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Abstract

We present a test for detecting ‘multivariate structure’ in data sets. This
procedure consists of transforming the data to remove the correlations, then
discretizing the data and finally, studying the cell counts in the resulting con-
tingency table. A formal test can be performed using the usual chi-squared test
statistic. We give the limiting distribution of the chi-squared statistic and also
present simulation results to examine the accuracy of this limiting distribution
in finite samples. Several examples show that our procedure can detect a variety
of different types of structure. Our examples include data with clustering, digi-
tized speech data, and residuals from fitted time series models. The chi-squared
statistic can also be used as a test for multivariate normality. We note that our
chi-squared statistic is not invariant under affine transformations of the data and

discuss the use of modifications of this statistic which are invariant.
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1 Introduction

Suppose we have multivariate data yq, ys, . . . , ¥, consisting of n points in p dimensions.
In this paper we propose a test statistic that can help in detecting the existence of
structure in the data which may not be readily apparent or easily discovered by other
means. Our statistic is easily and rapidly computed, and we envision its use as part of
the initial phase of the exploratory analysis of raw data or the examination of residuals
from fitted models.

We now briefly describe our general approach and the particular test statistic we
are proposing. Given the data yi, 1o, ...,y,, we first employ a linear transformation
to remove the sample correlations between the p coordinates and standardize each
coordinate to have mean zero and variance one. (This is often referred to as “sphering”
the data.) After transforming the data, we test the hypothesis of independence of the
coordinates by discretizing each coordinate and analyzing the resulting categorical data
as a contingency table. More precisely, we discretize each of the p coordinates by using
sample quantiles to “bin” or group the values of each coordinate into d groups of equal
size. We then compute the cell counts in the resulting p-way contingency table. We
compare the cell counts with those expected under independence and, if a formal test
statistic is desired, we employ the usual chi-squared test of independence. If we find
evidence of dependence in the contingency table, we take this as evidence of structure
in the data set. The chi-squared statistic (denoted X? below) can serve us as a rough
overall measure of the amount of structure in the data.

The chi-squared statistic X? is easily and rapidly computed, even for large data
sets containing many variables, and could be used as part of the initial phase of the
exploratory analysis of raw data or the examination of residuals from fitted models.
That is, the statistic X2 could be used as part of a battery of techniques which are all
“quick and easy” in the sense of requiring relatively little human and computer time.
For example, during the initial examination of multivariate data, one might use X?2
in addition to examining histograms for each of the variables, the sample correlation
matrix, and bivariate scatterplots for all pairs of the variables (and maybe other items
as well). The hope is that our statistic X2 might reveal structure that is missed by
these other techniques. If some structure is found, one might then go on to a second
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or computer time in order to better understand the nature of this structure. However,
after the initial phase of the analysis, the user may decide the data appears to have a
simple structure (it may look like a sample from a multivariate normal population or
a population with independent variables) and that no further examination is needed.

The considerations above largely determine the form of our test statistic X2. We
spherize the data in part because we assume that the user of our statistic will also
be examining the sample correlations between the variables and will thus be aware
of any correlations that do exist. Binning each of the spherized variables by use of
the sample quantiles into d groups of equal size essentially removes the structure or
information contained in the marginal distributions. We do this because there are
easy and well known techniques (histograms, Q-Q plots, etc.) for studying univariate
marginal distributions. We assume that the user will be applying these techniques
to study the marginal distributions of the original data, and we note that the same
techniques can also be applied to study the marginals of the spherized data. Thus, by
sphering and binning the data we hope to remove that part of the structure that the
user is likely to be aware of already or can easily study by other means. The structure
that remains in the resulting contingency table is now more likely to correspond to
structure in the original data that was previously unknown to the user and not readily
apparent. We test for the existence of this structure by using the classical chi-squared
test for independence in a contingency table.

In Section 4 we present a number of examples in which this procedure is used to
detect structure in data. We examine data which consists of randomly located clusters,
data arising from digitized speech, and data consisting of the output of a faulty random
number generator. We also present two examples in which our procedure is used to
examine the residuals from fitted time series models. The chi-squared statistic is able
to detect a wide variety of different types of structure. It can often find structure in
situations where it is not very apparent and could be easily missed by a data analyst.

As a general guide to judging the magnitude of X?* we use its limiting distribution
(as the sample size n becomes large) when sampling from a multivariate normal popu-
lation. This is given in our Theorem 2.1. After spherizing to remove the correlations, it
seems reasonable to regard the multivariate normal distribution as having no remain-
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reasonable choice for a “reference” or “null” distribution. Another situation to con-
sider is data sampled from a population which has independent coordinates. In this
situation the sample correlations between the variables will be small and the spherizing
transformation (typically) amounts to a small perturbation of the original coordinate
system. Thus, the coordinates of the spherized data will be approximately independent
and the contingency table of counts will usually reveal no evidence of dependence. So,
the value of X? will tend to be small in this situation. In fact, we show (via simulation,
see Section 3.2) that the distribution of X? is roughly the same for both multivariate
normal populations and populations with independent coordinates. Throughout this
paper, we shall regard both of these as “null” situations in which there is no structure
in the data beyond that in the correlations and marginal distributions.

Our procedure is often very effective at signaling the existence of multivariate struc-
ture, but usually gives little information about the nature of that structure. When
structure is found, one may need to employ other methods (e.g., projection pursuit,
cluster analysis or dynamic graphical techniques) to discover the nature of this struc-
ture. We also note that our procedure cannot detect all types of multivariate structure,
but only those kinds of structure which reveal themselves as some type of dependence
between the coordinates of the sphered data. It is possible to construct examples of
data sets which contain obvious structure which is not detected by our chi-squared
statistic. Of course, since “structure” is such a vague and slippery concept, it seems
unreasonable to expect any procedure to detect all possible types of structure.

It should be noted that we are not attempting to use the word “structure” as
a precise, technical term. We call our procedure a “test for structure” mainly to
emphasize the role we hope it will play in applications. If one wishes to regard our
procedure as a test of a more formal statistical hypothesis, one can think of it as a
test for dependence in the spherized coordinates. Our Theorem 2.1 then provides the
appropriate adjustment to the null distribution to account for the fact that the test is
carried out on the spherized data and not on the original data.

Since we know the approximate distribution of X2 when sampling from a multi-
variate normal population, the statistic X2 can also be used to test the hypothesis of
multivariate normality. The resulting test is not an omnibus test. For example, the

test has no sensitivity to non-normality in the marginal distributions of the spherized



data. However, our chi-squared statistic is based on different principles than the ex-
isting procedures currently in use, and it is sensitive to different types of departures
from multivariate normality. (See Sections 4.2 and 4.4.) Thus, our statistic should be
useful as part of a battery of tests for multivariate normality.

The remainder of the paper is organized as follows. In Section 2 we give a precise
definition of the chi-squared statistic. We also give the limiting distribution of this
statistic when our data is sampled from a multivariate normal population. In Section
3 we use simulation studies to examine the “null” behavior of the chi-squared statistic.
That is, we study the distribution of the statistic in those situations (multivariate
normal populations and populations with independent coordinates) we regard as being
without structure. We find that the limiting distribution derived for a multivariate
normal population offers a good general approximation to the null distribution of our
statistic. In Section 4 we provide a number of examples to illustrate how our procedure
can be used in practice. Our statistic X? is not affine invariant. Consequently, different
choices of the spherizing transformation lead to different values of X2. Section 5 gives

some discussion concerning this lack of invariance.

2 The Chi-Squared Statistic

Suppose we have data yi1, ¥s,...,y, which are p x 1 vectors. Let the data matrix Y be
the n X p matrix whose i-th row is y;.

To look for structure in Y, we employ the following procedure. First, we apply a
linear transformation to “sphere” the data. This creates a transformed data set Z in
which the coordinates (columns) are uncorrelated and have mean zero. More formally,

the n x p matrix Z = (z;;) of transformed data is defined by

Z = Q.YR(S), (2.1)

where Q. = I,, — ee’/n and R(S) is a p X p matrix chosen so that Z'Z/n = I,. Here
we use [, and [, to denote identity matrices with the indicated dimensions, and e to
denote a column vector of ones. We require the matrix R(S) to be a function of the
sample covariance matrix S defined by S = n Y*!Q.Y. If we let z; denote the i-th
row of Z, we can write our transformation as z; = R'(y; — §) for i = 1,...,n, where

7 is the sample mean vector § = n~'Y?e. Transformations of this type are frequently



employed in statistics, and in particular, have often been used in the construction of
tests for multivariate normality.

