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Summary. We consider estimation of regression models for sparse asynchronous longitudi-
nal observations, where time-dependent responses and covariates are observed intermittently
within subjects. Unlike with synchronous data, where the response and covariates are observed
at the same time point, with asynchronous data, the observation times are mismatched. Simple
kernel-weighted estimating equations are proposed for generalized linear models with either
time invariant or time-dependent coefficients under smoothness assumptions for the covariate
processes which are similar to those for synchronous data. For models with either time invari-
ant or time-dependent coefficients, the estimators are consistent and asymptotically normal
but converge at slower rates than those achieved with synchronous data. Simulation studies
evidence that the methods perform well with realistic sample sizes and may be superior to a
naive application of methods for synchronous data based on an ad hoc last value carried for-
ward approach. The practical utility of the methods is illustrated on data from a study on human
immunodeficiency virus.
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1. Introduction

In many longitudinal studies, measurements are taken at irregularly spaced and sparse time
points. The sparsity refers to the availability of only a few observations per subject. In the
classical longitudinal set-up, a small number of measurements of response and covariates are
synchronized within individuals, meaning that they are observed at the same time points, with
the measurement times varying across individuals. However, in many applications, observed
covariates and response variables may be mismatched over time within individuals, leading
to asynchronous data. This greatly complicates the study of the association between response
and covariates, with virtually all available longitudinal regression methods developed for the
synchronous setting.

Often no synchronous data may be available and existing methods are not applicable to
asynchronous data. In educational studies, it is of interest to associate subjective evaluations
of students’ performance and objective test results. However, subjective information is usu-
ally collected through interviews or phone calls, which are obtained at different time points.
In clinical epidemiology, one may study the links between biomarkers, sampled repeatedly at
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Fig. 1. Observation times of CD4 cell counts ( ) and HIV viral load ( ) by patient

laboratory visits, with self-reported measures of function and quality of life, captured via out-
patient phone interviews. In other clinical settings, the relationship between two biomarkers
may be of interest, with laboratory visits scheduled at different times by design to address
logistical issues which prevent their simultaneous observation. As an example, in a prospective
observational cohort study (Wohl et al., 2005), a total of 191 patients were followed for up to
5 years, with human immunodeficiency virus (HIV) viral load and CD4 cell counts measured
repeatedly on these patients. Fig. 1 displays the observation times for the two variables: we see
clearly that sparse measurements are taken on each variable for each subject and that the study
protocol has specified that the viral load and CD4 cell count are obtained at laboratary visits on
different days. Hence, there are no synchronous data within individuals, as would be needed by
the existing methods. It is well known in the medical literature that HIV viral load and CD4 cell
counts are negatively associated (Hoffman et al., 2010). The ad hoc but commonly adopted last
value carried forward approach which employs synchronous data methods does not identify
this association in the data analysis in Section 5.

The goal of this paper is to develop simple, computationally efficient and theoretically justi-
fied estimators for longitudinal regression models based on such sparse asynchronous data. A
popular regression model for longitudinal data with time varying response and covariates is the
generalized linear model

E{Y.t/|X.t/}=g{X.t/Tβ}, .1/

where g is a known, strictly increasing and continuously twice-differentiable link function, t
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is a univariate time index, X.t/ is a vector of time varying covariates plus intercept term, Y.t/

is a time varying response and β is an unknown time invariant regression parameter. Model
(1) characterizes the conditional mean of Y.t/ given X.t/ while leaving its dependence structure
and distributional form completely unspecified. Existing methodology (Diggle et al. (2002) and
references therein) for model (1) assumes that X and Y are observed at the same time points
within individuals, with the resulting estimators based on this synchronous data being n1=2

consistent and asymptotically normal. To our knowledge, estimation via generalized estimating
equations (Diggle et al., 2002) has not been studied with asynchronous data and it is unclear
whether parametric rates of convergence are achievable.

