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Summary: Large sample theory of semi-parametric models based on maximum likelihood estimation (MLE) with

shape constraint on the non-parametric component is well studied. Relatively less attention has been paid to

the computational aspect of semi-parametric MLE. The computation of semi-parametric MLE based on existing

approaches such as the EM algorithm can be computationally prohibitive when the missing rate is high. In this

paper, we propose a computational framework for semi-parametric MLE based on an inexact block coordinate ascent

algorithm. We show theoretically that the proposed algorithm converges. This computational framework can be

applied to a wide range of data with different structures, such as panel count data, interval-censored data and

degradation data, among others. Simulation studies demonstrate favorable performance compared with existing

algorithms in terms of accuracy and speed. Two data sets are used to illustrate the proposed computational method.

We further implement the proposed computational method in R package BCA1SG, available at CRAN.
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1. Introduction

Semi-parametric models usually impose shape constraints on the non-parametric component.

This arises naturally in various applications. For instance, the cumulative function of a point

process and the cumulative hazard function should be non-decreasing (Sun and Fang, 2003;

Kosorok et al., 2004); in economics, the concavity constraint on utility functions follows from

the law of diminishing marginal utility (Wu and Sickles, 2017); in engineering, as degradation

is an irreversible process of cumulative damage to the product, the mean degradation function

in a semi-parametric degradation model is restricted to be non-decreasing (Wang, 2010; Zhou

and Xu, 2019).

In the maximum likelihood estimation (MLE) of semi-parametric models, the non-parametric

component Λ(·) is usually estimated by a step function or piecewise linear function (Pan,

1999; Wellner and Zhang, 2007; Wang, 2010), where the knots depend on the observed data.

For example, in panel count and interval-censored data, the knots are the set of distinct

observation times. The number of knots can be large compared with the sample sizes as in

Sun and Wei (2000), Gomez et al. (2000), Giorgio et al. (2012) and Chiou et al. (2018),

among others. Another strategy is to approximate Λ(·) using splines (Lu et al., 2009; Zhang

et al., 2010; Zhou et al., 2017) and convert the problem to estimation of the spline coefficients.

Similarly, the number of spline coefficients increases with the sample size. Therefore, it is

imperative to develop stable and computationally efficient algorithms for semi-parametric

MLE (Fleming and Lin, 2000; Tsodikov, 2003; Kosorok, 2009).

For interval-censored and panel count data, Huang and Wellner (1997) and Wellner and

Zhang (2007) proposed a doubly iterative algorithm which updates the regression coefficient

β and non-parametric function Λ(·) through the Newton-Raphson and the iterative convex

minorant (ICM) algorithm, respectively. As mentioned in Section 2 of Wellner and Zhang

(2007), this algorithm is extremely time-consuming even with moderate sample size. This
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alternating strategy was also adopted in Sun and Shen (2009) and Dumbgen et al. (2011) for

computing MLE in semi-parametric regression models. Another approach is to update both

the parametric and non-parametric components simultaneously in each iteration. Towards

this goal, Pan (1999) reformulated the ICM algorithm as a generalized gradient projection

method and extended it to semi-parametric problems for interval-censored data. The algo-

rithm was found to be time-consuming in Cheng et al. (2011), and they further extended

it to a projected Newton-Raphson algorithm that makes use of the full Hessian matrix in

each iteration. The algorithm takes only a few iterations to converge, yet it takes a long

time to compute the full Hessian and its inverse matrix in each iteration, especially when

the searching space in the non-parametric function is large.

As some semi-parametric problems can be cast into the missing data framework, the EM

algorithm is constantly used for inference. By introducing latent Poisson variables, Wang

et al. (2016) developed the EM algorithm for the spline-based semi-parametric proportional

hazard model with interval-censored data. Zeng et al. (2016) used the EM algorithm for

semi-parametric transformation models with interval-censored data. The algorithm converges

slowly when the censoring intervals are wide resulting in high missing rate. For degradation

data, Wang (2010), Ye et al. (2014) and Zhai and Ye (2018) developed the EM algorithm

for different degradation process models by augmenting the possibly unobserved degradation

of a product unit in all distinct observation times. The convergence speed is slow when the

observation times are different for the product units, or when the true parameters are close

to the boundary of the parameter space.

There are several consequences when an inefficient computational method is used. First,

the optimization algorithm can terminate immaturely when common termination rules are

used, leading to highly biased parameter estimation. Second, when the bootstrap is used

for inference, a large number of replications is needed and the computational time can be
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infeasible. This is especially relevant in the big data era, where massive data sets, such as

those collected from wearable devices in clinical trials and epidemiological studies, require

scalable computational algorithms.

In this paper, we propose a new computational framework for MLE in semi-parametric

models. Denote `(β,Λ) as the log-likelihood function of a general semi-parametric model,

where β is the parametric component, and Λ is the vector consisting of all the parameters in

estimating Λ(·). If Λ(·) is estimated by monotone splines, for example, Λ is the vector of all

spline coefficients. It is common that β 7→ `(β,Λ) for fixed Λ is nonconcave. In these cases,

simultaneously updating all parameters is unstable unless the initial value is close enough

to the MLE. A natural remedy is to use the block coordinate ascent (BCA) that iteratively

maximizes the log-likelihood function with respect to each of the two parts while keeping

the other fixed. From observations in the simulation studies, it is a waste of time to exactly

maximize Λ 7→ `(β,Λ) at the first few BCA iterations because β is still far from optimal

and the exact maximization takes a non-negligible time. Motivated by this observation, we

propose to update Λ by maximizing Λ 7→ `(β,Λ) inexactly at each BCA iteration.