There are many possible choices for the function R = R(S). Any choice satisfying
R'SR =1 will give Z'Z/n = I . A principal components transformation of the data Y’
corresponds to choosing a particular matrix R of the form I'D where I is an orthogonal
matrix and D is a diagonal matrix. A Gram-Schmidt transformation takes R to be
upper triangular. Another commonly used transformation uses R = S~'/2. In our
work, it is important that the matrix R be chosen in a way which depends only on S
and not directly on the raw data Y'; this is required for the validity of Theorem 2.1.
Also, as a general rule, we recommend using transformations which are continuous as
a function of S and satisfy R(D) = D~/ for any diagonal matrix D. (This point is
discussed in Section 3.2.) The Gram-Schmidt transformation and R(S) = S~%/2 satisfy
this rule, but the principal components transformation does not.

After obtaining the transformed data Z, we discretize each column of Z by dividing
the values in each column into d groups (labeled 1,2, ..., d) of equal size n/d. If n is not
divisible by d, the group sizes will not be exactly equal. This produces an n X p matrix
T = (t;;) whose entries t;; are all integers in {1,2,...,d}. A more precise definition of
T is given by

tij =k, if (k—1)n/d<r; <kn/d, (2.2)

where 7;; is the rank of z;; among the values 2y;, 295, ..., 2,; in the j-th column.

We now form a contingency table from the n rows of the discretized matrix 7. This
contingency table contains d” cells corresponding to the possible p-tuples of integers in
{1,2,...,d}. We have n observations distributed among these d? cells. Under the null
hypotheses that we consider, the expected number of observations in any given cell is
approximately n/d?. We use m = (my, ma,...,m,) with 1 <, < d for all ¢ to denote a

particular cell in our table. For each cell 7, the cell count U, is given by
U, => I{t; =7}, (2.3)
i=1

where t; is the ¢-th row of T'. Some information about the structure in the data set Y
can be gleaned from a direct examination of the distribution of the cell counts; see the
examples in Section 4. As a summary measure for the amount of structure in the data

(or for the degree of departure from multivariate normality), we use the chi-squared



statistic X2 defined by )
2 (Ux —n/d)

™

This statistic can be rapidly computed even for very large data sets.

When sampling from a multivariate normal distribution, the limiting distribution of
X? (given below) is that of a weighted sum of independent chi-square random variables
with appropriate degrees of freedom. In most applications, the number of cells d is
fairly large. In this case, the limiting distribution is approximately normal and the
2-score ¥

— g2
2= 07“ (2.5)
can be used to give a simple test for structure. Here p,2 and 0,2 are the mean and the
standard deviation of the limiting distribution of X?2.

The choice of d is somewhat arbitrary. In exploratory work we often try many
different values of d since we do not know in advance what type of structure there might
be in the data and on what scale this structure might be most easily observed. We
generally prefer to have a fairly large number of cells and, at the same time, an average
cell count n/dP which is not too small. If we wish to use the limiting distribution of the
chi-squared statistic for testing purposes, our simulation work seems to indicate that
the usual guidelines apply: the limiting distribution is fairly accurate when n/d? > 5.
If the number of cells is sufficiently large, it is reasonably good even for n/df = 1.
Since dP grows rapidly with p, for high dimensional data sets we are often forced to
use small values of d in order to avoid extremely small average cell counts.

The following theorem gives the limiting distribution of the chi-squared statistic
X? when the data Y is sampled from a multivariate normal population. A detailed
proof of this result may be found in Huffer and Park (1999).

Let ¢ and ® denote the density and cdf of the standard normal distribution. For
i=0,1,...,d, we define (; = ® 1(i/d). Note that {, = —co and {; = co. Now define

2

Yy = ¢(Gio1) — #(G) for 1 <i<d, and c= (il: %2) (2.6)

=1

with the convention ¢(+o00) = 0.

Theorem 2.1 If y1,ys,...,Y, are i.i.d. N(u,X) with ¥ nonsingular, then



(a) The distribution of X? does not depend on p or ¥ (that is, X? is ancillary), or
on the choice of the transformation R(S).

(b) Asn — oo, the distribution of X? converges to that of Wi + (1 — d*c)W, where
W1 and Wy are independent chi-squared variates with degrees of freedom

m=d’—1—-p(d—1)—pp—1)/2 and vy = p(p — 1)/2 respectively.

Distributions like that in part (b) of our Theorem have been well known in the
context of chi-squared tests since the work of Chernoff and Lehmann (1954). Our
results are similar in character to those of Watson (1957) dealing with goodness-of-fit
for the univariate normal distribution. However, we note that our statistic X2 does not
have a precise univariate analog; when p = 1 the statistic X2 is degenerate (constant
with probability one).

The limiting distribution does not have a convenient closed form for either the
density or the cdf, but it is still possible to obtain a great deal of information about
this distribution. For example, it is routine to compute moments and cumulants of all

orders. The mean and variance needed in (2.5) are given by

fer =11 + (1 —d*c)vy and o2 = 2u; + 2(1 — d*c)vy. (2.7)

z2

Weighted sums of chi-squared variates arise frequently in statistics and there has been
much work on obtaining numerical approximations to their distributions. The cdf
may be evaluated by numerical inversion of the characteristic function (Imhof (1961),
Farebrother (1990)). There are also good approximations based on matching moments
(Solomon and Stephens (1977)). Finally, we note that it is easy to simulate from the
limiting distribution, so that many questions can be given quick approximate answers
via simulations.

Park (1992) studies a number of closely related chi-squared statistics which are
arrived at by using different initial transformations and methods of discretization than

thosein (2.1) and (2.2). He obtains results analogous to Theorem 2.1 for these statistics.

3 Simulations of Null Behavior

In this section, we present simulation results to illustrate the validity and accuracy

(in finite samples) of the limiting distribution of X2. We consider two situations:
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sampling (1) from a multivariate normal population, and (2) from populations with
independent coordinates. We find that the limiting distribution in Theorem 2.1 gives

a good approximation to the true distribution of X? in both of these situations.

3.1 Sampling from the Multivariate Normal Distribution

We have performed numerous simulations to study the distribution of X? when sam-
pling from a multivariate normal population. All gave very similar results. In this
section we present the results of one such study. Part (a) of Theorem 2.1 states that,
for given values of n, d and p, the distribution of X? is the same for all choices of p,
Y., and method of transformation R(S). For the simulations described below, we take
pn =0, % =1, and choose the Gram-Schmidt transformation (taking R(S) to be upper
triangular). Our simulated data matrices Y are thus simply matrices whose entries are
i.i.d. standard normal random variables.

In these simulations we take the number of coordinates p to be four, and the number
of categories d to be three. Thus, our X? statistics are computed from a contingency
table of counts which has 3* = 81 cells. In this situation, the limiting distribution
given in Theorem 2.1 becomes x*(66) + 0.3708x?(6). We shall consider three different
samples sizes, n = 81, 405 and 810, which we refer to as small, moderate and large
samples respectively. These sample sizes correspond to having an average of 1, 5 and
10 observations per cell respectively.

For each sample size n, we generated 500 n X 4 matrices Y and computed the
value of X? for each of them. These 500 values were ordered and then plotted against
the expected order statistics (see the remarks below) of a sample of size 500 from
the limiting distribution. The resulting quantile-quantile plots are displayed in Figure
1. Each of our quantile-quantile plots displays the reference line having slope 1 and
intercept 0. This represents the “ideal” case in which the empirical and theoretical
distributions coincide. Examining the plots, we see that the limiting distribution is a
good approximation in the moderate and large sample cases. The discreteness of the X?
statistic is apparent in the small sample case. Also, in this case the actual distribution
is somewhat less dispersed than the limiting distribution. However, we feel that the

limiting distribution fits well enough to serve as a useful rough approximation.



Position of Figure 1

The “expected order statistics” (labeled as “theoretical quantiles”) we use in our
plots are approximations obtained as follows: It is straightforward to generate random
variates from any distribution expressible as a weighted sum of chi-squared variates.
Thus, we simply generated 100 samples of size 500 from the limiting distribution and
averaged the order statistics of these 100 samples to obtain estimates of the expected
order statistics. We found that 100 samples give a reasonably accurate estimate.