A more flexible model is the generalized varying-coefficient model that allows the unknown
regression coefficient β.t/ to vary over time in model (1):

E{Y.t/|X.t/}=g{X.t/Tβ.t/}: .2/

For the identity link function, as recently reviewed by Fan and Zhang (2008), estimation for
sparse synchronous longitudinal data may be based on two main approaches: global and local.
Local methods, which include local likelihood, may be based on local polynomial smoothing
(Wu et al., 1998; Hoover et al., 1998; Fan and Zhang, 2000; Wu and Chiang, 2000). Global
approaches employ alternative basic function representations for the data and regression coef-
ficients, such as polynomial spline (Huang et al., 2002, 2004), smoothing spline (Hoover et al.,
1998; Chiang et al., 2001; Fan and Zhang, 2000) and functional data analytic approximations
(Yao et al., 2005; Zhou et al., 2008; Sentürk and Muller, 2010; Zhou et al., 2008). Interestingly,
whereas the optimal non-parametric rates of convergence for estimation of β.t/ are the same for
the local and global approaches with sparse longitudinal data, the global approaches can incor-
porate within-subject correlation structure in the estimation procedure, similarly to generalized
estimating equations (Diggle et al., 2002). Qu and Li (2006) employed penalized splines with
quadratic inference functions. Fan et al. (2007) studied non-parametric estimation of the co-
variance function. Other related work can be found in Sun et al. (2007) and references therein.
Establishing efficiency gains for the global approaches is challenging for the time-dependent
parameter estimators, owing to slow rates of convergence.

Hybrids of models (1) and (2) have been widely investigated with synchronous longitudinal
data, where some of the regression parameters are time invariant and some are time dependent.
The so-called partial linear model is a variant in which the intercept term is time varying whereas
other coefficients are constant. In general, the time-independent parameter may be estimated at
the usual parametric rates. An important discovery that was made by Lin and Carroll (2001) is
that the commonly used forms of the kernel methods cannot incorporate within-subject correl-
ation to improve efficiency of the time invariant parameter estimator. Wang (2003) proposed an
innovative kernel method, which assumes knowledge of the true correlation structure, yielding
efficiency gains. The idea was extended by Wang et al. (2005) to achieve the semiparametric
efficient bound that was computed in Lin and Carroll (2001) for the time-independent parameter.
A counting process approach on the observation time was adopted by Martinussen and Scheike
(1999, 2001), Cheng and Wei (2000) and Lin and Ying (2001), which enables n1=2-consistent
estimation of the time-independent parameter without explicit smoothing.

In this paper, we propose estimators for models (1) and (2) with asynchronous longitudinal
data. Extending Martinussen and Scheike’s (2010) representation of synchronous data, we for-
mulate the observation process by using a bivariate counting process for the observation times
of the covariate and response variables. For subject i=1, : : : , n,

Ni.t, s/=
Li∑

j=1

Mi∑
k=1

I.Tij � t, Sik � s/
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counts the number of observation times up to t on the response and up to s on the covariates,
where Tij, j = 1, : : : , Li, are the observation times for the response and Sik, k = 1, : : : , Mi, are
the observation times for the covariates, i.e., with sparse asynchronous longitudinal data, we
observe for i=1, : : : , n

Yi.Tij/, j =1, : : : , Li,

Xi.Sik/, k =1, : : : , Mi,

where Li and Mi are finite with probability 1. To use existing methods for synchronous longi-
tudinal data, where Li = Mi and Tij = Sij, j = 1, : : : , Li, for each observed response, one may
carry forward the most recently observed covariate. As evidenced by the numerical studies in
Sections 4 and 5, this ad hoc approach may incur substantial bias.

