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Abstract
We develop a simple statistic for comparing rates of rare adverse events between treatment groups
in post-marketing safety studies where the events have uncertain status. In this setting, the statistic
is asymptotically equivalent to the logrank statistic, but the limiting distribution has Poisson and
binomial components instead of being Guassian. We develop two new procedures for computing
critical values, a Gaussian approximation and a parametric bootstrap. Both numerical and
asymptotic properties of the procedures are studied. The test procedures are demonstrated on a
post-marketing safety study of the RotaTeq vaccine. This vaccine was developed to reduce the
incidence of severe diarrhea in infants.
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1. Introduction
Rare but serious adverse events associated with vaccines (such as intussusception, for
example) are difficult to detect in prelicensure studies. They require safety monitoring after
introduction of the agent in large populations. Recently, the FDA mandated through its
Sentinel Initiative that all approved drugs must undergo post-marketing assessment of
safety. Cancer registries (see, e.g., Lucas et al. (1993)), meta-analysis of clinical trials
(Berlin & Colditz (1999); Temple (1999)) and the FDA’s active surveillance system
MedWatch (Kessler et al. (1993)) are important and key sources of data for monitoring for
rare adverse events, and there are special added levels of oversight for pediatric drug
surveillance (Smith et al. (2008)).

The events reported in post-marketing safety studies based on claims data or medical records
often have uncertain status, meaning that it is unclear whether a potential event is a true
outcome or a reporting or classification error. To address this issue, adverse events reported
as claims or medical records are frequently required to undergo adjudication by a committee
to ensure that the potential events are classified correctly, with minimal bias, and
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consistently across the entire study period. Adjudication committees consist of medical
experts in the field of study, and the committee members are blinded to treatment
assignments during the review process. The review requires more detailed information
surrounding the occurrence of potential events than is typically available from claims reports
or medical records. Such auxiliary data may include death certificates, hospital discharge
records, outpatient medical records, and prescription claims data.

Gathering the required auxiliary data can be time-consuming and costly. Further,
adjudication committees need time to review the auxiliary information and discuss their
findings through committee meetings or teleconferences. Consequently, there is often a
considerable delay between the time potential events are reported in the study to the time the
results of the adjudication process are available for analysis. At the time of interim analysis,
some potential events have been adjudicated and some have not, and thus the factuality of
some of the potential endpoints is uncertain. In order to evaluate safety and report public
health hazards, if any, in a timely manner, we need to be able to appropriately analyze rare
events data with incomplete adjudication.

An important such example, which is in fact the main motivation for the present research, is
the post-marketing safety surveillance for RotaTeq, a live, oral pentavalent vaccine for
rotavirus sponsered by Merck Research Laboratories (Vesikari et al. (2006)). The
surveillance study was a prospective observational study based on medical claims data from
a large privately insured population in the United States. The study population corresponds
to all infants who were enrolled in the health insurance plan within one week of birth and
who were vaccinated during the course of regular clinical practice with either RotaTeq or
diphtheriatetanus-acellular pertussis (DTaP), but not both, during the study period. Claims
data were collected for the 60-day window following each dose of RotaTeq to determine
adverse events, including intussusception. Enrollment was planned from February 2006
through December 2008. Follow-up concluded in March 2009.

The primary safety analysis for the study was a comparison of the incidence of
intussusception resulting in hospitalization or emergency department visits in the 0–30 day
window following vaccination (any dose) between infants receiving RotaTeq and infants
receiving DTaP. The Safety Monitoring Committee (SMC) reviewed data quarterly to
determine if the relative risk exceeded a pre-specified monitoring boundary or if other safety
issues were observed. Claims-based intussusception cases were reviewed by an independent,
blinded Adjudication Committee on an on-going basis and confirmed as either cases or non-
cases of intussusception. During the course of the study, a portion of the medical charts were
temporarily unavailable for new case review for a period of several months due to
administrative reasons. This causes delays in the adjudication process and in the ability of
the SMC to fully assess safety at the planned interim analysis review times, making
incomplete adjudication a particular problem. Final results for the study are based on 85,
150 infants receiving at least one dose of RotaTeq and 62, 617 infants in the concurrent
cohort receiving at least one dose of DTaP during the study period.