In the gradient projection (Rosen, 1960), the search direction is obtained by projecting the

gradient vector g onto the region defined by the active constraints. Borrowing the idea of

Newton’s method, Jamshidian (2004) proposed the generalized Rosen (GR) algorithm that

uses the generalized gradient g̃ = W−1g, where W is a positive definite matrix. Similar to

Newton’s method versus the steepest descent, GR converges much faster than the original

version if W is properly chosen. GR was used by Zhang and Jamshidian (2004) in computing

the non-parametric MLE of the survival function with censored data, Lu et al. (2009) and

Zhang et al. (2010) to compute spline-based semi-parametric MLE of panel count data and

interval-censored data, and Lu (2010) to compute semi-parametric MLE in partial linear

models. Based on the GR algorithm, we propose a new algorithm where the non-parametric
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vector Λ is updated by implementing only one GR iteration, and the parametric component

β is updated through maximizing β 7→ `(β,Λ) exactly. The newly proposed algorithm is

called the block coordinate ascent with one-step GR (BCA1SG). The one-step GR update

significantly speeds up the algorithm in terms of run time. When β 7→ `(β,Λ) can be stably

maximized and Λ 7→ `(β,Λ) is concave, we show that the BCA1SG is convergent. The

two conditions above are satisfied in many semi-parametric models, and thus the proposed

computational framework has a wide spectrum of applications.

The rest of the paper is organized as follows. Section 2 provides some definitions in

constrained optimization and briefly describes the general GR algorithm. In Section 3, we

introduce the block coordinate ascent with one-step GR and show that it converges under

mild conditions. We apply the proposed algorithm to panel count data, interval-censored

data, and degradation data, respectively, in Section 4. Section 5 and Section 6 are devoted

respectively to simulation studies and data analysis. We conclude the paper in Section 7. All

proofs of main theorems and technical lemmas are collected in the Supporting Information.

2. Preliminaries

2.1 Some definitions in optimization

Consider the following constrained maximization problem that is common in likelihood

inference of non-parametric statistical models:

maximize `(Λ),

subject to AΛ > b,

(1)

where A = (a1,a2, . . . ,ap)
T ∈ Rp×m is of full row rank, and b = (b1, b2, . . . , bp)

T ∈ Rp. In

(1), `(·) is the log-likelihood function, Λ ∈ Rm is the vector consisting of all the parameters

in estimating Λ(·), and AΛ > b represents shape constraints, such as nonnegativity or

convexity, on Λ.
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As a preliminary, some definitions in constrained optimization are first introduced as

follows.

Definition 1: A point Λ ∈ Rm is feasible if it satisfies the constraint AΛ > b.

Definition 2: An inequality constraint aTi Λ > bi is said to be active at a feasible point

Λ if aTi Λ = bi, and inactive if aTi Λ > bi.

Definition 3: A point Λ∗ is called a stationary point of problem (1) if ∇`(Λ∗)T (Λ −

Λ∗) 6 0 for any feasible Λ.

If Λ̃ is a local maximizer of problem (1), then there exists λ ∈ Rp, which is called the

Lagrange multiplier vector, such that

• primal feasibility : AΛ̃ > b;

• stationarity : ∇`(Λ̃) + ATλ = 0;

• complementary slackness : λi(a
T
i Λ̃− bi) = 0, i = 1, 2, . . . , p;

• dual feasibility : λi > 0, i = 1, 2, . . . , p.

The above four conditions are called the Karush-Kuhn-Tucker (KKT) conditions (Luen-

berger and Ye, 2015, Section 11.8). They are necessary conditions for a point Λ to be the

maximizer of problem (1).

2.2 The GR algorithm

GR is an active set algorithm developed to solve the constrained optimization problem

displayed in (1) (Zhang and Jamshidian, 2004). Let Λ0 be the parameter value at the

beginning of a GR iteration. Define A = {i : aTi Λ0 = bi, i 6 p} as the index set of all active

constraints. GR first computes the gradient g = ∇`(Λ0) and then the generalized gradient

g̃ = W−1g (Jamshidian and Jennrich, 1993), where W is a positive definite matrix that can

be either fixed or adaptively updated at each iteration, and g̃ is the gradient of `(Λ) evaluated
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at Λ0 in the metric induced by the norm ‖Λ‖W =
√

ΛTWΛ. When ∇2`(Λ0) is negative

definite, W is often specified as −∇2`(Λ0) to accelerate the convergence. To maintain the

active constraints, GR projects g̃ onto {d : aTi d = 0, i ∈ A} in the metric of W and uses the

projection as search direction. Define AA as the matrix which only keeps the ith row of A for

i ∈ A. Then the projection is given by d̃ = (I −W−1ATA(AAW
−1ATA)−1AA)g̃ (Jamshidian,

2004). After that, compute the largest possible step length α = sup
x>0
{x;A(Λ0 + xd̃) > b}.

Then the step length is computed as ρ = arg max
0<x6α

`(Λ0 + xd̃), and the new iterate is given

by Λ0 + ρd̃. GR repeats the above procedure until d̃ = 0, and the solution is denoted as Λ̃.