To obtain estimators for models (1) and (2) with asynchronous data, we adapt local ker-
nel weighting techniques to estimating equations that have previously been developed for syn-
chronous data. Our main idea is intuitive: we downweight those observations which are distant in
time, either from each other or from a known fixed time. This enables the use of all covariate ob-
servations for each observed response. These methods require similar smoothness assumptions
on the covariate trajectories to those employed with synchronous data. In practice, there may be
scenarios where it is necessary to preprocess the covariate X.t/ when applying the methodologies
of the paper. With a suitable choice of the bandwidth controlling the kernel weighting, the estima-
tors for the time invariant coefficient and time-dependent coefficient are shown to be consistent
and asymptotically normal, with simple plug-in variance estimators. The usual cross-validation
for bandwidth selection does not work because the data are non-synchronous but we develop
a novel data-adaptive bandwidth selection procedure which works well in simulation studies.
The choice of the local method versus a global method is based in part on computational and
inferential simplicity and, in part, by the fact that it is unclear that efficiency gains are achievable
given the slow rates of convergence of the estimators. The optimal rates of convergences for our
local estimators for models (1) and (2) with asynchronous data are slower than the correspond-
ing optimal rates which may be achieved with synchronous data. In addition, the estimator
for the time-independent model converges more slowly than the parametric rate n−1=2 for syn-
chronous data. Given this lack of n−1=2-consistency, the extent to which efficiency gains with
synchronous data for time-independent parameter estimation by using global methods carry
over to the asynchronous setting is not obvious. These results are detailed in Sections 2 and 3.

The remainder of the paper is organized as follows. In Section 2, we discuss estimation for
model (1) with time-independent coefficients by using asynchronous data and provide the corre-
sponding theoretical findings. The results for the time-dependent model (2) are given in Section
3. Section 4 reports simulation studies and Section 5 applies our procedure to data from the
HIV study, exhibiting improved performance versus the last value carried forward approach
with synchronous data methods. Concluding remarks are given in Section 6. Proofs of results
from Sections 2 and 3 are given in Appendix A.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Time invariant coefficient

2.1. Estimation
Suppose that we have a random sample of n subjects. For the ith subject, let Yi.t/ be the response
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variable at time t and let Xi.t/ be a p × 1 vector of possibly time-dependent covariates. The
response Yi.t/ may be a continuous, categorical or count variable, whereas the covariate Xi.t/

may include time-independent covariates, such as an intercept term, in addition to time varying
covariates. The main requirement for the validity of the methods presented below is that, if the
time varying covariates in Xi.t/ are multivariate, then the different covariates are measured at
the same time points. Precise conditions on Xi.t/ are provided in the theoretical discussion in
Section 2.2 and do not differ considerably from those needed for estimation with synchronous
data.

We now focus on the regression model (1) that relates Yi.t/ to Xi.t/ through a time invari-
ant coefficient. To estimate β, we propose to use kernel weighting in a working independence
generalized estimating equation (Diggle et al., 2002) which has previously been developed for
synchronous data. The resulting estimating equation is

Un.β/=n−1
n∑

i=1

Li∑
j=1

Mi∑
k=1

Kh.Tij −Sik/×Xi.Sik/× [Yi.Tij/−g{Xi.Sik/Tβ}]: .3/

Using counting process notation, this is equivalent to

Un.β/=n−1
n∑

i=1

∫ ∫
Kh.t − s/Xi.s/ [Yi.t/−g{Xi.s/

Tβ}]dNi.t, s/, .4/

where Kh.t/ = K.t=h/=h, K.t/ is a symmetric kernel function, which is usually taken to be the
Epanechnikov kernel K.t/=0:75.1− t2/+, and h is the bandwidth.

The kernel weighting accounts for the fact that the covariate and response are mismatched and
permits contributions to Un.β/ from all possible pairings of response and covariate observations.
It requires that the observation times Tij and Sik, i=1, : : : , n, should be close for some but not
all subjects. The theoretical results that are presented below require only that these observation
times are close for a very small fraction of the overall sample of n individuals. If the observation
times for covariate and response are close to each other, then the kernel weight is close to 1;
however, if the observation times are far apart, then the contribution to the estimating equation
(3) may be 0. In general, the relative contribution to Un.β/ is determined by the closeness of the
covariate and response measurement times. Note that, for a response measured at a particular
time Tij, there may be multiple Siks at which covariates are measured which contribute to the
estimating equation. We solve Un.β/ = 0 to obtain an estimate for β, which is denoted by β̂.
Regarding the computations, once the kernel function K has been chosen and the bandwidth
has been fixed, the estimating equation can be solved by using a standard Newton–Raphson
implementation for generalized linear models, with good convergence properties.

