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SUMMARY

In single hypothesis testing, power is a nondecreasing function of Type I error rate; hence it is desirable
to test at the nominal level exactly to achieve optimal power. The optimal power puzzle arises from the
fact that for multiple testing under the false discovery rate paradigm, such a monotonic relationship may
not hold. In particular, exact false discovery rate control may lead to a less powerful testing procedure if
a test statistic fails to fulfil the monotone likelihood ratio condition. In this article, we identify different
scenarios wherein the condition fails and give caveats for conducting multiple testing in practical settings.
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1. INTRODUCTION

We study an important assumption that has been used implicitly in the multiple testing literature. In
the context of false discovery rate analysis (Benjamini & Hochberg, 1995), we show that the assumption
can be violated in many important settings. The goal of this article is to explicitly state the assumption to
bridge the gap in conventional methodological development, rigorously investigate the legitimacy of the
assumption in various settings, and give caveats for conducting multiple testing in practice.

To identify this assumption, it is helpful to first examine closely the framework of single hypothesis
testing. Suppose we want to test H0 versus H1 based on the observed value of a continuous random vari-
able X . A binary decision rule δ ∈ {0, 1} divides the sample space S into two regions, S = S0 ∪ S1, such
that δ = 0 when X ∈ S0 and δ = 1 when X ∈ S1. Let T (·) be a function of X , with small values indicat-
ing evidence against H0. The critical region S1 can be expressed as S1 = {x ∈ S : T (x) < t}. Correspond-
ingly, we have a testing rule δ = I {T (X) < t} where I (·) is an indicator function and t is the rejection
threshold. Denote by F0 and F1 the conditional distributions of X under H0 and H1, respectively, and by
G0 and G1 the conditional distributions of T (X) under H0 and H1. The Type I and Type II error rates
of δ are α(t) = prH0

{T (X) < t} = G0(t) and β(t) = prH1
{T (X) > t} = 1 − G1(t), respectively. Since α(t)

increases in t and β(t) decreases in t , we conclude that β(t) decreases in α(t). Therefore the optimal choice
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of t∗ which minimizes β(t) subject to α(t) � α0 should satisfy α(t∗) = α0. In other words, one should test
H0 at the nominal level exactly in order to minimize the Type II error rate.

Now suppose we want to test m hypotheses H1, . . . , Hm simultaneously based on a random vector
X = (X1, . . . , Xm). Let θ1, . . . , θm be independent and identically distributed Ber(p) random variables,
where θi = 0 if Hi is a null and θi = 1 otherwise. Assume that

Xi ∼ (1 − θi )F0 + θi F1, (1)

where F0 and F1 are the null and nonnull distributions, respectively. Let Ti (·) be a function of X for test-
ing Hi . The solution to a multiple testing problem can be represented by a vector of binary decisions
δ = (δ1, . . . , δm) ∈ {0, 1}m , where δi = 1 if we reject Hi and δi = 0 otherwise. As an example, consider
a testing rule that rejects Hi when Pi < t , where Pi is the p-value. Then Ti (X) = Pi and we can write
δi = I (Pi < t). Denote the conditional distribution of Pi under the alternative by G1. The mixture dis-
tribution of Pi is G(t) = (1 − p)t + pG1(t), where p is the proportion of nonnull hypotheses. The false
discovery rate is the expected proportion of false positives among all rejections. Let x ∨ y = max(x, y).
Genovese & Wasserman (2002) showed that the false discovery rate, as a function of the p-value threshold
t , is

FDR(t) = E

{∑m
i=1(1 − θi )δi

(
∑m

i=1 δi ) ∨ 1

}
= (1 − p)t

(1 − p)t + pG1(t)
+ O(m−1/2). (2)

The false nondiscovery rate, missed discovery rate, and average power can be used to describe the power
of a false discovery rate procedure:

FNR(t) = E

[ ∑m
i=1(1 − δi )θi

{∑m
i=1(1 − δi )} ∨ 1

]
= p{1 − G1(t)}

p{1 − G1(t)} + (1 − p)(1 − t)
+ O(m−1/2), (3)

MDR(t) = E

{∑m
i=1 θi (1 − δi )

(
∑m

i=1 θi ) ∨ 1

}
= 1 − G1(t) + O(m−1/2),

and AP(t) = 1 − MDR(t). Similar to the situation in single hypothesis testing, it is often assumed in the
multiple testing literature that the following holds.

