecutive residualsleading to a 99 � 3 data matrix Y . Our method with d = 3 leads to the output inTable 8. The chi-squared statistic has a very large z-score, and there are many morecells with U� = 0 and U� � 8 than one would expect from the Poisson approximation.Table 8: Output from geyser data************************************************************For d = 3,The frequency distribution of the cell counts is:0 1 2 3 4 5 6 7 8 9 10 11 12Observed 5.00 3.00 2.00 4.00 6.0 0.00 2.00 0.00 3.00 1.00 0.00 1.00 0.00Expected 0.69 2.53 4.64 5.67 5.2 3.81 2.33 1.22 0.56 0.23 0.08 0.03 0.01The moments of the distribution of cell counts are:mean variance skewness kurtosisObserved 3.66667 9.11111 0.67606 -0.37210Expected 3.66667 3.66667 0.52223 0.27273Observed X^2 value = 67.09Asymptotic mean and s.d. of X^2 = 18.11 5.9z-score for X^2 = 8.3************************************************************The results of our method warn us to go back and study the residuals in greater25



detail. Close examination of the time series plot of the residuals suggests that the seriesdoes not have constant variance; the series has \bursts" of greater variability. This iscon�rmed by examining the \lag 1" plot of the residuals et (not shown here) whichshows a strong tendency for the variance of et to increase with the value of et�1. Wethink this accounts for most of the structure detected by the chi-squared test. Thereis another odd feature of the data which may also be producing some of the structure:At night the durations were recorded only as being short, medium or long with thesepossibilities represented by the values 2, 3 and 4 respectively.In the last two examples, our method clearly detects the existence of structure thatroutine diagnostic methods have missed or only hinted at. Other techniques, in thiscase lagged plots, are then used to investigate the nature of this structure.In the time series examples we have just discussed, we have continued using the lim-iting distribution given in Theorem 2.1 to evaluate the signi�cance of X2. Simulationstudies indicate that this distribution is still approximately valid. For example, if wegenerate many series of length 299 from the �tted AR(2) model for the duration series,�t an AR(2) model to each of these generated series, and then analyze the residuals ex-actly as we did above, obtaining a value of X2 for each series, we �nd that these valuesof X2 follow the limiting distribution fairly well (see Figure 10 in the Appendix). Thatis, the limiting distribution is approximately the distribution of X2 when the chosenmodel is correct.5 InvarianceAccording to Theorem 2.1, the distribution of X2 does not depend on the choice of thespherizing transformation R(S). However, the numerical value of X2 is not invariant;di�erent choices of the spherizing transformation lead to di�erent values ofX2. Another(essentially equivalent) way to state this lack of invariance is as follows. Let Y be then� p data matrix, and A be any nonsingular p� p matrix. De�ne Y � = Y A. For anygiven method of spherizing, we may compute X2 for both Y and Y �. These two valuesof X2 are (in general) di�erent, and can sometimes be radically di�erent. That is, ourprocedure is not invariant under nonsingular linear transformations of the data.On the whole, invariance is a desirable feature of statistical tests. But in spite ofits lack of invariance, our procedure is quite useful and accomplishes the goals set for26



it in Section 1. The lack of invariance is not a serious disadvantage for our procedure.Consider the use ofX2 as a test for multivariate normality. In this area, we note thatmuch of the impetus for using invariant statistics comes from the fact that such statis-tics are automatically ancillary; we achieve ancillarity by another route (via Lemma 2.1in Hu�er and Park (1999)). Secondly, we note that there are many tests for multivari-ate normality in the literature which are not invariant. The statistic Qn from Romeuand Ozturk (1993), which we used as a comparison in Examples 4.2 and 4.4, is onesuch. Other examples of non-invariant statistics are found in Cox and Small (1978),Small (1980) and Looney (1995). Invariance is certainly not considered an absoluterequirement for tests of multivariate normality.We can de�ne invariant analogs of X2 (see below), but they require a great dealof time-consuming computation and are thus not suitable for use in the initial phaseof exploratory data analysis. Moreover, there are situations in which invariance is notdesirable and the purposes of the data analyst are better served by a non-invariantprocedure.The most natural invariant analogs of our statistic are X2max and X2min, the maxi-mum and minimum values of X2 attained over all possible spherizing transformations.The statistic X2max is a good candidate for use as a test for multivariate normality. Inany spherized coordinate system, evidence of dependence (a large value of X2) suggestsa departure from multivariate normality; we search for such departures by maximiz-ing X2 over all possible spherizing transformations. The other statistic, X2min, wouldbe a useful tool in the exploration of multivariate data. Minimizing X2 is one wayof looking for a coordinate system in which the coordinates are independent. If we�nd a coordinate system with a small value of X2, and subsequent examination showsthat the coordinates in this system are (at least roughly) independent, then we haveachieved a good understanding of the structure of this data set; we can describe thedata set simply by giving the coordinate system and the marginal distributions in thiscoordinate system.To express the minimization (or maximization) of X2 in a convenient way, weintroduce some notation. Let Z = Z(Y ) denote the spherized data computed usingsome speci�ed transformation R = R(S). To be de�nite, we take R(S) to be theGram-Schmidt transformation. The statistic X2 may be regarded as a function of27