2.2. Asymptotic properties
We next study the asymptotic properties of β̂, including the bias–variance trade-off with respect
to the bandwidth selection. We allow the observations of Xi.·/ and the observations of Yi.·/
to be arbitrarily correlated. We specify our assumptions on the covariance structure as follows.
For s, t ∈ [0, τ ], let var{Y.t/|X.t/}=σ{t, X.t/}2 and cov{Y.s/, Y.t/|X.s/, X.t/}=r{s, t, X.s/, X.t/},
where τ is the maximum follow-up time. Observe that the conditional variances and correlations
of Y are completely unspecified and may depend on X.

We need the following conditions.

Condition 1. Ni.t, s/ is independent of .Yi, Xi/ and, moreover, E{dNi.t, s/} = λ.t, s/dt ds,
where λ.t, s/ is a twice-continuous differentiable function for any 0� t, s� τ . In addition, Borel
measure for G ={λ.t, t/ > 0, t ∈ [0, τ ]} is strictly positive. For t1 �= s1 and t2 �= s2, P{dN.t1, t2/=
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1|N.s1, s2/−N.s1−, s2−/=1}=f.t1, t2, s1, s2/dt1 dt2 where f.t1, t2, s1, s2/ is continuous for t1 �=
s1, and t2 �= s2 and f.t1 ± , t2 ± , s1 ± , s2±/ exists.

Condition 2. If there is a vector γ such that γTX.s/=0 for any s∈G with probability 1, then
γ=0.

Condition 3. For any β in a neighbourhood of β0, the true value of β, E[X.s/g{X.t/Tβ}] is
continuously twice differentiable in .t, s/∈ [0, τ ]⊗2 and |g′{X.t/Tη}|� q{‖X.t/‖} for some q.·/
satisfying that E[‖X.t/‖4q{‖X.t/‖}2] is uniformly bounded in t. Additionally, E{‖X.t/‖4} <

∞. Furthermore, E[X.s1/X.s2/Tr{t1, t2, X.t1/, X.t2/}] and E[X.s1/X.s2/Tg{X.t1/Tβ0}g{X.t2/T

β0}] are continuously twice differentiable in .s1, s2, t1, t2/∈ [0, τ ]⊗4. Moreover,∫
E[‖X.s/X.s/T‖σ{s, X.s/}2]λ.s, s/ds<∞,

and ∫
E[‖X.s/X.s/T‖g′{X.s/Tβ0}]λ.s, s/ds<∞:

Condition 4. K.·/ is a symmetric density function satisfying
∫

z2 K.z/dz<∞ and
∫

K.z/2 dz<

∞. Additionally, nh→∞.

Condition 5. nh5 →0:

Condition 1 requires that the observation process is independent of both the response and
the covariates. We require that λ.s, t/ is positive in a neighbourhood of the diagonal where s= t

at some time points, but not all time points, and λ.s, t/ need not be greater than 0 when s �= t:

Analogous assumptions have been widely utilized with synchronous data, as in Lin and Ying
(2001), Yao et al. (2005) and Martinussen and Scheike (2010). We consider the sparse longitudi-
nal set-up where the number of observations Ni.t, s/ has finite expectation but may have infinite
support, similarly to Martinussen and Scheike (2010) with synchronous data. This differs from
the dense setting that is popular in functional data analysis where Li and Mi →∞ as n→∞ for
all i. Condition 2 ensures identifiability of β whereas condition 3 posits smoothness assumptions
on the expectation of some functionals of X.s/ and gives additional regularity conditions on
the observation intensity λ. The latter condition implies that the covariance function of X.t/

is twice continuously differentiable. Such a condition is not satisfied by processes having inde-
pendent increments. For Gaussian processes, the implication is that X.t/ has continuous but
not necessarily differentiable sample paths with probability 1. In theory, the condition may still
allow the actual path of X.s/ to be discontinuous, as with categorical covariates which jump
according to a point process, where discontinuities may occur with zero measure. In Section 6,
we discuss the possibility of relaxing condition 3. Conditions 4 and 5 specify valid kernels and
bandwidths.