Afterwards the four conditions in the KKT conditions are checked one by one. First, Λ̃

obviously satisfies the primal feasibility. Second, because d̃ = 0, we have

∇`(Λ̃)− ATA(AAW
−1ATA)−1AAW

−1∇`(Λ̃) = 0. (2)

Define IA as the matrix which only keeps the ith column of the p × p identity matrix for

i ∈ A, and denote λ̃ = −IA(AAW
−1ATA)−1AAW

−1∇`(Λ̃). Then equation (2) is equivalent

to

∇`(Λ̃) + AT λ̃ = 0,

which means the stationarity condition holds, and λ̃ is the respective Lagrange multiplier

vector. Third, it is easy to see that λ̃i = 0 if i /∈ A, where λ̃i is the ith component of λ̃. On

the other hand, aTi Λ̃− bi = 0 holds for i ∈ A. Therefore,

λ̃i(a
T
i Λ̃− bi) = 0, i = 1, 2, . . . , p,

which means the complementary slackness holds. Lastly, if min(λ̃) > 0, the dual feasibility

holds and all the four conditions are satisfied. Otherwise, the index corresponding to the

smallest Lagrange multiplier is removed from the index set A and the next iteration starts.

The algorithm terminates when d̃ = 0 and min(λ̃) > 0.

For the comprehensive description of the GR algorithm, see Zhang and Jamshidian (2004).
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Convergence of the active set algorithm was discussed in Section 12.3 in Luenberger and Ye

(2015).

3. Block Coordinate Ascent with One-Step GR

Computing the MLE of a semi-parametric model usually requires solving

maximize `(β,Λ),

subject to β ∈ Θ,

AΛ > b,

(3)

where Θ is the parameter space for β, and the linear constraint on Λ usually results from

the shape constraint on Λ(·). The linear constraint in (3) is generic because common shape

constraints on Λ(·), such as nonnegativity, monotonicity (Zhang and Jamshidian, 2004), and

concavity (Dumbgen et al., 2011), can be readily transformed into linear inequalities on

Λ. When `(β,Λ) is jointly concave in β and Λ, the GR algorithm can be used to solve

this problem by setting W as −∇2`(β,Λ). However, the joint concavity does not hold in

many cases, such as the semi-parametric inverse Gaussian process model (Ye and Chen,

2014). Under such scenarios, the selection of the matrix W becomes tricky, which limits the

application of the GR algorithm.

A close investigation into the log-likelihood reveals that Λ 7→ `(β,Λ) is usually concave.

As a result, Λ 7→ `(β,Λ) can be readily maximized by the GR algorithm. On the other

hand, maximizing β 7→ `(β,Λ) is almost the same as solving the MLE in the corresponding

parametric models, and the maximization is usually well-studied. This motivates the use of

BCA algorithm which alternates between the following two procedures until convergence.

• Keeping Λ fixed, update the parametric component by maximizing β 7→ `(β,Λ);

• Keeping β fixed, update Λ by maximizing Λ 7→ `(β,Λ) through the GR algorithm.

According to our simulation experience, the value of β is usually far from optimal at first few
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BCA iterations. Given a poor estimate of β, the value of Λ which maximizes Λ 7→ `(β,Λ) is

very likely to be poor as well. Therefore, it is a waste of time to exactly maximize Λ 7→ `(β,Λ)

at first few BCA iterations. In order to reduce the excessive runtime of a full GR, we propose

the BCA1SG algorithm which runs only one iteration of the GR algorithm when updating

Λ. The key difference between our method and the BCA algorithm is that BCA runs the

GR algorithm until convergence when updating Λ while we only run one iteration.

A building block of the BCA1SG algorithm is a subroutine which will be introduced in

Section 3.1. Before formally introducing the subroutine, we first briefly discuss how it works.

The subroutine first partitions the constraints on Λ into two groups: those to be treated as

active and those to be treated as inactive. As defined in Section 2.1, a constraint is called

active if the equality holds. The constraints partitioned as inactive are preserved, while those

partitioned as active are replaced by corresponding equality constraints. For example, if the

constraint aT1 Λ > b1 is partitioned as active, then it is replaced by aT1 Λ = b1. Under these

newly defined constraints, the subroutine then solves the maximization problem. Because

the feasible set defined by these new constraints is a subset of the feasible set of problem

(3), the solution of problem (3) may fall outside this subset. Hence the solution given by

the subroutine may not be the solution of problem (3). However, a nice result which will be

shown later is that the solution given by the subroutine satisfies all the KKT conditions for

problem (3) except the dual feasibility. Therefore, to complete the BCA1SG algorithm, we

further develop a procedure that ensures the dual feasibility in Section 3.2.

3.1 The Subroutine

Given initial values β(0),Λ(0) and an initial index set of active constraintsA(0), the subroutine

alternates between maximizing ` w.r.t. β exactly and Λ inexactly until the stopping criterion

is satisfied. At the kth iteration of the subroutine, denote β(k),Λ(k) as the parameter values,

W (k) the user-specified positive definite matrix, and A(k) the index set. The subroutine is
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described in Algorithm 1, where the detailed procedures to conduct the backtracking line

search in line 6 are given in the Supporting Information.

Algorithm 1 The Subroutine

Input: β(0),Λ(0),A(0).

Output: β̃, Λ̃, Ã, W̃ .

1: Initialization: k ← 0.

2: while stopping criterion is not satisfied do

3: Fix Λ(k), and update β(k+1) = arg max
β∈Θ

`(β,Λ(k)).

4: Evaluate g(k) = ∇Λ`(β
(k+1),Λ(k)), W (k) and g̃(k) = (W (k))−1g(k).