the spherized data; to emphasize this we write X2 = X2(Z). Let Z� denote thespherized data obtained by using a di�erent method of transformation R� = R�(S).It is straightforward to show that there exists a p � p orthogonal matrix � = �(S)such that Z� = Z�, and that minimizing X2 over all possible transformations amountsto minimizing X2(Z�) over all orthogonal matrices �. Thus X2min = inf  (�) and,similarly, X2max = sup (�) where we de�ne  (�) = X2(Z�).The statisticX2min is di�cult to compute for the following reasons. (We shall phrasethe discussion in terms of X2min. The same remarks apply to X2max.) First, since thestatistic X2 is discrete-valued, the function  (�) that we need to minimize is not acontinuous function, and a fortiori does not have derivatives. This rules out the mostcommonly used optimization procedures which are based on the use of �rst (and oftensecond) order partial derivatives. Secondly, the function  (�) can have many localminima. (It is easy to construct examples of this.) This makes it di�cult to determinethe global minimum. Finally, we note that the dimensionality of the space of p � porthogonal matrices � is p(p� 1)=2 so that, unless p is fairly small, we are searching arather high-dimensional space.Because of the di�culties discussed in the previous paragraph, it seems that com-putation of X2min will require either some sort of systematic search (over �) or a MonteCarlo optimization technique such as simulated annealing which does not get trappedin local minima. One approach studied by Fang and Li (1997) to the problem of max-imizing or minimizing functions of orthogonal matrices is to use what they call anNT-net: a set f�1;�2; : : : ;�mg of orthogonal matrices which are roughly \uniformlyspaced" in the set of all such matrices. Given such an NT-net we can approximateX2min by the minimum of  (�k) over k = 1; : : : ;m. This approximation should bereasonably close when m is su�ciently large. All of the above approaches require agreat deal of computation.We have done some experiments to investigate the feasibility of using a simulatedannealing approach to compute X2min (and X2max). We brie
y describe this approach.We say that a random p�p orthogonal matrix � has distribution G(�) if it is generatedby the following algorithm. First, generate a p � p matrix B whose entries are i.i.d.N(0; 1). Then, compute the Gram-Schmidt (or QR) decomposition of �B + (1 � �)Iand take � to be the orthogonal matrix appearing in this decomposition. That is,28



�U = �B + (1 � �)I where � is orthogonal and U is upper triangular with positivediagonal elements. The distribution G(1) is the invariant (uniform) distribution on thespace of orthogonal matrices (see Eaton (1983), chapter 7). As � ! 0, the distributionG(�) converges to G(0) under which � = I with probability one. Let �n and �n besequences of values with 0 < �n < 1 and �n > 0 such that �n ! 0 and �n ! 0at appropriate rates. These sequences (or, rather, the rule used to determine them)are the \annealing schedule" of the algorithm. Suppose we are at the n-th stage ofexecuting a simulated annealing algorithm which produces a sequence of orthogonalmatrices �1;�2;�3; : : : which (we hope) satis�es  n =  (�n) ! inf  (�). Given �n,we compute the next matrix �n+1 as follows. Generate � � G(�n) and compute 0 =  (�n�). Then take �n+1 = �n� with probability p = min(1; exp(( n �  0)=�n))and �n+1 = �n with probability 1� p.We have carried out this procedure on two data sets: the speech data used inExample 4.3 (see Table 5), and the geyser data used in Example 4.6 (see Table 8).The speech data (having dimension 3393 � 9) was chosen to represent a fairly large,high dimensional data set, and the geyser data (99 � 3) to represent a small, lowdimensional one. For the speech data (using d = 2) we obtained X2min � 435 andX2max � 4198. Each of these values required about a day to compute using an S-Plusprogram running on a Sun Ultra-5 workstation. For the geyser data (using d = 3)we obtained X2min � 12:55 and X2max � 132. Each of these values required about 50minutes of computation time. The computation times will be highly dependent on thedetails of the implementation and, in particular, the annealing schedule which is used.But it seems likely from these experiments that these statistics will be very awkwardto use in practice.We conducted further experiments to study the possibility of using the NT-net ap-proach of Fang and Li. In particular, we wished to have some idea of the number oforthogonal matrices (denotedm above) we would need to include in the NT-net. In ourexperiments we used i.i.d. uniformly distributed orthogonal matrices (having distribu-tion G(1)) in place of \uniformly spaced" orthogonal matrices. For the speech data, wegenerated 10,000 random 9� 9 orthogonal matrices �, and computed X2(Z�) for eachof these matrices. Among these 10,000 values, the smallest and largest values were ap-proximately 1129 and 2333 respectively. These values are very far away from the ones29