The following theorem, which is established in Appendix A, states the asymptotic properties
of β̂.

Theorem 1. Under conditions 1–4, the asymptotic distribution of β̂ satisfies

.nh/1=2{A.β0/.β̂−β0/+Ch2}→N.0, Σ/, .5/

where A.β0/=∫
s E[X.s/g′{X.s/Tβ0}X.s/T]λ.s, s/ds, β0 is the true regression coefficient and

C is a constant, which can be found in Appendix A. The asymptotic variance

Σ=
∫

K.z/2 dz

∫
E[X.s/X.s/Tσ{s, X.s/}2]λ.s, s/ds: .6/
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The asymptotic results do not depend on λ.s, t/ for s �= t as we are dealing with asynchronous
data in which the response and covariates are never ‘perfectly’ matched, i.e. there is zero mea-
sure associated with identical observation times. The variance depends critically on the joint
density of the observation times on the diagonal, which determines how quickly information
accumulates from an asynchronous response and covariates across subjects. For the case where
synchronous data occur with positive probability, synchronous data methods may be employed
with the synchronous portion of the data and will yield improved convergence rates relatively
to the methods proposed above for pure asynchronous data.

If the bandwidth is further restricted by condition 5, then the asymptotic bias in condition
(5) vanishes and β̂ is consistent.

Corollary 1. Under conditions 1–5, β̂ is consistent and converges to a mean 0 normal distri-
bution given in theorem 1.

For statistical inference, it is challenging to estimate the variance in equation (6) directly, owing
to the time varying quantities σ and λ, which are difficult to estimate well without imposing
additional assumptions on the covariate and response processes. In practice, we estimate Σ by

Σ̂= 1
n2

n∑
i=1

(∫ ∫
Kh.t − s/Xi.s/[Yi.t/−g{Xi.s/

Tβ̂}]dNi.t, s/

)⊗2

and estimate the variance of β̂ by the sandwich formula

{
@Un.β/

@β

∣∣∣
β=β̂

}−1

Σ̂
({

@Un.β/

@β

∣∣∣
β=β̂

}−1 )T

:

This approach has been adopted by Cheng and Wei (2000) and Lin and Ying (2001) with
synchronous data as well.

Corollary 2. Under conditions 1–5, the sandwich formula consistently estimates the variance
of β̂:

Our method depends on the selection of the bandwidth. Theoretically speaking, condition
4 says that the bandwidth cannot be too small (smaller than O.n−1/); otherwise, the variance
will be quite large. However, to eliminate the asymptotic bias, we require a small bandwidth.
Theorem 1 indicates that the bias is of order O.n1=2h5=2/, so we should choose bandwidth
h=o.n−1=5/. With this choice of bandwidth, we achieve a rate of convergence o.n2=5/, which is
slower than the parametric n1=2 rate of convergence for synchronous data under model (1).

We propose a data-adaptive bandwidth selection procedure despite the fact that traditional
cross-validation methods are not applicable owing to asynchronous measurement times for the
covariates and response. On the basis of condition (5), we first regress β̂.h/ on h2 in a reasonable
range of h to obtain the slope estimate Ĉ. To obtain the variance, we split the data randomly
into two parts and obtain regression coefficient estimates β̂1.h/ and β̂2.h/ based on each half-
sample. The variance of β̂.h/ is then estimated by V̂ .h/={β̂1.h/− β̂2.h/}2=4. Using both Ĉ and
V̂ h, we thus calculate the mean-squared error as Ĉ

2
h4 + V̂ .h/ on the basis of theorem 1. Finally,

we select the optimal bandwidth h minimizing this mean-squared error.
Our numerical studies show that small bias may be achieved for bandwidths between n−1 and

n−1=2, with stable variance estimation and confidence interval coverage for bandwidths larger
than n−4=5. Within this range, the bias diminishes as the sample size increases, as predicted by
theorem 1. Methods based on asynchronous data are generally less efficient than those based on
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synchronous data, with the information in synchronous data dominating that in asynchronous
data. Numerical studies (which are not reported) demonstrate that, in moderate sample sizes,
asynchronous data may yield comparable but reduced efficiency when there are a large number
of observation times for the covariate process.