5: Compute the projection

d(k) =

[
I −

(
W (k)

)−1
ATA(k)

{
AA(k)

(
W (k)

)−1
ATA(k)

}−1

AA(k)

]
g̃(k). (4)

6: Determine the step length ρ(k) along d(k) through an inexact backtracking line search.

7: Update Λ(k+1) = Λ(k) + ρ(k)d(k), and A(k+1) = {i : aTi Λ(k+1) = bi}.

8: k ← k + 1.

9: end while

10: return β(k),Λ(k),A(k),W (k).

A good property of the subroutine which provides much convenience for discussing the

convergence is that the sequence of the index sets {A(k)} will eventually become invariant.

The following lemma summarizes this property.

Lemma 1: There exists an N > 0 such that {A(k)}k>N is a constant sequence.

Based on this result, we then discuss convergence properties of the sequence {(β(k),Λ(k))}

generated by the subroutine. To establish the convergence result, the following assumptions

are needed.

(C1) The superlevel set S = {(β,Λ) : `(β,Λ) > `(β(0),Λ(0))} is compact.
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(C2) For any β ∈ Θ, the function Λ 7→ `(β,Λ) is concave.

(C3) For any feasible Λ, the function β 7→ `(β,Λ) has a unique maximizer.

(C4) There exist 0 < L < U such that the eigenvalues of W (k) are bounded in the interval

[L,U ] for all k.

(C5) The set of stationary points of the following constrained optimization problem is discrete.

maximize `(β,Λ),

subject to β ∈ Θ,

aTi Λ = bi, i ∈ Ã,

aTi Λ > bi, i 6∈ Ã,

(5)

where Ã is the limit of {A(k), k > 1}.

Condition (C1) is a commonly adopted assumption in optimization, e.g., the EM algorithm

(Wu, 1983) and the coordinate descent (Tseng, 2001; Cassioli et al., 2013). Condition (C2)

is satisfied by semi-parametric models such as the models for panel count data (Wellner

and Zhang, 2007), interval-censored data (Huang and Wellner, 1997) and degradation data

(Wang and Xu, 2010). A detailed proof of the concavity of Λ 7→ `(β,Λ) in these three

semi-parametric models is given in the Supporting Information. Condition (C3) is required

to guarantee the identifiablility of the corresponding parametric models, and it is satisfied

in most semi-parametric models. If W (k) is specified as the negative of the Hessian matrix,

i.e., W (k) = −∇2
Λ`(β

(k+1),Λ(k)), then condition (C4) can be replaced by the condition that

Λ 7→ `(β,Λ) is twice continuously differentiable and ∇2
Λ`(β,Λ) is negative definite for any

feasible β. This condition holds for semi-parametric models, such as models for panel count

data and degradation data. Condition (C5) is needed to prove that the sequence of iterates

is convergent. A similar discrete assumption is also adopted in Wu (1983).

Theorem 1: Suppose that conditions (C1)-(C5) hold. Then lim
k→∞

d(k) = 0 and the se-
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quence {(β(k),Λ(k))} generated by the subroutine converges to a stationary point of problem

(5).

Theorem 1 reveals that the output of the subroutine (β̃, Λ̃) is a stationary point of problem

(5). However, whether it is a good solution for problem (3), which is of primary interest,

is still unknown. In the next theorem, we show that (β̃, Λ̃) satisfies the stationarity in the

KKT conditions for problem (3). To establish this result, we need two more assumptions as

follows.

(C6) For any feasible Λ, the maximizer of β 7→ `(β,Λ) is an interior point of Θ.

(C7) ∇β`(β,Λ) is a continuous function in (β,Λ).

Condition (C6) holds in semi-parametric models when the parameter space Θ for the para-

metric component β is open. Condition (C7) is mild and easily fulfilled. See the semi-

parametric models in Wellner and Zhang (2007), Ye and Chen (2014), and Zeng et al. (2016)

for examples.

Theorem 2: Suppose conditions (C1)-(C7) hold. Then (β̃, Λ̃) satisfies the stationarity

in the KKT conditions for problem (3). The Lagrange multipliers associated with constraints

on β are all zeros, and the Lagrange multiplier vector associated with constraints on Λ is

λ̃ = −IÃ
(
AÃW̃

−1ATÃ

)−1

AÃW̃
−1∇Λ`(β̃, Λ̃).

Theorem 2 implies that the output of the subroutine satisfies the stationarity in the KKT

conditions for problem (3). Besides, the primal feasibility obviously holds. Because the

Lagrange multipliers associated with constraints on β and inactive constraints on Λ are all

zeros, the complementary slackness is also satisfied. Therefore, it suffices to check whether

λ̃ satisfies the dual feasibility in the next section.
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3.2 The BCA1SG Algorithm

As noted, the Lagrange multipliers λ̃ associated with constraints on Λ may not be dual

feasible. To improve on this, the BCA1SG algorithm alternates between the subroutine and

the procedure that checks the dual feasibility until the dual feasibility holds.

Denote the Kth output of the subroutine as β̃(K), Λ̃(K), Ã(K), W̃ (K). Then the dual feasi-

bility is checked through computing the Lagrange multiplier vector

λ̃(K) = −IÃ(K)

(
AÃ(K)

(
W̃ (K)

)−1
ATÃ(K)

)−1

AÃ(K)

(
W̃ (K)

)−1∇Λ`(β̃
(K), Λ̃(K)). (6)

If min(λ̃(K)) > 0, the algorithm terminates and (β̃(K), Λ̃(K), λ̃(K)) satisfies all the KKT

conditions. Otherwise, drop the index corresponding to the smallest elements of λ̃(K) from

Ã(K), and return β̃(K), Λ̃(K), Ã(K) as the input for the subroutine to conduct the next

iteration.