Assumption 1. The function FDR(t) increases in t and FNR(t) decreases in t ; therefore FNR(t) decreases
in FDR(t).

Consequently, to achieve the optimal power, we should control the false discovery rate at the nominal
level α exactly; that is, the optimal p-value cut-off t∗ should solve the equation

(1 − p)t∗

(1 − p)t∗ + pG1(t∗)
= α. (4)

In Genovese & Wasserman (2002), the testing rule δi = I (Pi < t∗) is referred to as the oracle false discov-
ery rate procedure. In the literature, considerable effort has been devoted to the development of data-driven
methods aiming to mimic the oracle for precise false discovery rate control (Benjamini & Hochberg, 2000;
Genovese & Wasserman, 2004; Benjamini et al., 2006). The tacit assumption is that the closer a test gets to
the upper bound α, the more powerful the test is. However, a fundamental question is whether Assumption 1
always holds. This question reveals a logical gap in the methodological development. If Assumption 1 is
not true, then a false discovery rate procedure at level α∗ < α can be more powerful than a procedure at
level α. Consequently, the oracle procedure (4) would not be optimal, and all attempts to achieve precise
false discovery rate control must fail. Surprisingly, Assumption 1 can be violated in several important
scenarios.
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2. THE MONOTONE LIKELIHOOD RATIO CONDITION

Consider a decision rule δ = (δ1, . . . , δm), where δi = I (Ti < t). Various statistics Ti have been pro-
posed in the literature for multiple testing, including the local false discovery rate (Efron et al., 2001), the
weighted p-value (Genovese et al., 2006), the local index of significance (Sun & Cai, 2009) and t-statistics
(Cao & Kosorok, 2011). Therefore, it would be desirable to develop a general principle which guarantees
that Assumption 1 is satisfied by different Ti . To focus on the main idea, we assume for the moment
that the Ti are identically distributed with G0(t) = pr(Ti < t | θi = 0) and G1(t) = pr(Ti < t | θi = 1) for
i = 1, . . . , m. Let g j (t) = (d/dt) G j (t) ( j = 0, 1) be the corresponding conditional densities. The mono-
tone likelihood ratio condition can be stated as

g1(t)/g0(t) is monotonically decreasing in t . (5)

It is commonly assumed that G1(t), the p-value distribution under the alternative, is a concave func-
tion. Such an assumption has been made in Storey (2002), Genovese & Wasserman (2002, 2004) and
Kosorok & Ma (2007), among others. This concavity assumption is a special case of condition (5) if the
null p-value distribution is uniform. A significant advantage of (5), compared to Assumption 1, is that
it can be roughly checked in practice. For a p-value testing procedure, we can first estimate the mixture
density by ĝP(t); then ĝP(t) would be decreasing in t if the monotone likelihood ratio condition holds.

The dominant terms on the right-hand sides of (2) and (3) are referred to as the marginal false discovery
rate and marginal false nondiscovery rate, denoted by mFDR(t) and mFNR(t), respectively. The property
of a testing rule is essentially characterized by these approximations. Hereafter we shall mainly use these
marginal measures, to simplify our discussion while still preserving the key features of the problem. The
main finding is that condition (5), although not affecting the validity of a multiple testing procedure, plays
an important role in optimality analysis. The next proposition shows that exact false discovery rate control
leads to the most powerful test when condition (5) is fulfilled.

PROPOSITION 1 (Sun & Cai, 2007). Consider the random mixture model (1). Let Ti = T (Xi ) be the test
statistic and δ(T, t) = {δi : i = 1, . . . , m} = {I (T (Xi ) < t) : i = 1, . . . , m} the testing rule. If Ti satisfies
condition (5), then: (i) mFDR(t) increases in t; (ii) mFNR(t) decreases in t; (iii) mFNR(t) decreases in
mFDR(t). In particular, assertions (i)–(iii) hold when T (Xi ) = Pi and the p-value distribution function
under the alternative is concave.