3. Time-dependent coefficients

The observed data are the same as in Section 2. Suppose that we are interested in estimating the
coefficient β.t/ in model (2) at a fixed time point t. Similarly to synchronous data, in the asyn-
chronous set-up, neither the response Y.t/ nor the covariate X.t/ is generally observed at time
t. However, one may utilize measurements of these variables which are taken close in time to t

to estimate β.t/. Kernel weighting is employed to downweight measurements of Y.t/ and X.t/ on
the basis of their distance from t. Recall that, in Section 2, a single bandwidth was used to weight
on the basis of the distance between the covariate and response measurements. The main differ-
ence in this section is that two bandwidths are needed to weight separately on the basis of the
distance of the response measurement from time t and the distance of the covariate measurement
from time t. Fitting model (2) with synchronous data requires only a single bandwidth, since
the response and covariate are always measured at the same time points.

The doubly kernel-weighted estimating equation for β.t/ is

Un{β.t/}= 1
n

n∑
i=1

Li∑
j=1

Mi∑
k=1

Kh1,h2.Tij − t, Sik − t/×Xi.Sik/× [Yi.Tij/−g{Xi.Sik/Tβ.t/}], .7/

where Kh1,h2.t, s/=K.t=h1, s=h2/=.h1h2/ and K.t, s/ is a bivariate kernel function, say, the prod-
uct of univariate Epanechnikov kernels K.t, s/=0:5625.1− t2/+.1− s2/+. We solve equation (7)
to obtain an estimate for β.t/, which is denoted as β̂.t/. Computationally, the Newton–Raph-
son iterative method can be utilized after choosing Kh1,h2 and fixing the bandwidths. As this
estimating equation leads to separate estimates of β.t/ at each time point t, the resulting infer-
ential procedures that are described below are pointwise and not simultaneous. To obtain the
trajectory of β̂.t/, one solves equation (7) on a dense grid of time points in .0, τ /.

To derive the large sample properties of the estimator, we need the following assumptions.

Condition 1′. Ni.t, s/ is independent of .Yi, Xi/ and, moreover, E{dNi.t, s/} = λ.t, s/dt ds,
where λ.t, s/ is twice continuous differentiable for any 0� t, s�τ and is strictly positive for t = s.
For t1 �= s1, t2 �= s2, P{dN.t1, t2/ = 1|N.s1, s2/ − N.s1− , s2−/ = 1} = f.t1, t2, s1, s2/dt1 dt2 where
f.t1, t2, s1, s2/ is continuous for t1 �= s1 and t2 �= s2 and f.t1 ± , t2 ± , s1 ± , s2±/ exists.

Condition 2′. For any fixed time point t, if there is a vector γ such that γT X.t/=0, then γ=0.

Condition 3′. E[X.s1/g{X.s2/Tβ.s3/}] is continuously twice differentiable in .s1, s2, s3/ ∈
s[0, τ ]⊗3 and |g′{X.t/Tη}| � q{‖X.t/‖} for some q.·/ satisfying that E[‖X.t/‖4q{‖X.t/‖2}] is
uniformly bounded in t. Moreover, E[X.t1/X.s1/Tr{s2, t2, X.s2/, X.t2/}] is continuously twice
differentiable in .t1, s1, t2, s2/∈ [0, τ ]⊗4 and E[X.t1/X.s1/Tg{X.t2/Tβ0.t/}g{X.s2/Tβ0.t/}] is con-
tinuously twice differentiable in .t1, s1, t2, s2, t/∈ [0, τ ]⊗5.

Condition 4′. The kernel function K.x, y/ is a symmetric bivariate density function for x and
y. In addition,

∫ |x3y|K.x, y/dxdy<∞,
∫ |xy3|K.x, y/dxdy<∞,

∫
x2y2K.x, y/dxdy<∞ and∫

K.x, y/2dx dy<∞. Moreover, nh1h2 →∞.