Write the subroutine in a functional form as (β̃, Λ̃, Ã, W̃ ) = SUBROUTINE(β,Λ,A),

where (β,Λ,A) and (β̃, Λ̃, Ã, W̃ ) are the input and output, respectively. The proposed

BCA1SG algorithm is described in Algorithm 2.

In the following, we investigate when the BCA1SG algorithm terminates. According to

Sard’s theorem for real-analytic functions (Souček and Souček, 1972), the sequence {`(β̃(K), Λ̃(K))}

contains only finite distinct elements if `(β,Λ) is real-analytic. On the other hand, the

algorithm strictly increases the objective function in each iteration. As a result, the BCA1SG

algorithm always terminates in finite iterations. The following theorem summarizes this

property.

Theorem 3: Suppose conditions (C1)-(C7) hold and the function `(β,Λ) is real-analytic

on an open set containing {(β,Λ);β ∈ Θ, AΛ > b}. Then the BCA1SG algorithm is able to

find the solution satisfying KKT conditions for problem (3) within finite iterations.

Theorem 3 ensures that there exists an N > 0 such that min(λ̃(N)) > 0, so the BCA1SG
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Algorithm 2 BCA1SG Algorithm

Input: β̃(0), Λ̃(0), Ã(0).

1: Initialization: K ← 0.

2: (β̃(K+1), Λ̃(K+1), Ã(K+1), W̃ (K+1))← SUBROUTINE(β̃(K), Λ̃(K), Ã(K)).

3: Compute λ̃(K+1) according to (6).

4: if min(λ̃(K+1)) > 0 then

5: Terminate the algorithm and output (β̃(K+1), Λ̃(K+1), λ̃(K+1)).

6: else

7: Drop the index corresponding to the smallest elements of λ̃(K+1) from Ã(K+1).

8: Let K ← K + 1 and go back to step 2.

9: end if

Output: (β∗,Λ∗,λ∗) that satisfies the KKT conditions.

algorithm always terminates within finite iterations. The importance of this theorem lies in

the fact that the algorithm would not be trapped in an endless loop.

In addition to nice theoretical properties, the BCA1SG algorithm has many advantages

in the computational perspective. For example, it avoids wasting too much time on a poor

estimate of β, so the efficiency is significantly improved and the algorithm is less sensitive

to initial values. Besides, very few numerical solutions are needed in this computational

framework because almost all procedures in Algorithms 1 and 2 have closed forms except

the maximization of β 7→ `(β,Λ), which depends on the specific form of log-likelihood

functions. Therefore, the algorithm is efficient and easy to implement.

4. Applications of the BCA1SG Algorithm

This section demonstrates the applications of the BCA1SG algorithm to semi-parametric

models for panel count data, interval-censored survival data and degradation data. For all

the three models, the non-parametric component Λ(·) is estimated using a nondecreasing
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step function which only has jumps at {T0 < T1 < · · · < Tm}, where T0 = 0 and Λ(0) = 0 by

convention. For panel count data and degradation data, {T1, . . . , Tm} represents the set of all

distinct observation times; for “case k” interval-censored survival data, {T1, . . . , Tm} stands

for the set of all distinct examination (or monitoring) times. Since Λ(·) is only identifiable

at {T1, . . . , Tm}, it suffices to estimate the m-dimensional vector
(
Λ(T1), . . .Λ(Tm)

)T
subject

to the monotone constraint Λ(T1) 6 · · · 6 Λ(Tm). For ease of computation, we transform(
Λ(T1), . . .Λ(Tm)

)T
to (∆Λ1, . . . ,∆Λm)T , where ∆Λl = Λ(Tl)−Λ(Tl−1) (l = 1, . . . ,m). Then

the monotone constraint becomes

IΛ > 0,

where I is an m×m identity matrix and Λ = (∆Λ1, . . . ,∆Λm)T .

When implementing BCA1SG, we need to specify W (k) for the subroutine. If ∇2
Λ`(β,Λ) is

negative definite, a natural choice which usually leads to convergence in very few iterations

is −∇2
Λ`(β

(k+1),Λ(k)). When Λ is high-dimensional, however, computing the Hessian and its

inverse consumes much time. As with the literature (Jongbloed, 1998; Zhang and Jamshidian,

2004), we let W (k) be the diagonal matrix −D(k) that discards the second-order mixed

derivatives of the Hessian, i.e., [D(k)]ll = [∇2
Λ`(β

(k+1),Λ(k))]ll (l = 1, . . . ,m). If ∇2
Λ`(β,Λ)

is only negative semi-definite, D(k) may not be invertible. In such cases, we can adopt the

Levenberg-Marquadt adjustment (Pan, 1999) by setting W (k) = −D(k) + ε0I, where ε0 is

a suitably chosen small number. With such diagonal choices of W (k), the projection in the

subroutine, and the Lagrange mulitipliers in the main algorithm have neat expressions, as

shown in the following properties.

Property 1: When W (k) is diagonal and Λ is subject to non-negativity constraints only,
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the projection d(k) in the kth iteration of the subroutine can be obtained as follows

d
(k)
i =


g̃

(k)
i , if i /∈ A(k),

0, if i ∈ A(k),

where d
(k)
i and g̃

(k)
i are the ith component of d(k) and g̃(k), respectively.