As pointed out by a reviewer, the monotonicity relationship is derived only for single-step threshold-
ing procedures δ(T, t). The results in Genovese & Wasserman (2002) indicate that, in a random mixture
model, a broad class of stagewise testing procedures have asymptotically equivalent versions in the family
of single-step thresholding procedures. Therefore our result remains relevant when stagewise procedures
such as the step-up procedure of Benjamini & Hochberg (1995) are considered.

3. VIOLATION OF THE MONOTONE LIKELIHOOD RATIO CONDITION

3·1. Heteroscedastic models

This section explores several important situations where Assumption 1 and condition (5) are violated.
First, consider a heteroscedastic normal mixture model

Zi | θi ∼ (1 − θi )N (0, 1) + θi N (μ, σ 2) (i = 1, . . . , m), (6)

where θ1, . . . , θm are independent Ber(p) variables. The next theorem shows that the standard approach,
which thresholds the z-value or, equivalently, the one-sided p-value Pi = pr{N (0, 1) > Zi }, may fail to
satisfy condition (5).

THEOREM 1. Consider the normal mixture model (6). Define the one-sided p-value by Pi =
pr{N (0, 1) > Zi }. Let δ = (δi : i = 1, . . . , m) be a testing rule, where δi = I (Pi < t). Then condition (5)
always holds when σ � 1 but fails when σ < 1.
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Fig. 1. Computed false discovery rate plotted as a function of the critical value. The top row
corresponds to heteroscedastic models (Example 1) with: (a) σ = 1; (b) σ = 0·5. The bottom row

corresponds to correlated tests (Example 2) with: (c) weak correlation; (d) strong correlation.

The heteroscedastic model (6) can arise from applications such as sign tests. Suppose we want to test
whether the random variable Yi has median 0 based on replicated observations Yi1, . . . , Yin (i = 1, . . . , m).
Let q = pr(Yi > 0). The hypotheses can be stated as H0i : q = 0·5 versus H1i : q |= 0·5. The test statistic
is Zi = n−1/2

∑n
j=1 sign(Yi j ) = n−1/2

∑n
j=1{2I (Yi j > 0) − 1}. We have E(Zi ) = 2q − 1, var(Zi ) = σ 2

q =
4q(1 − q), Zi ∼ N (0, 1) under H0i , and Zi ∼ N (2q − 1, σ 2

q ) under H1i with σ 2
q < 1. Therefore the sign

test gives rise to a heteroscedastic model asymptotically. Below we provide a numerical example to illus-
trate the failure of the monotonicity condition in a heteroscedastic model.

Example 1. We generate m = 2000 independent Ber(p) variables θ1, . . . , θm with p = 0·1, and gener-
ate Zi according to model (6) with μ = 2·5. The one-sided p-value is obtained as Pi = pr{N (0, 1) > Zi }.
We vary the critical value t from 1·95 to 4 and calculate the false discovery proportion FDP(t). Then FDR(t)
is obtained by averaging FDP(t) over 2000 replications. The results are summarized in Fig. 1(a)–(b). We can
see that when σ = 1, FDR(t) decreases monotonically in t . However, when σ = 0·5, FDR(t) first decreases
and then increases in t . The violation of monotonicity leads to testing results that are not interpretable.
For example, Fig. 1(b) suggests that if we threshold at t = 3·8, the false discovery rate is 0·12, but if we
threshold at t = 3·0, the false discovery rate is 0·07. In fact, a larger threshold does not necessarily control
the false discovery rate at a lower level when σ < 1. This heteroscedasticity resulted in the violation of
Assumption 1 and condition (5).

3·2. Correlated tests

This section discusses the violation of condition (5) under dependency. An additional example on
multiple testing with groups is discussed in the Supplementary Material. The dependency issue has
attracted much attention in the multiple testing literature (Benjamini & Yekutieli, 2001; Efron, 2007;
Wu, 2008; Sun & Cai, 2009). The next example shows that condition (5) can be violated under strong
dependency.
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Fig. 2. Results from a DNA methylation study dataset: (a) histogram and density of p-values;
(b) estimated false discovery rate plotted against p-value cut-off.