Condition 5′. .nh1h2/1=2.h2
1 +h2

2/→0.
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Conditions 1′–5′ are similar in spirit to conditions 1–5 in Section 2. Condition 1′ strengthens
condition 1, requiring that, to estimate β.t/ at time t,λ.t, t/>0: Condition 2′ is a modified iden-
tifiability assumption for β.t/ at time t: Condition 3′ posits the requirements on the covariance
function of the covariate process, with the implications similar to those discussed in Section 2.
Conditions 4′ and 5′ are provided for the kernel function and the bandwidth.

We establish the asymptotic distribution of β̂.t/ in the following theorem.

Theorem 2. Under conditions 1′–4′, the asymptotic distribution of β̂.t/ for any fixed time
point t ∈ .0, τ / based on solving Un{β.t/} in equation (7) is

.nh1h2/1=2[B{β0.t/, t}{β̂.t/−β0.t/}+D1.t/h2
1 +D2.t/h1h2 +D3.t/h2

2]→N{0, ΣÅ.t/},

where B{β0.t/, t} = λ.t, t/E[X.t/g′{X.t/Tβ0.t/}X.t/T],β0.t/ is the true coefficient function
and D1.t/, D2.t/ and D3.t/ are known functions, whose specific forms can be found in Ap-
pendix A. The variance function is

ΣÅ.t/=
∫ ∫

K.z1, z2/2 dz1 dz2 E[X.t/X.t/Tσ{t, X.t/}2]λ.t, t/: .8/

If the bandwidth is further restricted by condition 5′, then the asymptotic bias in equation
(8) vanishes and β̂.t/ is consistent for β0.t/, as stated in the following corollary.

Corollary 3. Under conditions 1′–5′ β̂.t/ is consistent and converges to the zero-mean normal
distribution given in theorem 2 for any t ∈ .0, τ /.

For any fixed time point t, the variance estimator for β̂.t/ may be obtained by expanding the
estimating equation (7) similarly to the time invariant case.

Corollary 4. Under conditions 1′–5′, for any fixed time point t ∈ .0, τ /, the sandwich formula
consistently estimates the variance of β̂.t/.

If we let h=h1 =h2, on the basis of condition 4′, a valid bandwidth is larger than O.n−1=2/. In
contrast, theorem 2 indicates that the bias is of order O.n1=2h3/, so we should choose bandwidth
h = o.n−1=6/. With this choice of bandwidth, we achieve o.n1=3/ rate of convergence, which is
slower than the o.n2=5/ rate of convergence for the synchronous case with time-dependent co-
efficient (Martinussen and Scheike, 2010). In general, similarly to model (1), asynchronous
estimators for model (2) converge more slowly and are less efficient than those based on syn-
chronous data.

Our numerical studies show that bandwidths near n−1=2 perform well with moderate sam-
ple sizes. As with model (1), the automation of bandwidth selection for estimation of β.t/ is
challenging with asynchronous data because the calculation of error criteria for use in cross-
validation is unclear. Our suggested procedure calculates the integrated mean-squared error.
This is accomplished through calculating mean-squared errors separately at time points of in-
terest by adapting the approach for time-independent coefficients in Section 2. We then sum
them to obtain integrated mean-square errors and choose the bandwidth that minimizes this
summation. This procedure performs well in the simulation studies.

4. Numerical studies

In this section we investigate finite sample properties of the estimators that were proposed in
Section 2 and Section 3 through Monte Carlo simulation.
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4.1. Time invariant coefficient
We first study the performance of the estimator for the time invariant coefficient in model (1). We
generate 1000 data sets, each consisting of n=100, 400, 900 subjects. The number of observation
times for the response Y.t/ was Poisson distributed with intensity rate 5, and similarly for the
number of observation times for the covariate X.t/. With these two numbers of measurements,
the observation times for the response and covariate are generated from the uniform distribution
Unif(0,1) independently. The covariate process is Gaussian, with values at fixed time points being
multivariate normal with mean 0, variance 1 and correlation exp.−|tij − tik|/, where tij is the
jth measurement time and tik is the kth measurement time for the response, both on subject
i. Whereas realizations of this Gaussian process may not be differentiable on the diagonal,
the resulting expectations in conditions 3 and 3′ are bounded and smoothly differentiable,
as required for the validity of the asynchronous estimator. At the data-generating stage, to
generate the response, we include the response observation times with the covariate observation
times when generating the covariates that are needed for simulating responses at the response
observation times. The responses were generated from