Although some work has been done for rare event analysis (Mast et al. (2009)), there are
many unresolved issues, especially the presence of uncertain status. Important large sample
approximation work for rare events include the logistic regression methodology of King &
Zeng (2000) which has been implemented in commercially available software. Methodology
and theory for the semi-parametric logrank test for rare survival events was developed by
Buyske et al. (2000), although their results cannot deal with uncertain status of endpoints.
Cook (2000) proposed statistical methods for conducting interim analyses of time-to-event
data when some of the potential endpoints have not been through the adjudication process.
Cook & Kosorok (2004) extended these methods, providing rigorous semi-parametric
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survival analysis methodology for adjudicated endpoints, but their approach has not yet been
extended to the rare event setting. Thus, new methods are crucial for monitoring studies in
real time where delays in the adjudication process can occur and the event rate is rare.

In this paper, we develop and evaluate a simple test statistic that compares the event rate
difference when the events have uncertain status and are partially adjudicated. We do not
require the adjudication rate to be the same for the two groups. We find that, asymptotically,
the intensity difference between two populations (RotaTeq vs DTaP) is equivalent to the
logrank statistic in certain settings. We derive asymptotic distribution theory for the test
statistic and provide simulations that verify the large sample properties in moderate to small
samples. We then apply the new methodology to the RotaTeq intussusception study.

This paper is organized as follows. Section 2 describes our methods, including the main
theoretical properties of the asymptotic distribution of the test statistic for rare events with
incomplete adjudication and two inference procedures based on Gaussian approximation and
a parametric bootstrap. Section 3 summarizes simulation results comparing different
proportions of adjudication effects, type I error control and power, with respect to different
numbers of true events. Section 4 applies the proposed test to data from the RotaTeq post-
marketing safety study. Section 5 contains concluding remarks. The Appendix gives
technical derivations and proofs.

2. Methods and test procedures
We first introduce some notation and then describe the hypothesis and test statistic that we
will use. Patients are accrued randomly into two comparison arms over a study window in
calendar time and followed for a claims event for time τ, or the time between accrual and
end of study window, which ever occurs first. Thus the relationship between accrual time
and study window induces independent censoring in this setting. We assume that the length
of τ is short relative to the width of the study window, and that additional independent
censoring is rare, so that the probability of patients being censored before time τ is
approximately zero. Thus the number of claims events, both true and false, are
approximately Poisson distributed. We let λ1 and λ2 denote the Poisson rate for true claims
cases in the two groups, μ1 and μ2 denote the two Poisson rates for false claims, and B1 and
B2 represent the two population sizes measured in person years at risk. Specifically, the
numbers of claims cases for the two groups can be modeled as N1 ~ Poisson((λ1 + μ1)B1)
and N2 ~ Poisson((λ2 + μ2)B2).

Let r1 and r2 denote the adjudication rates for the two groups, which are assumed to be fixed
and known since this is an administrative process. If we let m1 and m2 represent the
corresponding numbers of adjudicated cases, then we can reasonably assume that m1 =
[r1N1] and m2 = [r2N2], where [x] is the smallest integer ≥ x. Now let A1 and A2 represent
the number of chart confirmed cases in the two groups defined as the number of events for
which adjudication confirmed the claims as cases. Thus, A1 ~ Binomial(m1, p1) and A2 ~
Binomial(m2, p2), where p1 = λ1=(λ1 + μ1) and p2 = λ2/(λ2 + μ2). Our goal is to compare
the intensity rates λ1 and λ2 for the true cases. Thus the null hypothesis is

The test statistic we propose is
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This can be calculated based on available data. The following theorem provides the
asymptotic distribution of this test statistic:

Theorem 1: Under , as B1 → ∞, provided 0 < c1 ≤ limB1→∞ B2/

B1 = c ≤ c2 < ∞, where .

Remark 1: Recall the logrank statistic , where
B1, B2 are population sizes, Y1(s), Y2(s) are at risk processes and N1(s), N2(s) are counting
processes for events corresponding to two groups, where the time scale is from enrollment
until the earliest of τ or censoring. For extremely rare events with an approximately zero
probability of being censored before τ, as in our setting, Yi(s)/Bi ~ 1 for all s; and the
logrank statistic reduces to the proposed test statistic asymptotically.

Theorem 1 is a benchmark for our inference procedure. In fact, after we plug in consistent
estimates of λ1, μ1, λ2, μ2 into V(T), we can obtain a consistent variance estimate V̂(T) as
described below, thereby enabling inference based on the proposed test statistic T to be
made.

Under the null hypothesis, the intensity rate is the same for the two groups, which we denote
as λ0 := λ1 = λ2. Below, we describe two inference procedures based on Gaussian
approximation and the parametric bootstrap method:

Algorithm 1: Gaussian approximation.

Step 1. Obtain the administrative estimates of r1 and r2, calculate the test statistic T, and
compute c = B2/B1 from the dataset.

Step 2. Compute parameter estimates . Based

on the relationship , we also estimate . V̂(T) is then computed by
plugging in these estimates into the expression V(T) in Theorem 1.