Finally, we compare the sample moments of X? in the small, moderate, and large

sample cases to those from the limiting distribution in Table 1. The sample mean and

Table 1: Sample moments of X? from the small, moderate, and large sample sizes and

those from the limiting distribution

small sample | moderate sample | large sample | limiting dist.

mean 69.06 68.07 67.59 68.22
s.d. 10.40 11.16 11.05 11.56

standard deviation are quite close to those from the limiting distribution except for a
possibly under-estimated sample standard deviation for the small sample case. Thus,

this table confirms the findings in the quantile-quantile plots.

3.2 Distributions with Independent Coordinates

When our data is sampled from a population which is not multivariate normal, the
situation becomes complicated. We no longer have an invariance result like part (a)
of Theorem 2.1, and the distribution of X? will typically depend on both the par-
ent population and on the particular choice of R(S). We regard multivariate normal
distributions and distributions with independent coordinates to be equally lacking in
structure and would prefer that our X2 test not distinguish between these two sit-
uations. Our simulations indicate that, in fact, this is roughly the case. With an
appropriate choice of the transformation R(S), the limiting distribution of Theorem
2.1 continues to be approximately valid for distributions with independent coordinates.

Another way to state this conclusion is the following: If we regard X? as a statistic
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for testing the hypothesis of multivariate normality, it will give a test which has low
power not only for alternatives close to the multivariate normal distribution, but also
for alternatives for which the coordinates are close to being independent.

Before presenting our simulation results, we give an informal argument indicating
why we expect that the limiting distribution of X? under independent coordinates will
not be radically different from the distribution under multivariate normality, at least
when R(S) is appropriately chosen. Suppose the transformation R(S) is “smooth” as
a function of S. Assume also that R(D) = D~'/2 for any diagonal matrix D. Both the
Gram-Schmidt transformation and R(S) = S~!/2 satisfy these assumptions. Let the
data y1,vs, ..., y, be ii.d. from a p-variate distribution with independent coordinates.
The covariance matrix ¥ will then be diagonal. As the sample size n goes to infinity,
we will have S — ¥ so that our assumptions on R ensure that R(S) — R(X) = Z~/2
It then seems reasonable that the limiting distribution of X? will be not too different
from that of the related chi-squared statistic X2 constructed using the fixed matrix
R = ¥ Y2 in place of R(S) in equation (2.1). But the statistic X2 is essentially
identical to the standard chi-squared test for independence in contingency tables and
it is not hard to see it has the usual x?(d* — 1 — p(d — 1)) limiting distribution. (See
Park (1992) for a proof of this assertion.) When the number of cells d” is sufficiently
large, this distribution will be close to the limiting distribution given in Theorem 2.1.
This gives us our desired conclusion.

We now present our simulation results. In all of the simulations we now describe,
we take p = 4, d = 3 and n = 405; this is the “moderate sample” case used earlier.
Each value of X? is computed from a 405 x 4 matrix whose entries are i.i.d. from a
specified parent distribution. Four different parent distributions are used: the normal
distribution, and three different log-normal distributions with increasing degrees of
skewness. To be more precise, a log-normal random variate y is generated as y = e*
where X ~ N(0,0?) and o takes on one of the three values 0.1, 0.5 or 1.0. These values
of 02 produce values of the standardized skewness v, = E(y — u)®/(E(y — p)?)%/? equal
to 1.01, 2.94 and 6.18 respectively, corresponding to moderate, large, and very large
amounts of skewness. For convenience, we refer to the four parent distributions by
number as 0, 1, 2, 3. We note that distribution 3 has both very large skewness and a

very heavy right tail.
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Figure 2 gives a number of boxplots each summarizing the distribution of 200 values
of X?; the box gives the median and quartiles, and the whiskers indicate the 5% and
95% points of the distribution. The boxplots are divided into three groups according to
the transformation R(S) used: Gram-Schmidt, symmetric (R(S) = S~/2), or principal
components. In each group, the four boxplots represent the distribution of X? under
the four parent distributions 0 — 3. Distribution 0 is provided as a reference point.
We see that, for the Gram-Schmidt and symmetric transformations, the introduction
of moderate amounts of skewness (distribution 1) has little impact on the distribution
of X% Even a large amount of skewness (distributions 2 and 3) has fairly modest
effects. The situation is radically different for the principal components (PC) trans-
formation. Here even a moderate amount of skewness produces a substantial change
in the distribution of X2. This is because the PC transformation does not satisfy the
condition R(D) = D~'/2 mentioned above. In our simulation setting, if we let n — oo,
the PC transformation produces a matrix R(S) which converges in distribution to a
scalar multiple of a random orthogonal matrix; R(S) does not converge to the “correct”

transformation.

Position of Figure 2

We have obtained similar results in other simulations using parent distributions
different from the log-normal. For example, we have investigated the case where the
entries in Y are i.i.d. uniform random variables. In this case, the distribution of X2
is virtually indistinguishable from the limiting distribution in Theorem 2.1 when we

—1/2 but is radically different when

use the Gram-Schmidt transformation or R(S) = S
we use the PC transformation (see Figure 3 in the Appendix). In conclusion, when
using X? as a test for multivariate structure, one should use either the Gram-Schmidt
transformation or R(S) = S~Y2. When this is done, the limiting distribution in

Theorem 2.1 offers a reasonable guide for using X2. The PC transformation should

probably be avoided. (If your goal is the more narrow one of testing for multivariate
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normality, then there is no longer any reason to exclude the PC transformation.)

As a practical matter, when applying our X? test to data Y having columns whose
distributions are highly nonnormal, it is probably a good idea to first transform the
columns to make them approximately normal. There are a couple of reasons for this.
First, our procedure uses the sample covariance matrix S which can be highly vari-
able for heavy-tailed distributions. Secondly, it seems likely that transforming the
columns will make the null distribution of X2 closer to the distribution it would have

for multivariate normal populations.

4 Examples

We now present examples to show how our procedure might be used in applications.
Until now, our discussion has dealt exclusively with the chi-squared statistic X2. In
our examples, we give the value of X2, but we also present additional information
summarizing the observed distribution of the cell counts U, defined in (2.3). To aid in
interpreting this summary information, we introduce a simple Poisson approximation.
We wish to explain and illustrate this new material on data without any structure (to
observe the “null” behavior) before using it in examples with structure. For this reason,
our first example will use data generated from a multivariate normal distribution.
For all the examples which follow, we shall use the Gram-Schmidt transformation

as our choice for R(S).

4.1 Sampling from the Multivariate Normal Distribution

In this example, Y is a 1215 X 5 matrix composed of independent columns generated
from the standard normal distribution. Our procedure leads to the output in Table
2. We have chosen to set d = 3; this means we have divided the data space into
dP = 3% = 243 cells. There are n = 1215 observations, so that the average number of
observations per cell is n/d¥ = 5.

The last three lines of the output give the value of X2, the mean and standard
deviation of the limiting distribution in Theorem 2.1, and the z-score computed as
in equation (2.5). The z-score of 0.51 would lead to our concluding that their is no
structure in this data. This agrees with the known truth in this case.

The output in Table 2 also lists the “observed” frequency distribution: two cells

13



Table 2: Output from a normal distribution

skokokokok ok o ok skokokok ok ok ok ok okokok ok ok ok ok ok ok ok sk okok okook ok ok ok ok ok ok sk sk okok ok ok ok o ok ok sk sk sk ok ok ok ok
For d = 3,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8
Observed 2.00 7.00 16.00 35.00 51.00 48.00 26.00 25.00 13.00
Expected 1.64 8.19 20.47 34.11 42.64 42.64 35.53 25.38 15.86

9 10 11 12 13 14 15 16
Observed 13.00 4.00 1 2.00 0.00 0.00 0.00 0.00
Expected 8.81 4.41 2 0.83 0.32 0.11 0.04 0.01

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 5 4.8642 0.51786 0.19229

Expected 5 5.0000 0.44721 0.20000

Observed X"2 value = 236.4

Asymptotic mean and s.d. of X"2 = 225.71 21.14

z-gcore for X2 = 0.51

e sk s ok s ok s ok sk sk sk sk sk sk ok sk ok sk ok sk ok 3 ok 3 ok 3 ok 3 ok ok sk ok K ok 3 ok 3 ok 3 ok ok sk ok sk ok 3k ok 3 ok 3 ok 3k sk ok k ok 5k ok 3k ok

are empty, seven cells contain exactly one observation, 16 cells contain exactly two
observations, etc. Let N}, be the number of cells containing exactly k observations,
that is, Ny, = ¥, I{U, = k}. As a rough standard for comparison, the output gives
an “expected” frequency distribution computed using a simple Poisson approximation:
Ny is compared with Ej, = d’A\*e¢=*/k! where A = n/d?. The output summarizes
the observed distribution of cell counts by giving the sample moments: the mean,
variance, standardized skewness (u3/0°), and standardized kurtosis (us/0* —3). These
are compared with the corresponding moments of the Poisson distribution with mean
A which are labeled the “expected” moments.