Property 2: When W̃ (K) is diagonal and Λ is subject to non-negativity constraints

only, the Lagrange multipliers in the Kth iteration of the BCA1SG algorithm can be obtained

as follows

λ̃
(K)
i =


−∂`(β̃(K),Λ̃(K))

∂∆Λi
, if i ∈ Ã(K),

0, if i /∈ Ã(K),

where λ̃
(K)
i is the ith component of λ̃(K).

Based on the above discussion, the BCA1SG algorithm can be readily applied to semi-

parametric models for panel count data, interval-censored survival data, and degradation

data. Implementation details for the three semi-parametric models are given in the Support-

ing Information.

5. Simulation Study

Comprehensive simulation is used to examine the performance of the proposed algorithm

on the semi-parametric models for panel count data, interval-censored survival data, and

degradation data. The results on the model for panel count data are presented in this section,

and the results on the other two models can be found in the Supporting Information. In the

simulation, the BCA1SG subroutine as well as the other algorithms considered in this section

are terminated when the infinity norm of the difference between successive iterates is less

than the threshold ε. In BCA1SG, we set W (k) = −D(k)+10−8I. The simulations are repeated



16 Biometrics, March 2020

1,000 times in all the three subsections. All the computations are performed on a server with

32 cores (Intel Xeon CPU 2.60 GHz) using R.

5.1 Nonhomogeneous Poisson Process

Consider a nonhomogeneous Poisson process (NHPP) {N(t), t > 0} with mean cumulative

function E(N(t)|Z) = eβ
TZΛ(t), where Z ∈ Rd is the covariate vector, β is the regression

coefficient, and Λ(t) is a nondecreasing baseline mean cumulative function. There are three

covariates, Z1 ∼ Uniform(0, 1), Z2 ∼ N(0, 1) and Z3 ∼ Bernouli(0.5). The true values of

the baseline mean cumulative function and the regression coefficients are Λ(t) ≡ t3/4 and

β ≡ (β1, β2, β3)T = (0.5, 0.5, 1.5)T , respectively. The observation process is independent

of the counting process {N(t), t > 0} of interest after conditioning on the covariate Z.

This observation scheme falls into the second scenario (“random sampling”) of the four

observation scenarios listed in Section 3 of Gruger et al. (1991). Specifically, the number of

observation times is randomly generated from {26, . . . , 35}, and the observation times are

randomly chosen from {1, . . . , 100}. We examine two sample sizes n = 50, 100. Both BCA1SG

and the doubly iterative algorithm in Wellner and Zhang (2007) are used to compute the

semi-parametric MLE. As suggested by Wellner and Zhang (2007), we first use the maximum

pseudo likelihood estimates as initial values. The simulation results based on the 1,000 Monte

Carlo replications are summarized in Figure 1 and Table 1. As can be seen, BCA1SG is

faster and the estimates are more accurate. It is interesting to see that the runtime of

BCA1SG decreases when the sample size increases, because the maximum pseudo likelihood

estimates get closer to the MLE. To examine the sensitivity to the initial values, we rerun

the simulation by setting (β
(0)
1 , β

(0)
2 , β

(0)
3 ) = (0, 0, 0), ∆Λ

(0)
l = r(Tl − Tl−1) (l = 1, . . . ,m)

where r ∼ Uniform(1, 5). The results are displayed in Table 1. Again, BCA1SG produces

more accurate estimates, and it is insensitive to the initial values. On the other hand, the
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doubly iterative algorithm becomes very time-consuming, which agrees with the observations

in Wellner and Zhang (2007).

[Figure 1 about here.]

[Table 1 about here.]

5.2 NHPP with Gamma Frailties

Consider the counting process {N(t), t > 0} with conditional meanE(N(t)|γ,Z) = γeβ
TZΛ(t),

where γ ∼ Gamma(ν, 1/ν). Without loss of generality, let ν = 1. Other settings including the

covariates, the regression coefficient β, the baseline mean function Λ(t), and the observation

schemes are the same as those in the last subsection. Two sample sizes n = 50, 100 are

considered. Both BCA1SG and the doubly iterative algorithm in Wellner and Zhang (2007)

are used to fit the synthetic data. As for initial values, we set (β
(0)
1 , β

(0)
2 , β

(0)
3 ) = (0, 0, 0),

ν(0) ∼ Uniform(0, 10), and ∆Λ
(0)
l = r(Tl − Tl−1) (l = 1, . . . ,m) with r ∼ Uniform(1, 5)

for both methods. The simulation results based on the 1,000 Monte Carlo replications are

presented in Table 2. The conclusions are similar to those in Section 5.1. That is, BCA1SG

is much faster, and the associated estimates of Λ and β are more accurate.

[Table 2 about here.]

6. Real Data Analysis

6.1 Panel count data

Chiou et al. (2018) did a semi-parametric analysis to the skin cancer data collected in the

clinical trial conducted at the University of Wisconsin Comprehensive Cancer Center. The

study recruited 290 patients experiencing skin cancer and randomly allocated them to two

groups, a treatment group with oral difluoromethylornithine (DFMO) at a daily dose of 0.5

gram/m2 and a placebo group. These patients were followed for 3-5 years, and the follow-up



18 Biometrics, March 2020

times of different patients differ. In each follow-up visit the newly developed skin tumors

since the last examination were counted and removed, and then the treatment continued.