Example 2. Suppose that we observe X = (X1, . . . , Xm) from the model

X = μ + ε

and want to identify nonzero elements in μ = (μ1, . . . , μm). In many important applications, such as imag-
ing analysis and signal processing, it is commonly believed that the null cases are independent but the
nonnull cases are clustered (Logan et al., 2008). We consider such a setting. In our simulation, the total
number of tests is m = 2000 and the proportion of nonnull hypotheses is p = 0·1. Let m0 = m(1 − p).
Without loss of generality, we assume that the first m0 elements, X0 = (X1, . . . , Xm0), are null cases and
the remaining m − m0 elements, X1 = (Xm0+1, . . . , Xm), are nonnull cases. Under the null, X1, . . . , Xm0

are independent N (0, 1) observations. Under the alternative, X1 follows a multivariate normal distribu-
tion with mean μ1 = μ1m−m0 and equicorrelated covariance matrix � = (1 − ρ)I + ρ J , where 1m−m0 is
a vector of ones, I is the identity matrix and J is a square matrix of ones.

We vary the critical value t from 1·95 to 4 and calculate the false discovery rate by averaging over 2000
replications. The results are summarized in Fig. 1(c)–(d). Figure 1(c) shows the weakly correlated case,
where μ = 2·5 and ρ = 0·1; Fig. 1(d) shows the strongly correlated case, where μ = 2·5 and ρ = 0·9. We
can see that under weak correlation, the false discovery rate is monotonically decreasing in the threshold. In
contrast, under strong correlation, Assumption 1 is violated because the false discovery rate first decreases,
then increases, and finally decreases with the critical value t .

Inspired by a reviewer’s comment, we investigated the relationship between the marginal false dis-
covery rate and the false discovery rate under dependency. The two error measures can be very dif-
ferent when the tests are highly correlated. We present the results related to the false discovery rate
here, since it is more commonly used; see the Supplementary Material for results on the marginal false
discovery rate.

3·3. A real-data example

In this subsection we present an example from a DNA methylation study. The study was conducted by
Teschendorff et al. (2010) to investigate the mechanisms of diabetic nephropathy, which often develops in
patients with chronic diabetes. The dataset contains 96 cases and 98 controls on 25 880 markers. We are
interested in identifying markers at which the proportions of methylation are different between the cases
and the controls. A two-sample t-statistic is calculated for each gene, and the t-statistics are then converted
to p-values.

Figure 2(a) shows the histogram of p-values overlaid with the density estimate ĝ(t). The mixture dis-
tribution is G(t) = (1 − p)t + pG1(t). Condition (5) implies that G1(t) is concave. Hence a roughly
decreasing pattern is expected for ĝ(t) should the monotone likelihood ratio condition hold. However,
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we can see that ĝ(t) first increases and then decreases, indicating that condition (5) is violated. A direct
consequence is that the false discovery rate is not a monotone function of the p-value cut-off, which
makes the search for the optimal threshold impossible. To see this, we apply the q-value false dis-
covery rate approach (Storey, 2002) to estimate the nonnull proportion as p̂ = 0·49. The false discov-
ery rate for a given cut-off t can be approximately estimated as ˆFDR(t) = (1 − p̂)t/{m−1

∑
i I (Pi < t)}.

Figure 2(b) plots the false discovery rate estimates against a grid of p-value cut-offs; the graph first
decreases and then increases. The pattern is very counter-intuitive, and, moreover, the results are unin-
terpretable since a larger p-value may correspond to a smaller false discovery rate level in the range
between 0 and 0·20. We suspect that in this dataset the p-value ranking is inappropriate. In other
words, small p-values do not necessarily indicate strong evidence against the null. This example shows
that multiple testing results should be interpreted with caution. In particular, further investigation is
required into possible effects of the normality assumption, heteroscedasticity, grouping and dependence
among tests.

4. GENERALIZED MONOTONE RATIO CONDITION

Let T = (T1, . . . , Tm) be the test statistics, and let θ = (θ1, . . . , θm) be Ber(pi ) variables with
pi = pr(θi = 1) for i = 1, . . . , m. Suppose that Ti | θi ∼ (1 − θi )Gi0 + θi Gi1. Condition (5) requires all of
the Gi0, and the Gi1, to be identical. Now we generalize condition (5) by allowing the Gi0 and Gi1 to vary
across i so that we can handle a wider class of test statistics, such as weighted p-values (Genovese et al.,
2006) and the local index of significance (Sun & Cai, 2009). Let gi0 and gi1 be the corresponding densities.
Define the following generalized monotone ratio condition:∑m

i=1 pi gi1(t)∑m
i=1(1 − pi )gi0(t)

is monotonically decreasing in t. (7)

The next theorem generalizes Proposition 1.