The Poisson approximation is based on the following rationale. In most of the
applications of our methods, the number of cells d” is quite large. The cells are (at least
approximately) equally likely, that is, an observation (row of Y) has an approximate
probability 1/d? of belonging to any given cell. Moreover, the n observations are
roughly independent with regard to their cell membership. (They are not exactly

independent, the initial transformation (2.1) and the method of discretization (2.2)
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impose some dependence.) We have a large number n of observations, each with a
small probability 1/d? of belonging to any given cell 7. Thus, we expect the number of
observations U, belonging to cell m to have approximately a Poisson distribution with
amean of A = n/dP. The values U, should behave roughly like a random sample of size
d? from a Poisson distribution with mean A. This implies that the number of cells IV,
containing exactly k observations should have approximately a binomial distribution
with mean E; = d’P, and variance V;, = d?P,(1 — P,) where P, = e */k!. Our
output lists the observed values V), and the expected values E}.

The observed frequency distribution of the cell counts in Table 2 is close to the
expected frequency distribution. Similarly, the observed moments are close to the
expected moments. This has been our general experience; the Poisson approximation
fairly accurately describes the distribution of the cell counts when there is no structure
in the data and the number of cells d” is large. To back up this claim we present the
results of a simulation. The analysis in Table 2 was repeated 1000 times. The results
are summarized in Table 3. This table gives the sample mean and standard deviation
for the values Nj obtained in the simulation and compares these with the “expected”
mean [, and standard deviation 1/V}, obtained from the Poisson approximation. The
“expected” values from the Poisson approximation are seen to supply a good first order
approximation to the actual means and standard deviations. Intuitively, the effect of
the sphering (2.1) and the discretization (2.2) into groups of equal size is to somewhat
reduce the overall variability of the cell counts and to introduce some small negative
dependence between the cell counts. This causes some systematic departure from the
Poisson approximation. In Table 3, the simulation means Nj, are more peaked about
A = 5 than “expected” (that is, Nj > E}, for k near 5, and Nj, < E}, for k in the tails),
and the simulation standard deviations are almost uniformly somewhat smaller than
the “expected” values v/V.

One final comment on the simulation results: It is not stated in Theorem 2.1, but
in fact the joint distribution of the cell counts U, does not depend on p or ¥ (see
Huffer and Park (1999)). This is what gives us license to take 4 = 0 and ¥ = I in our
simulations; the results would be the same for any p and . Similarly, the choice of
the transformation R(S) has no effect on the joint distribution of the cell counts.

When we use our procedure on real data, a large value of X? indicates there is
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Table 3: Results of simulation: 1000 repetitions with n = 1215, p = 5, d = 3 and
normally distributed data.

0 1 2 3 4 5 6 7 8 9 10
Mean of N(k) 1.39 7.40 19.36 33.81 43.55 44.25 36.75 25.94 15.56 8.31 4.05
Expected Mean 1.64 8.19 20.47 34.11 42.64 42.64 35.53 25.38 15.86 8.81 4.41
S.D. of N(k) 1.18 2.50 3.96 4.79 5.67 6.02 5.40 4.42 3.57 2.70 1.88
Expected S.D. 1.28 2.81 4.33 5.42 5.93 5.93 65.51 4.77 3.85 2.91 2.08
11 12 13 14 15 16
Mean of N(k) 1.70 0.61 0.21 0.06 0.02 0.01
Expected Mean 2.00 0.83 0.32 0.11 0.04 0.01
S.D. of N(k) 1.23 0.77 0.46 0.25 0.12 0.09
Expected S.D. 1.41 0.91 0.57 0.34 0.20 0.11

structure in the data, but tells us nothing about the type of structure. Comparing
the frequency distribution of the observed cell counts with the “expected” distribution
gives us some information concerning the type of structure. In particular, we can see
whether the large X2 is due to just a few cells with very large counts (perhaps due to a
single clump in the data), or whether it reflects a more global change in the frequency
distribution (suggesting a more extended form of structure).

In very large samples, the limiting distribution of X? may no longer be useful for
testing; it will often detect structure which is statistically significant, but too small
to be of practical importance. In this situation, it may be useful to rescale the X2
statistic so that its magnitude is a meaningful measure of the degree of structure in
the data. The “observed” variance of the cell counts, which equals (n/d*) x X2, is a
useful rescaling. For very large samples, an informal comparison of the “observed” and
“expected” variance of the cell counts may be preferable to a formal test based on the
limiting distribution of X?. (The Poisson approximation for the “expected” variance

of the cell counts is simply A = n/dP.)

4.2 An Example with Randomly Located Clusters

We now consider a data set consisting of many randomly located clusters in dimension
p = 5. There are n = 405 observations made up of 135 clusters of size 3. The

cluster centers (denoted g, p2, ..., p135) are independently generated from N (0, I5).
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The members of cluster 7 are generated from N (p;,0?l5), with ¢ = 0.25. In bivariate
scatter-plots, there is no obvious structure in the data set. However, our method clearly
signals the existence of structure.

Applying our method with d = 3 leads to the output in Table 4. The chi-squared

Table 4: Output from randomly located clusters

otk ko ko kokskok ok kok ok kok ko sk ko ko kokokokok skok ok sk sk ok sk sk sk sk ok ok sk ok ok sk ok ok ko ok ok ok ok ok
For d = 3,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8 9
Observed 63.0 73.00 43.00 33.00 18.00 4.00 8.00 1.00 0.00 0.00
Expected 45.9 76.49 63.75 35.41 14.76 4.92 1.37 0.33 0.07 0.01

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 1.66667 2.43621 1.02379 0.64896

Expected 1.66667 1.66667 0.77460 0.60000

Observed X°2 value = 355.2

Asymptotic mean and s.d. of X°2 = 225.71 21.14

z-gscore for X2 = 6.13

F ok ok ok ok ok o ok ok s oKk ok sk s ok ok s ok ke ok o ok ok 3 ok K ok sk s ok ok ok K sk ok o ok o sk ok ok ok ok ok ok ok ok ks ok ok sk o sk ok

statistic is highly significant with a z-score of 6.13. This large value is caused by the
larger than expected number of cells with U, = 0 and U, > 6.

We have experimented with many variants of this example, using different dimen-
sions p, numbers of clusters, cluster sizes, and cluster dispersions ¢. Our procedure
does very well at detecting this type of structure. In this example, we chose o = .25
because, with this value, there is no structure visible in the bivariate scatter-plots. As
one tries smaller and smaller values of o, the chi-squared statistic becomes more and
more sensitive, that is, the values X2 become progressively larger. However, for for
sufficiently small values of o (say, for o < .10) the clustering becomes fairly evident in
the bivariate scatter-plots, so that a procedure such as ours is less necessary.