Information about the treatment, age, gender and number of tumors at the beginning of

the study for each patient are available. The dataset “skiTum” in R package spef including

100 patients is used in our analysis. We model the treatment effect of DFMO through the

semi-parametric model

E
(
N(t)|Z

)
= Λ(t) exp(β1Z1 + β2Z2 + β3Z3 + β4Z4),

where N(t) is the cumulative counts of tumors observed from the beginning to time t. Z1 is a

dummy variable that takes one when the age at enrollment is larger than 65. Z2, Z3 are two

indicators for the gender and treatment. Z4 represents the number of tumors at enrollment.

We compute the semi-parametric MLE using both BCA1SG and the doubly iterative

algorithm in Wellner and Zhang (2007). Initial values are β(0) = (0, 0, 0, 0), and ∆Λ
(0)
l = Tl−

Tl−1 (l = 1, . . . ,m). Two convergence thresholds ε = 10−4 and 10−5 are used. The estimation

results are presented in Table 3, and the estimates of the baseline mean function are provided

in the Supporting Information. From Table 3, we can see that the doubly iterative algorithm

is much more time-consuming than BCA1SG, especially when the convergence threshold is

small. When ε = 10−4, the doubly iterative algorithm stops immaturely, making the estimates

of regression coefficients far from the true MLE.

[Table 3 about here.]

6.2 Interval-censored survival data

Gomez et al. (2000) reported HIV infection data collected in a study conducted by the

Germans Trias i Pujol Hospital among 972 intravenous drug users. During the study patients

recurrently went to the hospital to take HIV antibody tests. The following information

was collected from each patient: the age at enrollment; gender; the date of first usage of

intravenous drugs; the date of last negative HIV antibody test and the date of first positive
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antibody test. As a result, the elapsed time between intravenous drug initiation and HIV

infection is interval-censored. In line with Gomez et al. (2000), we focus on the 767 patients

who started drug usage after 1980 and consider the following Cox model

Λ(t|Z) = Λ(t) exp(β1Z1 + β2Z2),

where Λ(t) is the baseline cumulative hazard function for the elapsed time and Z1 and Z2

represent gender and the age at enrollment, respectively. We compute the semi-parametric

MLE using the proposed BCA1SG algorithm, the EM algorithm in Zeng et al. (2016),

and the doubly iterative algorithm in Huang and Wellner (1997) where the non-parametric

component is updated through the iterative convex minorant algorithm. Initial values are

β(0) = (0, 0), ∆Λ
(0)
l = 1/m (l = 1, . . . ,m), and two thresholds ε = 10−4 and 10−5 are used.

Table 4 presents the results from the three algorithms, and the estimates of the baseline

cumulative hazard function are provided in the Supporting Information. As can be seen,

the estimates given by the three algorithms are similar and the log-likelihood given by

BCA1SG is slightly larger than those by the EM and the doubly iterative algorithm under

both convergence thresholds. The EM and the doubly iterative algorithm take much longer

time when we decrease ε from 10−4 to 10−5 while BCA1SG is much more efficient. Another

interesting finding is that the doubly iterative algorithm is much more efficient than the EM

algorithm in this example. The reason is twofold. First, based on our simulation experience,

the ICM algorithm embedded in the doubly iterative algorithm is quite efficient if the true

maximizer of Λ 7→ `(β,Λ) contains many zeros. In our case, the true ML estimate of the

111-dimensional vector Λ contains 88 zeros. Second, the observed censoring intervals are

wide in this HIV data, leading to a high missing rate and thus a slow convergence for the

EM algorithm. Specifically, the average length of the observed intervals (except the right-

censored observations) is 67 months, which is quite large considering that the observation



20 Biometrics, March 2020

times range from 1 month to 178 months. Therefore, the doubly iterative algorithm is much

faster than the EM algorithm in this case.

[Table 4 about here.]

To gauge the impact of interval censoring, we analyzed the HIV infection data set in a

“naive” way with standard Cox model. We simply treat the interval-censored data as the

standard right-censored data using the method of midpoint imputation (Lee et al., 2011).

Specifically, if a subject is censored in an interval with finite endpoints, we treat it as an exact

non-censored observation and naively set the occurrence time as the midpoint of the censoring

interval; if a subject is right-censored, we leave it unchanged. In this way, the resulting data

are standard survival data with right censoring. We apply the Cox regression model to

fit the right-censored data with midpoint imputation, where the parametric component β

is estimated through the method of partial likelihood, and the non-parametric component

Λ(·) is estimated by the Breslow estimator. The estimate for the parametric component β

based on right-censored data with midpoint imputation is β̂ = (0.1845,−0.0116)T , and the

estimates for the non-parametric component Λ(·) are shown in Figure 2.

[Figure 2 about here.]

For the comparison purpose, we also present the estimation results for the original interval-

censored data given by the ML method (through the BCA1SG algorithm) in Figure 2. As can

be seen, the results for the right-censored data with midpoint imputation and the interval-

censored data are quite different. This implies that it is risky to use a “naive” standard Cox

analysis, which may lead to incorrect estimates for both β and Λ(·). Hence it is necessary

to consider the interval censoring in this real example.
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7. Discussion

This paper investigated the computation of MLE in semi-parametric models with shape

constraints on the non-parametric component. A new computational framework was pro-

posed and its convergence properties were investigated. Unlike the original block coordinate

ascent algorithm (Tseng, 2001; Wellner and Zhang, 2007), the BCA1SG algorithm does not

waste time and resources on maximizing Λ 7→ `(β,Λ) exactly for a poor estimate of β,

so it is insensitive to initial values. Similar to Newton’s method, the proposed algorithm

takes advantage of the information contained in the matrix W , which is often specified as

−∇2
Λ`(β,Λ) when Λ 7→ `(β,Λ) is concave. As a result, the convergence speed is signifi-

cantly improved. Without the proposed algorithm, resampling methods such as bootstrap

and jackknife for semi-parametric models are prohibitive when Λ is high-dimensional. The

BCA1SG algorithm makes these resampling methods feasible as it significantly improves the

computational efficiency. Therefore, it plays an important role in constructing confidence

intervals for semi-parametric models through the bootstrap procedure.