THEOREM 2. Consider a decision rule of the form δ = {δi : i = 1, . . . , m} = {I (Ti < t) : i = 1, . . . , m}.
If Ti satisfies (7), then: (i) mFDR(t) increases in t; (ii) mFNR(t) decreases in t; (iii) mFNR(t) decreases in
mFDR(t).

Next, we propose a class of test statistics which always satisfy the generalized condition (7). Let
θi ∼ Ber(pi ). Suppose that we observe X = (X1, . . . , Xm) from the model

X = μ + ε, (8)

where μi | θi ∼ (1 − θi ) fi0(μ) + θi fi1(μ) and E(ε) = 0. Use of the notation fi0(μ) and fi1(μ) allows
the null and nonnull distributions to vary with i . We also assume that θ and ε follow some multivariate
distribution with arbitrary covariance matrices �θ and �ε , respectively. The next theorem derives a class
of test statistics for model (8) which always obey (7).

THEOREM 3. Consider model (8). Denote by 
 the collection of all model parameters pi , fi0, fi1,
�θ and �ε . Suppose an oracle knows 
. Let T i

OR = pr
(θi = 0 | X) be the oracle test statistic and let
TOR = {T i

OR : i = 1, . . . , m}. Then TOR satisfies condition (7).

The oracle statistic involves unknown parameters which require accurate estimation in practice. In sit-
uations where 
 and TOR can be estimated well, Theorem 3 can be directly applied to avoid the failure
of condition (7). For example, suppose that X1, . . . , Xm form a random sample from the mixture den-
sity f (x) = (1 − p) f0(x) + p f1(x). Then condition (7) reduces to condition (5) and T i

OR reduces to the
local false discovery rate LFDR(Xi ) = (1 − p) f0(Xi )/ f (Xi ), which, by Theorem 3, obeys (5). Similarly,
test statistics which obey (7) can be derived in, for example, hidden Markov models and the multigroup
model considered by Efron (2008) and Cai & Sun (2009). In the Supplementary Material we revisit Exam-
ple 1 to demonstrate an important application of Theorem 3. Theorems 2 and 3 together provide a useful
framework for choosing proper test statistics in practice. However, the scope of our result is limited, since
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strong distributional assumptions are needed and the estimation of unknown 
 can be very challenging.
By revealing the interesting connection between estimation and testing in problems arising from model
(8), we show that much research is still needed towards a more general estimation and testing theory in
large-scale simultaneous inference.

5. DISCUSSION

The monotone likelihood ratio condition plays an important role in optimal thresholding theory for false
discovery rate analysis; it guarantees that precise false discovery rate control leads to the most powerful test.
We provide important scenarios where this seemingly reasonable assumption is violated and discuss the
consequence of violation using both simulated and real data. Although our discussion primarily considers
the false discovery rate, we expect that similar issues exist for other important error measures in multiple
testing (Romano & Wolf, 2007). We argue that the tacit assumption, Assumption 1, should be scrutinized
in practice and that optimal thresholds in multiple testing need to be carefully interpreted.

The failure of the monotonicity condition can result from improper model assumptions such as
homoscedasticity and normality of the distributions, as well as independence and homogeneity among
the tests. We discussed a possible framework for choosing test statistics to avoid failure of the condition.
However, our theory is far from solving the problem completely. Instead, the main goal is to demonstrate
why one should be very careful with regard to unknown model aspects and distributional issues in analysing
complex datasets from modern scientific applications, which commonly consist of a large number of vari-
ables with a small sample size. Our investigation reveals that, in addition to the existing list of concerns,
the seemingly reasonable monotonicity assumption can be violated unexpectedly. Hence precise inference
in the large p, small n paradigm is very difficult, and one should always proceed with caution.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of all the theorems, simulation
studies on grouped hypothesis testing and marginal false discovery rate analysis, and a revisit to Example 1.
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