This example can also be viewed in the narrower context of testing for multivariate
normality. The data in this example have univariate marginals which are roughly
normal and no apparent structure in the bivariate scatter-plots, so one might suspect

the data comes from a multivariate normal population and wish to test this hypothesis.
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There are many statistics in the literature for testing multivariate normality. These
are reviewed by Gnanadesikan (1977, pp. 161-175), Mardia (1980), and Koziol (1986).
Romeu and Ozturk (1993) studied the performance of a number of statistics. Three
statistics which performed well in their study were the skewness and kurtosis tests
of Mardia (1970, 1980) and the @, test (with Cholesky-implementation) of Ozturk
and Romeu (1992). We have conducted simulations comparing our statistic X? with
these three tests on data similar to that in this example. In our simulations, X2 and
Mardia’s skewness test did well, and Mardia’s kurtosis test and @), did badly. For
the exact situation in this example (¢ = .25, p = 5), the test based on X? is more
powerful than Mardia’s skewness test. (See Figure 4 in Appendix.) As we vary o, we
find that X? is more powerful than Mardia’s skewness test for o < .30 (very roughly).
In our simulations, it seems that something like this holds in general; X? is better
for ‘small’ o, and Mardia’s skewness test is better for ‘large’ . However, the cutoff
between ‘large’ and ‘small’ ¢ varies with the dimension p, the number of clusters, and
the cluster sizes. In our simulations, the values of X2 and Mardia’s skewness test were
essentially uncorrelated. (See Figure 5 in Appendix.) This lends empirical support to

the notion that the two statistics are looking at different aspects of the data.

4.3 An Example using Speech Data

The data matrix in this example is 3393 x 10. The data was obtained by sampling
from a much larger matrix of digitized speech data consisting of 10 dimensional ‘Ipc’
vectors. The lpc vectors in this sample correspond to ‘unvoiced’ sounds.

For our purposes, the exact nature of the Ipc vectors is unimportant, but we can
give some rough idea of what they are. In digitizing speech, the intensity of speech
sounds is recorded at regular intervals of time (say, 10,000 times per second) and the
resulting measurements are viewed as a time series. The time series is then broken
down into small chunks (sub-series), each representing a fraction of a second of speech.
An autoregressive process of order 10 is fit to the data in each chunk. The Ipc vector is
a one-to-one function of the vector of estimated autoregressive coefficients. Using only
the Ipc vector, one can fairly accurately reproduce the sound in the chunk. Thus, the
sequence of Ipc vectors allows us to compress the speech data.

The collection and analysis of this data set was motivated by an attempt to further
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compress the speech data by quantizing the space of Ipc vectors. By “quantizing” we
mean breaking down the 10 dimensional space of the lpc vectors into disjoint regions.
Then, when recording speech data, we throw away the lpc vectors and record only which
regions they lie in. If the regions are chosen appropriately, the remaining information
will suffice to approximately reconstruct the speech.

The method one employs to quantize the space of Ipc vectors depends on whether
or not the distribution of Ipc vectors has structure and on the nature of this structure.
A procedure such as ours is a helpful first step in this investigation.

Examination of a histogram reveals that the first coordinate of the Ipc vectors is
highly skewed to the left. Also, the bivariate scatter-plots of the first coordinate versus
the other coordinates reveal some definite nonlinear patterns. (These plots are not
included here.) There is obvious structure involving the first coordinate, so we shall
omit this variable and see if any structure exists in the remaining nine. Inspecting a
matrix of scatter-plots for variables two through ten reveals no obvious structure or
pattern. However, applying our procedure to this 3393 X 9 matrix leads to the output
in Table 5.

Examining the frequency distribution, we see there is one cell containing 29 obser-
vations and several cells containing more than 20. If there is no structure in this data
set, we do not expect to see any cells with more than 20. (The expected frequency
is less than .01.) Also there are 78 cells containing 0, 1, or 2 observations, which is
much more than expected. In other words, the observed frequency distribution is more
dispersed than the expected frequency distribution. This gives strong evidence for the
presence of structure in this data. This conjecture is supported by the z-score and the
ratio of the observed variance to the expected variance.

After discovering structure in variables two through ten, we would like to determine
the nature of this structure. Since the data we are examining is high-dimensional, this
is not an easy task. Our methods can help us by suggesting subsets of the variables
on which to focus our attention. In the course of computing the output in Table 5,
we calculated and stored the ranks 7;; (see (2.2)) for the spherized data obtained from
variables two through ten. Using this 3393 x 9 matrix of ranks, we computed the X2
statistic and corresponding z-score for each of the 501 subsets of two or more columns

from this matrix and each of the values d = 2, 3, 4, 6, producing 2,004 z-scores in
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Table 5: Output from speech data

okokokok ok o ok skokokok ok ok ok ok sk okok ok ok ok ok ok ok ok ok sk okok okook ok ok ok ok ok ok sk skokok ok ok ok o ok ok sk sk ok ok ok ok ok
For d = 2,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8
Observed 9.00 26.00 43.00 57.00 47.00 51.00 47.00 48.00 40.00
Expected 0.68 4.49 14.89 32.89 54.48 72.21 79.76 75.51 62.55

9 10 11 12 13 14 15 16 17 18
Observed 41.00 28.00 21.00 13.00 10.00 7.00 2.00 5.00 2.00 4.00
Expected 46.06 30.52 18.39 10.15 5.18 2.45 1.08 0.45 0.17 0.06

19 20 21 22 23 24 25 26 27 28 29
Observed 2.00 1.00 1 1 1 4 0 0 O O 1
Expected 0.02 0.01 0 0 0 O 0 O O O O

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 6.62695 19.09716 1.36521 3.10011

Expected 6.62695 6.62695 0.38846 0.15090

Observed X"2 value = 1475.45

Asymptotic mean and s.d. of X2 = 487.41, 30.94

z-score for X2 = 31.93

ok ok ok ok sk ok ok ok ok sk ok ok s ok ok ok sk ok ok K ok sk ok ok sk K sk ok sk o sk ok ok ok sk ok ok ok ks ok ok sk koK

all. (This took about 2 minutes on our computer system.) There were a number of
low-dimensional subsets of the variables with large z-scores, a few of which are listed
below. These particular subsets are good candidates for more detailed study. Let Z;
denote the i-th column of the spherized data. The X? statistic for (73, Z3, Z4, Z5) with
d = 3 had a z-score of 49.3. The X? statistics for the subsets (Z4, Z5) and (73, Zg) with
d = 4 had z-scores of 35.3 and 25.9 respectively. Finding pairs of variables with very
large z-scores like this was somewhat surprising to us, since there was little apparent
structure in the matrix of scatter-plots. (Perhaps the small and rather crowded plots
which one gets when creating a scatter-plot matrix for a large high-dimensional data
set should not be relied upon except to reveal very gross features of the data.)

After locating plausible subsets of the variables, we can then bring other techniques

to bear to investigate these subsets. For example, dynamic graphical methods (such
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as “spinning” and “brushing”) are now widely available in commercial software and
provide very natural and intuitive ways to investigate the structure in relatively low-
dimensional data sets. Applying these methods to the subsets found above, we find
there is a great deal of structure in the data which is associated with the omitted first
variable. For example, the non-normality in the scatter-plot of Z; versus Z; can be
largely explained by viewing it as a superposition of two separate groups of points

corresponding to the cases with high and low values of the first variable.

4.4 Examining a Faulty Random Number Generator

We will now show that our procedure can detect the structure in simulated data which
results from the use of a faulty random number generator. RANDU is a linear con-
gruential generator which generates a sequence of integers {V;} according to the rule
Viy1 = 65539 V; mod 231, Taking U; = V;/23! produces a sequence {U;} of pseudo-
random uniform variates. RANDU has a major defect: Marsaglia (1968) showed
that the triples (U;, U;i1,U;12) produced by RANDU lie on 15 parallel hyperplanes.
Given a sequence of pseudo-random uniform variates {U; }, the Box-Muller method pro-
duces a sequence {Z;} of pseudo-random normal variates by using the transformation
(Zi, Ziy1) = (—21log U;)/?(cos(2nU; 1), sin(27U; 1)) for odd values of i. We shall use
RANDU in combination with the Box-Muller method to generate normal variates. The
Box-Muller transformation is highly non-linear and will deform the hyperplane struc-
ture produced by RANDU into something very peculiar. We will see if our method can
detect this structure; there is no apparent structure in bivariate plots of (Z;, Z;11).
We applied our method to a 50625 x 4 data matrix Y in which each row consisted of
four consecutive normal variates produced by the procedure described above. Setting
d = 15, we obtained the output given in Table 6. The distribution of the cell counts
and the z-score of 46.14 for the statistic X? give very clear evidence of structure. There
is nothing very special about the choice of p = 4 and d = 15 employed in this example;
many other choices also lead to the same conclusion that structure exists. However, in
this situation, we do need to take a fairly large value of d in order to detect structure.
It is interesting to note that none of the three tests of multivariate normality (Mardia’s
skewness and kurtosis tests and Ozturk and Romeu’s @,,) mentioned in Section 4.2

detect anything unusual in this data.
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Table 6: Application to Faulty Random Number Generator

kokokokok ok o ok skokokok ok ok ook ok okokok ok ok ok ok ok ok ok ok sk skok okok ok ok ok ok ok ok skskskok ok ok ok o ok sk sk sk ok ok ok ok
For d = 15,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6
Observed 21204.0 15907.0 8359.00 3420.00 1189 378.0 112.00
Expected 18623.9 18623.9 9311.95 3103.98 776 155.2 25.87