A topic for future research is to further improve the computational efficiency by adaptively

changing the number of GR iterations when updating Λ. For example, the number can be

small at the beginning and gradually increases as the algorithm proceeds.
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Figure 1. Pointwise biases (left panel) and MSEs (right panel) of the ML estimate of Λ(t)
under difference sample sizes for the NHPP model with MPLE as initial value and ε = 10−6.
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Figure 2. Estimates of the baseline cumulative hazard function when fitting the right-
censored HIV infection data with midpoint imputation by the partial likelihood method, as
well as when fitting the original interval-censored HIV infection data by the ML method
(through the BCA1SG algorithm).



Block Coordinate Ascent with One-Step GR 29

Table 1
The number of iterations, time cost in seconds, averaged ‖Λ̂(t)− Λ(t)‖∞, and RMSE of β̂ for the NHPP model

under different settings of initial values when ε = 10−6, (β1, β2, β3) = (0.5, 0.5, 1.5) and Λ(t) = t3/4. The standard
errors are shown in parentheses

n = 50 n = 100
BCA1SG DIA BCA1SG DIA

Iteration 160.9 (64.0) 225.2 (613.6) 81.6 (31.7) 122.2 (243.2)
Time cost 10.6 (5.0) 87.4 (112.6) 9.7 (4.0) 100.6 (130.7)

MPLE as ‖Λ̂(t)− Λ(t)‖∞ 1.16 (0.73) 1.25 (0.78) 0.82 (0.50) 0.90 (0.58)

initial value RMSE of β̂1 × 102 48.09 49.28 32.21 34.46

RMSE of β̂2 × 102 14.44 14.46 9.69 9.69

RMSE of β̂3 × 102 34.24 35.48 24.25 25.05

Iteration 254.7 (84.8) 470.9 (800.8) 150.7 (35.1) 296.7 (294.7)
Time cost 19.5 (7.9) 4170.6 (847.3) 20.9 (6.4) 6463.7 (752.0)

Random ‖Λ̂(t)− Λ(t)‖∞ 1.16 (0.73) 1.28 (0.79) 0.82 (0.50) 0.96 (0.61)

initial value RMSE of β̂1 × 102 48.10 49.87 32.22 35.45

RMSE of β̂2 × 102 14.44 14.51 9.69 9.71

RMSE of β̂3 × 102 34.22 35.33 24.24 25.97
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Table 2
Under random initial values, the number of iterations, time cost in seconds, averaged ‖Λ̂(t)− Λ(t)‖∞, and RMSEs

of ν̂ and β̂ for the NHPP model with gamma frailties when ε = 10−6, ν = 1, (β1, β2, β3) = (0.5, 0.5, 1.5) and

Λ(t) = t3/4. The standard errors are shown in parentheses

n = 50 n = 100
BCA1SG DIA BCA1SG DIA

Iteration 2059.4 (935.8) 15.9 (5.6) 1812.0 (512.7) 12.7 (2.5)
Time cost 89.5 (43.2) 21608.4 (11267.3) 181.3 (54.2) 45913.6 (17793.2)

‖Λ̂(t)− Λ(t)‖∞ 10.13 (9.60) 49.49 (23.93) 6.90 (5.92) 46.65 (15.02)
RMSE of ν̂ × 102 22.15 26.53 18.86 24.60

RMSE of β̂1 × 102 59.32 119.90 42.53 114.99

RMSE of β̂2 × 102 16.50 19.39 11.84 12.00

RMSE of β̂3 × 102 35.72 47.35 24.75 37.97
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Table 3
Number of iterations, time cost in seconds, log-likelihood and estimates of the regression coefficients when fitting the

skin cancer data under different convergence thresholds ε

ε Algorithm Iteration Time cost Log-likelihood β̂1 β̂2 β̂3 β̂4

10−4 BCA1SG 549 20.9 272.945 0.175 0.177 0.141 0.123
DIA 17 602.9 269.106 0.103 0.018 0.029 0.114

10−5 BCA1SG 803 31.9 272.946 0.175 0.177 0.141 0.123
DIA 38 2150.8 272.877 0.166 0.155 0.126 0.122
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Table 4
Number of iterations, time cost in seconds, log-likelihood and estimates of the regression coefficients when fitting the

HIV infection data under different convergence thresholds ε

ε Algorithm Iteration Time cost Log-likelihood β̂1 × 102 β̂2 × 102

10−4 BCA1SG 137 5.8 -604.20976 23.18 -1.37
DIA 123 31.4 -604.21429 23.35 -1.26
EM 442 220.1 -604.34055 23.20 -1.36

10−5 BCA1SG 197 9.0 -604.20936 23.20 -1.37
DIA 153 94.9 -604.20944 23.20 -1.36
EM 1245 607.7 -604.21550 23.20 -1.37