Step 3. Reject the null hypothesis if the standardized test statistic  is larger than the
chosen α-level critical value for a standard Gaussian random variable (e.g., 1.96 for α =
0.05).

The advantage of Gaussian approximation is that it’s relatively easy to implement. But it has
a potentially larger approximation error for extremely rare events, and the following
parametric bootstrap method for inference can have better performance:

Algorithm 2: Parametric bootstrap method.

Step 1 is the same as in Gaussian approximation.

Step 2. Obtain parameter estimates λ̂0, p̂1, p̂2, μ̂1, and μ̂2, and draw random deviates Ñi ~
Pois(Bi(λ̂0 + μ̂i)), m̃i = riÑi, and Ãi ~ Bin(m ̃i, p̂i), i = 1, 2. If any of the m̃i = 0, throw out
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that samples and redraw until the number of non-rejected bootstrap samples reaches a target

number (e.g., 1000). Calculate .

Step 3. Reject the null hypothesis if the test statistic T falls outside the confidence interval
constructed by the α/2 and 1 − α/2 quantiles of T ̃. For extremely rare events, we throw out
samples that have value 0 for either m1 or m2 with an ination on the type I error control:

. This adjustment reflects the fact that, in practice, we would only make
inference based on T when at least some of the data were adjudicated in both groups.

Our new procedures based on Gaussian approximation and parametric bootstrap in the
presence of incomplete adjudication are in contrast with two possible procedures that did not
take incomplete adjudication into account. The first possible analysis is to count only
adjudicated and confirmed events and ignore the possible true events in the unadjudicated
group. This “confirmed events only” (ceo) underestimates the true events rate. The second
possible analysis is to count all unadjudicated events as true events in addition to the
adjudicated and confirmed events. This “unrefuted events” (ure) overestimates the events

rate. In fact, if we adopt approach ceo, the test statistic would be  with null
hypothesis H0 : r1λ1 = r2λ2. If we adopt approach ure, the test statistic would be

 with null hypothesis H0 : λ1 + (1 − r1)μ1 = λ2 + (1 −
r2)μ2. Neither of these alternatives can serve for our purpose.

3. Numerical Studies
3.1 Type I error control

In this section, we implement the two proposed approaches to inference with respect to
different numbers of true events to see whether the type I error is preserved. The
adjudication rates are set at r1 = 0.6 and r2 = 0.5. Population sizes are B1 = B2 = 60000. We
change the true event numbers from extremely small to modest and large under the null
hypothesis that the two groups have the same rate. As seen in Figure 1, when number of true
events is extremely small, e.g., 6 in both groups with true event rate 0.0001, both methods
are conservative with the bootstrap method being less conservative and closer to the nominal
size of 0.05. When the number of true events is modest or large, the type I error control for
both methods is around the nominal size 0.05. The red line denotes the nominal size of 0.05.
This suggests that in practice, when we have more than 12 true events, the Gaussian
approximation can provide quick and valid inference; when the number of true events is less
than 12, we should consider the parametric bootstrap for more accurate type I error control.
In practice, the number of true events is not available. But nevertheless, investigators usually
have some rough idea based on claims data or medical records.

3.2 Power comparison
We next investigate the power comparing our method with the ceo and ure methods under
the alternative hypothesis for different magnitudes of departure from the null hypothesis.
The setup is generally the same as in the last section, except that the we change the relative
difference between the two group rates from modest (50%) to large (100%). As we can see
in Figure 2, our method gets better power than both ceo and ure methods. This is not
surprising since these two methods ignore important features in the data and are biased. The
improvement of power is especially large for modest (50%) rate difference when the true
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events number is between 9 and 15. This is the right range for adverse events in post-
marketing safety studies.

3.3 Extremely rare events
In practice, the event rates are usually extremely small. Only a couple of events occur after a
few years followup based on the population size (person years at risk). In this subsection, we
focus on extremely small true event numbers, from 3 to 12, and compare the performance of
the two inference procedures with respect to type I error control and power. From Figure 3,
again, both methods are conservative for type I error control when the number of true events
is very very small and become less conservative when the number of true events increases.
The bootstrap does a slightly better job when the difference in rates is 60%, but it is almost
identical to the Gaussian approach when the departure from the null is large enough.