7 8 9 10 11 12
Observed 38.0 9.00 8.00 0.00 0 1
Expected 3.7 0.46 0.05 0.01 O

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 1 1.28857 1.37112 2.53929

Expected 1 1.00000 1.00000 1.00000

Observed X"2 value = 65234

Asymptotic mean and s.d. of X"2 = 50562.29, 318

z-gscore for X"2 = 46.14

e sk s ok s ok s ok sk sk sk sk sk sk ok sk ok sk ok sk ok 3 ok 3 ok 3 ok 3 ok ok sk ok K ok 3 ok 3 ok 3 ok ok sk ok sk ok 3k ok 3 ok 3 ok 3k sk ok k ok 5k ok 3k ok

As a check, we repeated the analysis of this example replacing the lawed RANDU
generator with the default uniform generator used in S-plus. We generated four differ-
ent 50625 x 4 matrices Y which led to X? statistics with the fairly modest z-scores of
2.29, 0.75, 0.51, —0.25.

Our statistic X? is primarily intended for situations where the population mean
vector p and covariance matrix ¥ are unknown. There are many situations, such as
the testing of random numbers in this example, which involve a null hypothesis where
w or X (or both) are known a priori. In these situations, one may wish to use an
initial linear transformation different from that given in (2.1). Park (1992) considers
some alternative transformations and gives the limiting distributions of the resulting
modified X? statistics.

We have included the present example to illustrate the variety of structures which
can be detected by our approach. When used as a test for random number generators,
our statistic X? closely resembles a well known test that Knuth (1981, Section 3.3)

refers to as the “Serial test”. There are also other procedures for testing random
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number generators which exploit the same underlying “cell count” idea used in the X2

statistic; see Marsaglia and Zaman (1993).

4.5 Examining Residuals from a Nonlinear Time Series

In this example, we generate a nonlinear time series, and then fit a linear time series
model to this series. Since we are fitting the wrong model to the data, we expect the
residuals to contain some remaining structure. We shall analyze the residuals by stan-
dard diagnostic methods (such as the time series plot and plots for autocorrelation and
partial autocorrelation functions), and, finally, analyze the residuals by our method.

Fitting a time series model creates a series of residuals. In order to apply our
method, we must choose a dimension p and convert the series of residuals into p-
variate data. We do so by dividing the residuals into disjoint subseries (or blocks) of
p consecutive residuals and then taking each subseries as an observation y;. Thus, if
we start with m residuals, we create an (m/p) x p data matrix Y as the input for our
method.

A time series of length 1000 is generated by the following formula
T; — 0.4.’]3,',1 + 0.43%71@,1 + €

where ¢; are i.i.d. standard normal and x, = 0. This is a conventional bilinear model
with a fairly small coefficient for the bilinear term (see Priestley (1988, p.52) for details).
We shall try to fit the generated time series using autoregressive models. We use a
procedure named AR in Splus to find one of the ‘best’ autoregressive models. The
procedure uses the Akaike information criterion to choose the order of the model.
The Yule-Walker equations are used to estimate the autoregression coefficients. An
autoregressive model of order 8 is chosen by this approach. We fit the AR(8) model
and then examined the residuals.

The time series plot of the residuals (see Figure 6 in the Appendix) does not show
any unusual pattern except for some outliers. Both the autocorrelation and partial
correlation functions up to 30 lags (again see Figure 6 in the Appendix) are inside the
error bars at twice the standard error. A normal probability plot of the residuals (see
Figure 7 in the Appendix) does indicate some degree of non-normality, but perhaps
not enough to make us abandon the autoregressive model. These standard diagnostic

procedures do not reveal any major problems in the model fit.
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Now we apply our method. We divide the residuals into subseries of 3 consecutive
residuals and then take each subseries as an observation. This produces a data set Y
of dimension 330 X 3. Our method with d = 4 leads to the output in Table 7. The
chi-squared test (with a z-score of 7.2) gives a definite indication of structure in the
residuals. Examining the frequency distribution of the cell counts, we find 10 cells with
U, <1, and 5 cells with U, > 11. This is much more than we would expect on the

basis of the Poisson approximation.

Table 7: Output from a nonlinear time series

For d = 4,
The frequency distribution of the cell counts is:

o 1 2 3 4 5 6 7 8 9 10 11 12
Observed 1.00 9.0 4.0 7.00 5.00 10.0 11.00 5.00 4.00 3.00 0.00 2.00
Expected 0.37 1.9 4.9 8.43 10.86 11.2 9.63 7.09 4.57 2.62 1.35 0.63

14 15 16
Observed 0.00 0.00 1
Expected 0.04 0.01 O

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 5.15625 10.03809 0.80013 0.95047

Expected 5.15625 5.15625 0.44039 0.19394

Observed X2 value = 124 .59
Asymptotic mean and s.d. of X"2 = 51.78 10.12
z-gcore for X°2 = 7.2

3k >k >k 3k ok 2k ok 3k 3k 3k ok 5k 3k ok 3k 3k %k %k %k %k %k ok 3k 3k 5k 5k ok 5k >k >k %k %k ok 3k 3k ok 3k ok 3k %k >k ok %k ok %k 5k ok 5k >k %k >k %k ok %k %k %k k ok k

After determining there is structure in the residuals, we can use other techniques
to reveal the nature of this structure. In this case, lagged plots of the residuals are
useful. (The “lag k” plot is a scatter-plot of the residuals e; versus the lagged values
e;1.) The “lag 1” plot (not shown here) shows a quadratic tendency. This suggests

we abandon the autoregressive model in favor of some type of nonlinear model.

4.6 An Example using Geyser Data

In this example, we look at some data concerning the eruptions of the Old Faithful

geyser in Yellowstone National Park, Wyoming. Two time series have been recorded:
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the waiting time between eruptions and the duration of the eruptions. (This data is
available in Splus.) We shall examine the series of durations. The data were collected
continuously from August 1st until August 15th, 1985. There are a total of 299 ob-
servations. The times are measured in minutes (see Azzalini and Bowman (1990) for
further details).

We use the same approach as in the previous example. We shall attempt to model
the durations as an autoregressive process. The AR procedure in Splus (used exactly as
in Section 4.5) now selects an AR(2) process. We shall examine the residuals obtained
by fitting this model.

Commonly used residual diagnostics display no obvious problems. The residual
autocorrelation and partial autocorrelation functions are fairly well behaved, and the
residuals are approximately normally distributed (see Figures 8 and 9 in the Appendix).
However, our method points strongly to the existence of structure in the residuals. In
applying our method, we divided the residuals into subseries of 3 consecutive residuals
leading to a 99 x 3 data matrix Y. Our method with d = 3 leads to the output in
Table 8. The chi-squared statistic has a very large z-score, and there are many more

cells with U, = 0 and U, > 8 than one would expect from the Poisson approximation.