obtained by simulated annealing. This suggests that, even using \uniformly spaced"orthogonal matrices, we would require m to be much larger than 10,000. For the geyserdata, using 10,000 i.i.d. uniformly distributed orthogonal matrices, the smallest andlargest values of X2 obtained were 13.64 and 123.27 respectively. These are fairly closeto the simulated annealing values reported above, but still perhaps not close enough.So, even in a low-dimensional problem like this, it seems likely we will needm � 10,000to obtain reasonably good approximations to X2min and X2max.For the speech and geyser data sets, the values of X2, X2min and X2max are dra-matically di�erent. This seems to be typical, even for data sets without structure. Toillustrate this, we generated a data matrix with i.i.d. N(0; 1) entries having the samedimension as the speech data (3393�9). For this simulated data we obtainedX2 � 482,X2min � 195, and X2max � 937. For simulated data having the same dimension as thegeyser data (99� 3) we obtained X2 � 19:09, X2min � 3:82, and X2max � 43:09.The e�ect of \selection" (choosing a coordinate system to minimize or maximize)on the value of X2 is substantial. This raises another problem with the use of X2min(or X2max): we do not know the limiting distribution of X2min for multivariate normalpopulations. The correct null distribution for X2min must properly account for the factthat we have minimized over all transformations. The theory of empirical processessuggests that a limiting distribution exists, but gives us little help in �nding it. Ingeneral, it is very di�cult to �nd the distribution of the maximum or minimum of astochastic process (which is what would be involved here), and there are only a fewcases where this can be done in some type of closed form. Thus, we have no convenientreference distribution available for use with X2min. It seems likely that we would have to�nd approximate critical points for this statistic via simulation. Given the di�culty incomputing X2min, these simulations would be extremely time consuming. Moreover, wewould have to carry out a large number of these simulations; one for every combinationof the values p and d which arises in practice.In conclusion, the statistics X2min and X2max will be di�cult to use in practicebecause the calculations needed to compute the statistics and to obtain (even veryroughly) the null distributions are very time consuming. It will not be practical touse these statistics in the initial exploratory phase of data analysis. However, they arevery promising statistics for use in a second phase of data analysis when one wishes to30



employ time-intensive procedures to study the structure in more detail.There are situations in which invariance is not desirable and the purposes of the dataanalyst are better served by a non-invariant procedure. Suppose we have data consist-ing of a random sample of size n from a uniform distribution on [0; 1]p, a p-dimensionalcube. If we use the Gram-Schmidt transformation or the symmetric transformationR = S�1=2, the distribution of X2 will be very close to its reference distribution (thedistribution for a multivariate normal population), and our test will (very likely) notreject. Suppose now that we rotate the unit cube and sample from the uniform dis-tribution on this rotated cube. For this data, our test statistic will reject with powerapproaching 1 for large samples. This behavior is entirely consistent with the goalsof our statistic. In the �rst situation, the data analyst would know (by using otherstandard techniques) that the variables are uncorrelated, the marginal distributionsare uniform, and the bivariate scatterplots all look like points uniformly distributed ona square. The non-signi�cant value of X2 would suggest that there is no hidden formof higher-dimensional structure. Combining all this knowledge, the data analyst couldbe reasonably con�dent that the data is what it appears to be: a random sample fromthe uniform distribution on [0; 1]p. In the second situation, we conducted a number ofsimulation experiments to see what is possible. When p � 4, we are able to �nd rota-tions which make all the bivariate scatterplots look fairly innocuous, so that it is not atall apparent that the data was obtained from a rotated hypercube. With p = 6, we can�nd rotations for which (in the usual coordinate system) all the marginal distributionsare roughly normal and all the bivariate scatterplots have roughly circular contours.Seeing this, a data analyst might easily conclude that the data was obtained by sam-pling from a population which is close to multivariate normal. But the very highlysigni�cant value of X2 would tell the analyst that this is not the case; there is someform of hidden structure not revealed by these other procedures. Properly warned, theanalyst could then use more time-intensive techniques to discover the nature of thisstructure. One possibility is to use X2min, minimizing X2 over all possible choices ofR(S). Using this technique, and then examining the data in the coordinate systemfound by this minimization, the analyst could discover the true nature of the data:that it was obtained by sampling from a rotated hypercube. On the other hand, theinvariant statistics X2min and X2max would not distinguish between these two situations,31