3.4 Adjudication effects
The different adjudication rates inevitably inuence the performance of inference procedures.
We would like to see under what adjudication proportion we’ll be able to get reasonable
results using the method we propose. In this section, we study the effects of adjudication on
type I error and power using both the Gaussian and bootstrap inference methods. Figure 4
shows that the performance under 90% adjudication is pretty close to the performance under
50% adjudication. So in practice, as long as roughly half of the outcome data are
adjudicated, we would be very confident with our approach. When the adjudication rate is
low, for example, only 20%, the type I error is controlled conservatively by using the
Gaussian approach and asymptotically close to the nominal rate (0.05 for example) by using
the bootstrap approach. When we have a relatively large number of true events, for example,
30, the power based on even 20% adjudication is pretty decent, around 70%. When true
events number and the adjudication rate are both small, we almost have no detection ability
—the power when number of true events is 6 and adjudication rate is 20% is less than 10%.
However, if we have a fair amount of adjudication, we’ll get some detection power—the
power when number of true events is 6 and the adjudication rate is 50% is more than 20%.
For such extremely rare events, it’s comforting to see that our procedures still have some
detection ability.

4. Data analysis
In this section, we apply both the newly developed Gaussian and parametric bootstrap
inference procedures along with the ceo and ure methods to a post-marketing study of
RotaTeq sponsored by Merck research laboratories. This vaccine is primarily developed to
reduce diarrhea events due to rotavirus in infants and young children. Clinical trials have
proven the effectiveness of this vaccine but its safety is yet to be evaluated after its
implementation in a large population. Final results for the study are based on 85, 150 infants
receiving at least one dose of RotaTeq and 62, 617 infants receiving at least one dose of
DTaP during the study period. Infants receiving at least one dose of RotaTeq contributed B1
= 17, 433 person-years of follow-up for adverse events occurring in the 0–30 day window
following any dose. The DTaP comparison group contributed B2 = 12, 339 person-year of
follow-up for the same window. Claims-based intussusception cases were reviewed by an
independent, blinded Adjudication Committee on an on-going basis and confirmed as either
cases or non-cases. Table 1 summarizes the dataset. For the 0 – 30 window, one chart was
not available for a RotaTeq case and one chart was not available for the DTaP suspected
case in the 0 – 60 window (outside 0 – 30). Adjudication numbers did not change between
interim 1 and interim 2. We calculate p-values based on the ceo method, the ure method and
the two new inference procedures we proposed. The final results are very similar with each
other since at most one case was not adjudicated by the final stage. We did not see a
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significantly greater number of intussusception cases in infants taking RotaTeq compared
with infants taking DTaP.

5. Summary and Discussion
In this paper, we present inference procedures for analyzing rare events with uncertain status
using both a Gaussian approximation and a parametric bootstrap. These methods can
potentially be extended to the multi-category primary event situation. We provide unbiased
estimates of the true event rates and perform formal hypothesis testing with incomplete
adjudication data. Our method works best when at least half of the cases are adjudicated
(Figure 4). It is based on the assumption that the probabilities of true events rates are the
same for the un-adjudicated and adjudicated cases. The importance of the new methods lie
in the fact that we can identify signals early enough with confidence. This can potentially
save lives if we see any significant difference in a timely manner. If we wait until all the
data are adjudicated, this could slow down the surveillance process and possibly adversely
affect drug safety. We observed that the two approaches perform comparably when the
number of true events is greater than 12 with sample size 60000 person years in both groups,
while the parametric bootstrap provides a less conservative type I error and is therefore
preferred for extremely small numbers of true events based on our simulation study. When
the relative difference between the group rates is larger than 50%, we obtain slightly better
power when using the bootstrap method. We applied both methods to real data from two of
the planned interim analyses and the final analysis of a post-marketing surveillance study.
The results for the two inferential approaches were similar. In order to use these inferential
procedures, we must have a positive number of adjudicated events. We did not take into
account reporting bias in our analysis. This could potentially impact on the analysis results
and be pursued as a future research topic.
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Appendix

In this section, we prove Theorem 1 by deriving the asymptotic distribution of . The
basic structure we have is that N1 ~ Pois(B1(λ1 + μ1)), m1|N1 = r1N1, A1|m1, and

. Also,

In fact, given the assumption that m1 = r1N1, the test statistic , where B1 and r1 are

fixed and known. The only random variable involved is , where Xi are i.i.d.

binomial random variables with success probability , and m1 is a random variable
as well. Through the characteristic function method, we can show that
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The proof is somewhat involved and we refer to Robbins (1948) for the details. Note that
under the null hypothesis λ1 = λ2 = λ0 and the two groups are independent of each other.
This completes the proof of Theorem 1.
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Figure 1.
Type I error control with different number of true events
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Figure 2.
Comparison of power among our method, ceo method and ure method

Cao et al. Page 10

J Biopharm Stat. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Type I error and power for extremely rare events
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Figure 4.
Impacts of different adjudication rates
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