Table 8: Output from geyser data

stk ook skok ok o sk ok o skok ok ok sk ok ok sk stk ok ok ok sk sk o okok sk ok ok ok sk ok ok ok ok stk o ok o skok ok ok sk skok o ok ok
For d = 3,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8 9 10 11 12
Observed 5.00 3.00 2.00 4.00 6.0 0.00 2.00 0.00 3.00 1.00 0.00 1.00 0.00
Expected 0.69 2.53 4.64 5.67 5.2 3.81 2.33 1.22 0.56 0.23 0.08 0.03 0.01

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 3.66667 9.11111 0.67606 -0.37210

Expected 3.66667 3.66667 0.52223 0.27273

Observed X"2 value = 67 .09
Asymptotic mean and s.d. of X2 = 18.11 5.9
z-score for X2 = 8.3

3k >k 3k 3k ok 3k 3k 3k 3k 3k oK 3k ok 3k 3k k% %k %k %k %k 5k 3k 3k 5k 3k 5k 3k %k %k %k %k 5k 5k 3k 5k 3k >k 3k k %k %k %k %k %k 5k >k 3k % >k %k %k >k %k %k %k k ok k

The results of our method warn us to go back and study the residuals in greater
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detail. Close examination of the time series plot of the residuals suggests that the series
does not have constant variance; the series has “bursts” of greater variability. This is
confirmed by examining the “lag 1” plot of the residuals e; (not shown here) which
shows a strong tendency for the variance of e; to increase with the value of ¢, ;. We
think this accounts for most of the structure detected by the chi-squared test. There
is another odd feature of the data which may also be producing some of the structure:
At night the durations were recorded only as being short, medium or long with these
possibilities represented by the values 2, 3 and 4 respectively.

In the last two examples, our method clearly detects the existence of structure that
routine diagnostic methods have missed or only hinted at. Other techniques, in this
case lagged plots, are then used to investigate the nature of this structure.

In the time series examples we have just discussed, we have continued using the lim-
iting distribution given in Theorem 2.1 to evaluate the significance of X2. Simulation
studies indicate that this distribution is still approximately valid. For example, if we
generate many series of length 299 from the fitted AR(2) model for the duration series,
fit an AR(2) model to each of these generated series, and then analyze the residuals ex-
actly as we did above, obtaining a value of X? for each series, we find that these values
of X? follow the limiting distribution fairly well (see Figure 10 in the Appendix). That
is, the limiting distribution is approximately the distribution of X2 when the chosen

model is correct.

5 Invariance

According to Theorem 2.1, the distribution of X? does not depend on the choice of the
spherizing transformation R(S). However, the numerical value of X? is not invariant;
different choices of the spherizing transformation lead to different values of X2. Another
(essentially equivalent) way to state this lack of invariance is as follows. Let Y be the
n X p data matrix, and A be any nonsingular p X p matrix. Define Y* = Y A. For any
given method of spherizing, we may compute X2 for both Y and Y*. These two values
of X? are (in general) different, and can sometimes be radically different. That is, our
procedure is not invariant under nonsingular linear transformations of the data.

On the whole, invariance is a desirable feature of statistical tests. But in spite of

its lack of invariance, our procedure is quite useful and accomplishes the goals set for
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it in Section 1. The lack of invariance is not a serious disadvantage for our procedure.

Consider the use of X? as a test for multivariate normality. In this area, we note that
much of the impetus for using invariant statistics comes from the fact that such statis-
tics are automatically ancillary; we achieve ancillarity by another route (via Lemma 2.1
in Huffer and Park (1999)). Secondly, we note that there are many tests for multivari-
ate normality in the literature which are not invariant. The statistic ),, from Romeu
and Ozturk (1993), which we used as a comparison in Examples 4.2 and 4.4, is one
such. Other examples of non-invariant statistics are found in Cox and Small (1978),
Small (1980) and Looney (1995). Invariance is certainly not considered an absolute
requirement for tests of multivariate normality.

We can define invariant analogs of X? (see below), but they require a great deal
of time-consuming computation and are thus not suitable for use in the initial phase
of exploratory data analysis. Moreover, there are situations in which invariance is not
desirable and the purposes of the data analyst are better served by a non-invariant
procedure.

The most natural invariant analogs of our statistic are X2 _ and X2 . the maxi-

mazr min?
mum and minimum values of X? attained over all possible spherizing transformations.
The statistic X2, is a good candidate for use as a test for multivariate normality. In
any spherized coordinate system, evidence of dependence (a large value of X?) suggests
a departure from multivariate normality; we search for such departures by maximiz-

ing X2 over all possible spherizing transformations. The other statistic, X2 . , would

min)
be a useful tool in the exploration of multivariate data. Minimizing X? is one way
of looking for a coordinate system in which the coordinates are independent. If we
find a coordinate system with a small value of X2, and subsequent examination shows
that the coordinates in this system are (at least roughly) independent, then we have
achieved a good understanding of the structure of this data set; we can describe the
data set simply by giving the coordinate system and the marginal distributions in this
coordinate system.

To express the minimization (or maximization) of X? in a convenient way, we
introduce some notation. Let Z = Z(Y) denote the spherized data computed using

some specified transformation R = R(S). To be definite, we take R(S) to be the

Gram-Schmidt transformation. The statistic X may be regarded as a function of
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the spherized data; to emphasize this we write X? = X?(Z). Let Z* denote the
spherized data obtained by using a different method of transformation R* = R*(S).
It is straightforward to show that there exists a p X p orthogonal matrix I' = T'(S)
such that Z* = ZT', and that minimizing X? over all possible transformations amounts
to minimizing X2(ZT') over all orthogonal matrices I'. Thus X2, = inf¢(I') and,
similarly, X2, = sup¢(T') where we define ¥(I') = X*(ZT).

The statistic X2

main

is difficult to compute for the following reasons. (We shall phrase

The same remarks apply to X?2,,.) First, since the

max*

the discussion in terms of X2, .
statistic X? is discrete-valued, the function ¥ (T') that we need to minimize is not a
continuous function, and a fortior: does not have derivatives. This rules out the most
commonly used optimization procedures which are based on the use of first (and often
second) order partial derivatives. Secondly, the function ¥(I') can have many local
minima. (It is easy to construct examples of this.) This makes it difficult to determine
the global minimum. Finally, we note that the dimensionality of the space of p X p
orthogonal matrices I' is p(p — 1)/2 so that, unless p is fairly small, we are searching a
rather high-dimensional space.

Because of the difficulties discussed in the previous paragraph, it seems that com-

putation of X2

men

will require either some sort of systematic search (over I') or a Monte
Carlo optimization technique such as simulated annealing which does not get trapped
in local minima. One approach studied by Fang and Li (1997) to the problem of max-
imizing or minimizing functions of orthogonal matrices is to use what they call an
NT-net: a set {I'y,Ts,..., T} of orthogonal matrices which are roughly “uniformly
spaced” in the set of all such matrices. Given such an NT-net we can approximate

X2

min

by the minimum of ¢(I'y) over k = 1,...,m. This approximation should be
reasonably close when m is sufficiently large. All of the above approaches require a
great deal of computation.

We have done some experiments to investigate the feasibility of using a simulated

(and X2 ). We briefly describe this approach.

mazx

annealing approach to compute X2,
We say that a random p X p orthogonal matrix A has distribution G(9) if it is generated
by the following algorithm. First, generate a p X p matrix B whose entries are i.i.d.
N(0,1). Then, compute the Gram-Schmidt (or QR) decomposition of §B + (1 — §)[

and take A to be the orthogonal matrix appearing in this decomposition. That is,
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AU = 6B + (1 — §)I where A is orthogonal and U is upper triangular with positive
diagonal elements. The distribution G(1) is the invariant (uniform) distribution on the
space of orthogonal matrices (see Eaton (1983), chapter 7). As § — 0, the distribution
G(6) converges to G(0) under which A = I with probability one. Let 6, and 7, be
sequences of values with 0 < §, < 1 and 7,, > 0 such that §, — 0 and 7,, — 0
at appropriate rates. These sequences (or, rather, the rule used to determine them)
are the “annealing schedule” of the algorithm. Suppose we are at the n-th stage of
executing a simulated annealing algorithm which produces a sequence of orthogonal
matrices I';,T'5, I's, ... which (we hope) satisfies ¢,, = ¥([',,) — inf¢(T"). Given T,
we compute the next matrix I'),;; as follows. Generate A ~ G(4,) and compute
¢ = (T, A). Then take T',;; = I',,A with probability p = min(1, exp((¢,, — ¢') /7))
and ', ., = T',, with probability 1 — p.

We have carried out this procedure on two data sets: the speech data used in
Example 4.3 (see Table 5), and the geyser data used in Example 4.6 (see Table 8).
The speech data (having dimension 3393 x 9) was chosen to represent a fairly large,
high dimensional data set, and the geyser data (99 X 3) to represent a small, low

dimensional one. For the speech data (using d = 2) we obtained X2, ~ 435 and

X2 ..~ 4198. Each of these values required about a day to compute using an S-Plus
program running on a Sun Ultra-5 workstation. For the geyser data (using d = 3)
we obtained X2, =~ 12.55 and X2 ~ 132. Each of these values required about 50
minutes of computation time. The computation times will be highly dependent on the
details of the implementation and, in particular, the annealing schedule which is used.
But it seems likely from these experiments that these statistics will be very awkward
to use in practice.