and so would probably be less useful to the analyst.Given the particular goals of our procedure, there is no compelling reason to desirean invariant statistic. In the example above dealing with data sets from the cube [0; 1]pand a rotated cube, we argued that it was natural to give di�erent answers for the twodata sets. Invariance is desirable if you feel that all coordinate systems are \equal"in some sense and that your results should not depend upon the particular choice ofcoordinate system. In our situation, this is not at all clear. For instance, from anapplied point of view, independence in the original coordinate system is di�erent fromindependence in some other coordinate system which is not known a priori . Also, weexpect our procedure to be used along with other means of examining the data suchas histograms and bivariate scatterplots. These would generally be performed in theoriginal coordinates, but not necessarily in any other coordinate system.ReferencesAzzalini, A., and Bowman, A.W., A Look at Some data on the Old Faithful Geyser,Appl. Statist., 39 (1990) 357{365.Cherno�, H., and Lehmann, E.L., The Use of Maximum Likelihood Estimates in �2Tests for Goodness of Fit, Ann. Math. Statist., 25 (1954) 579{586.Cox, D.R. and Small, N.J.H., Testing Multivariate Normality, Biometrika, 65 (1978)263-272.Eaton, M.L. (1983). Multivariate Statistics: a Vector Space Approach. Wiley, NewYork.Fang, K.T. and Li, R.Z., Some methods for generating both an NT-net and the uniformdistribution on a Stiefel manifold and their applications, Computational Statisticsand Data Analysis, 24 (1997) 29-46.Farebrother, R.W., The Distribution of a Quadratic Form in Normal Variables, Appl.Statist., 39 (1990) 294{309.Gnanadesikan, R., Methods for Statistical Data Analysis of Multivariate Observations,(Wiley, New York, 1977).Hu�er, F.W., and Park, C., The Limiting Distribution of a Test for Multivariate Struc-32
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Figure 1: Quantile-quantile plots for small, moderate, and large sample cases
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AppendixThis appendix contains supplementary supporting material not intendedfor publication.
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Figure 3: Comparing the distribution ofX2 under the multivariate normal and uniformdistributions. Each plot is a quantile-quantile plot of 200 values of X2 plotted againstthe quantiles of the limiting distribution given in Theorem 2.1. Each value of X2 iscomputed from a 405� 4 matrix Y whose entries are either i.i.d. normal (left side) ori.i.d. uniform (right side). We use d = 3. Three di�erent transformations have beenused: Gram-Schmidt, symmetric (R(S) = S�1=2), and principal components (PC).ii



X2 Mardia's skewness testp < :05 199 192p < :025 198 190p < :01 198 186p < :005 197 183p < :001 195 169Figure 4: Results of small simulation study comparing power of X2 with that of Mar-dia's skewness test in the situation of Section 4.2. The table summarizes the p-valuesobtained from 200 data sets. Each entry lists the number of p-values less than theindicated value. The p-values are computed using the asymptotic null distributions foreach statistic.
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Figure 7: Normal probability plot of the residuals obtained in Example 4.5 (Nonlineartime series).
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Figure 8: Plots for Example 4.6 (Geyser data): Time series plot of residuals, and plotsof the residual autocorrelations and partial autocorrelations.
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Figure 9: Normal probability plot of the residuals obtained in Example 4.6 (Geyserdata).
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Figure 10: Plot of 200 values of X2 computed from residuals obtained by �tting anAR(2) model to simulated AR(2) series of length 299 using the model found in Example4.6 (Geyser data).
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