We conducted further experiments to study the possibility of using the NT-net ap-
proach of Fang and Li. In particular, we wished to have some idea of the number of
orthogonal matrices (denoted m above) we would need to include in the NT-net. In our
experiments we used i.i.d. uniformly distributed orthogonal matrices (having distribu-
tion G(1)) in place of “uniformly spaced” orthogonal matrices. For the speech data, we
generated 10,000 random 9 x 9 orthogonal matrices I', and computed X?(ZT) for each

of these matrices. Among these 10,000 values, the smallest and largest values were ap-

proximately 1129 and 2333 respectively. These values are very far away from the ones
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obtained by simulated annealing. This suggests that, even using “uniformly spaced”
orthogonal matrices, we would require m to be much larger than 10,000. For the geyser
data, using 10,000 i.i.d. uniformly distributed orthogonal matrices, the smallest and
largest values of X2 obtained were 13.64 and 123.27 respectively. These are fairly close
to the simulated annealing values reported above, but still perhaps not close enough.
So, even in a low-dimensional problem like this, it seems likely we will need m > 10,000
to obtain reasonably good approximations to X?2. and X2 .

For the speech and geyser data sets, the values of X2, X2 . and X2 _ are dra-

min mazx

matically different. This seems to be typical, even for data sets without structure. To
illustrate this, we generated a data matrix with i.i.d. N(0, 1) entries having the same
dimension as the speech data (3393 x9). For this simulated data we obtained X? ~ 482,
X2, ~ 195, and X2, ~ 937. For simulated data having the same dimension as the

geyser data (99 x 3) we obtained X? ~ 19.09, X2. =~ 3.82, and X2, ~ 43.09.

min

The effect of “selection” (choosing a coordinate system to minimize or maximize)
on the value of X? is substantial. This raises another problem with the use of X2

men

(or X?2,.): we do not know the limiting distribution of X2, for multivariate normal

mazx min

populations. The correct null distribution for X2 . must properly account for the fact

that we have minimized over all transformations. The theory of empirical processes
suggests that a limiting distribution exists, but gives us little help in finding it. In
general, it is very difficult to find the distribution of the maximum or minimum of a
stochastic process (which is what would be involved here), and there are only a few
cases where this can be done in some type of closed form. Thus, we have no convenient

reference distribution available for use with X2 . . It seems likely that we would have to

min®

find approximate critical points for this statistic via simulation. Given the difficulty in

computing X2

min

, these simulations would be extremely time consuming. Moreover, we
would have to carry out a large number of these simulations; one for every combination
of the values p and d which arises in practice.

In conclusion, the statistics X2, and X2, will be difficult to use in practice
because the calculations needed to compute the statistics and to obtain (even very
roughly) the null distributions are very time consuming. It will not be practical to

use these statistics in the initial exploratory phase of data analysis. However, they are

very promising statistics for use in a second phase of data analysis when one wishes to
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employ time-intensive procedures to study the structure in more detail.

There are situations in which invariance is not desirable and the purposes of the data
analyst are better served by a non-invariant procedure. Suppose we have data consist-
ing of a random sample of size n from a uniform distribution on [0, 1]?, a p-dimensional
cube. If we use the Gram-Schmidt transformation or the symmetric transformation
R = S7Y2 the distribution of X2 will be very close to its reference distribution (the
distribution for a multivariate normal population), and our test will (very likely) not
reject. Suppose now that we rotate the unit cube and sample from the uniform dis-
tribution on this rotated cube. For this data, our test statistic will reject with power
approaching 1 for large samples. This behavior is entirely consistent with the goals
of our statistic. In the first situation, the data analyst would know (by using other
standard techniques) that the variables are uncorrelated, the marginal distributions
are uniform, and the bivariate scatterplots all look like points uniformly distributed on
a square. The non-significant value of X? would suggest that there is no hidden form
of higher-dimensional structure. Combining all this knowledge, the data analyst could
be reasonably confident that the data is what it appears to be: a random sample from
the uniform distribution on [0, 1]?. In the second situation, we conducted a number of
simulation experiments to see what is possible. When p > 4, we are able to find rota-
tions which make all the bivariate scatterplots look fairly innocuous, so that it is not at
all apparent that the data was obtained from a rotated hypercube. With p = 6, we can
find rotations for which (in the usual coordinate system) all the marginal distributions
are roughly normal and all the bivariate scatterplots have roughly circular contours.
Seeing this, a data analyst might easily conclude that the data was obtained by sam-
pling from a population which is close to multivariate normal. But the very highly
significant value of X? would tell the analyst that this is not the case; there is some
form of hidden structure not revealed by these other procedures. Properly warned, the
analyst could then use more time-intensive techniques to discover the nature of this

] o1 . 9 o e e s 9 . .
structure. One possibility is to use X . , minimizing X“ over all possible choices of

min?
R(S). Using this technique, and then examining the data in the coordinate system
found by this minimization, the analyst could discover the true nature of the data:
that it was obtained by sampling from a rotated hypercube. On the other hand, the

invariant statistics X2, and X2 __ would not distinguish between these two situations,
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and so would probably be less useful to the analyst.

Given the particular goals of our procedure, there is no compelling reason to desire
an invariant statistic. In the example above dealing with data sets from the cube [0, 1]?
and a rotated cube, we argued that it was natural to give different answers for the two
data sets. Invariance is desirable if you feel that all coordinate systems are “equal”
in some sense and that your results should not depend upon the particular choice of
coordinate system. In our situation, this is not at all clear. For instance, from an
applied point of view, independence in the original coordinate system is different from
independence in some other coordinate system which is not known a priori. Also, we
expect our procedure to be used along with other means of examining the data such
as histograms and bivariate scatterplots. These would generally be performed in the

original coordinates, but not necessarily in any other coordinate system.
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Figure 1: Quantile-quantile plots for small, moderate, and large sample cases
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Appendix

This appendix contains supplementary supporting material not intended

for publication.
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Figure 3: Comparing the distribution of X? under the multivariate normal and uniform
distributions. Each plot is a quantile-quantile plot of 200 values of X? plotted against
the quantiles of the limiting distribution given in Theorem 2.1. Each value of X? is
computed from a 405 X 4 matrix Y whose entries are either i.i.d. normal (left side) or
i.i.d. uniform (right side). We use d = 3. Three different transformations have been
used: Gram-Schmidt, symmetric (R(S) = S~%/2), and principal components (PC).
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X2 | Mardia’s skewness test
p < .05 | 199 192
p < .025 | 198 190
p<.01 | 198 186
p < .005 | 197 183
p < .001 | 195 169

Figure 4: Results of small simulation study comparing power of X2 with that of Mar-
dia’s skewness test in the situation of Section 4.2. The table summarizes the p-values
obtained from 200 data sets. Each entry lists the number of p-values less than the
indicated value. The p-values are computed using the asymptotic null distributions for
each statistic.
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Figure 5: Plot of Mardia’s skewness test versus X?2 for 200 data sets generated as in
Section 4.2. The two statistics are nearly uncorrelated. (Mardia’s test is given on the
y-axis. The plot actually displays z-scores for each test statistic. Both tests are fairly
effective at detecting the structure in this data as indicated by the mostly very large

z-scores. )
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Figure 6: Plots for Example 4.5 (Nonlinear time series): Time series plot of residuals,
and plots of the residual autocorrelations and partial autocorrelations.
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Figure 7: Normal probability plot of the residuals obtained in Example 4.5 (Nonlinear
time series).
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Figure 8: Plots for Example 4.6 (Geyser data): Time series plot of residuals, and plots
of the residual autocorrelations and partial autocorrelations.
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Figure 9: Normal probability plot of the residuals obtained in Example 4.6 (Geyser
data).
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Figure 10: Plot of 200 values of X? computed from residuals obtained by fitting an
AR(2) model to simulated AR(2) series of length 299 using the model found in Example
4.6 (Geyser data).
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