Y.t/=β0 +X.t/β1 + ".t/, .9/

where β0 is the intercept, β1 is a time-independent coefficient and ".t/ is Gaussian, with mean
0, variance 1 and cov{".s/, ".t/}=2−|t−s|. Once the response has been generated, we remove the
covariate measurements at the response observation times from the observed covariate values.
In this simulation, we set β0 =0:5 and β1 =1:5 and assess the performance of β̂1. The results are
very similar for other choices of βs. Under a logistic regression model for a binary response, the
simulation set-up is similar to that for the continuous response except that the link function is
g.x/= exp.x/={1+ exp.x/} and the response variable is generated through Y.t/= I.Unif.0, 1/�
1=[1+ exp{−β0 −X.t/β1}]/.

On the basis of our theory, we use different bandwidths in the range of .n−1=5, n−1/ when
solving equation (3) to find β̂1. The kernel function is the Epanechnikov kernel, which is K.x/=
0:75.1−x2/+. Similar results were obtained by using other kernels. We evaluate the accuracies
of the asymptotic approximations by calculating the average bias, the average relative bias and
the empirical standard deviation of β̂1 across the 1000 data sets. We also calculate a model-
based standard error and the corresponding 0:95 confidence interval based on the normal
approximation. The automated bandwidth procedure that was described in Section 2 was also
employed for estimation.

Table 1 summarizes the main results over 1000 simulations, where ‘auto’ means bandwidths
based on the adaptive selection procedure, ‘BD’ represents different bandwidths, ‘Bias’ is the em-
pirical bias, ‘RB’ is Bias divided by the true β1, ‘SD’ is the sample standard deviation, ‘SE’ is the
average of the standard error estimates and ‘CP’ represents the coverage probability of the 95%
confidence interval for β1. We observe that as the sample size increases the bias decreases and
is small, that the empirical and model-based standard errors tend to agree reasonably well and
that the coverage is close to the nominal 0.95-level. The performance improves with larger sample
sizes.

4.2. Time-dependent coefficient
We next study the properties of the estimator for the time-dependent coefficient in model (2).
We consider a wide range of functional forms, including β.t/ = 0:4t + 0:5, β.t/ = sin.2πt/ and
β.t/= t1=2. The responses were generated from the model

Y.t/=0:5+X.t/β.t/+ ".t/: .10/
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Table 1. Simulation results with time invariant coefficient for the linear and logistic models

n BD Results for linear regression model Results for logistic regression model

Bias RB SD SE CP (%) Bias RB SD SE CP (%)

100 n−0:5 −0.056 −0.038 0.119 0.107 88 −0.069 −0.046 0.210 0.204 92
n−0:6 −0.036 −0.024 0.125 0.111 90 −0.023 −0.015 0.255 0.241 92
n−0:8 −0.014 −0.009 0.146 0.130 91 0.056 0.037 0.387 0.355 94
n−0:9 −0.010 −0.007 0.163 0.146 91 0.110 0.073 0.494 0.445 94
auto −0.005 −0.003 0.159 0.141 90 0.083 0.055 0.457 0.396 92

400 n−0:5 −0.027 −0.018 0.063 0.061 92 −0.044 −0.030 0.133 0.132 94
n−0:6 −0.016 −0.011 0.070 0.068 92 −0.013 −0.009 0.174 0.168 94
n−0:8 −0.004 −0.003 0.101 0.096 92 0.043 0.029 0.308 0.292 94
n−0:9 −0.004 −0.003 0.130 0.120 92 0.109 0.073 0.457 0.398 94
auto −0.002 −0.001 0.117 0.106 92 0.058 0.039 0.360 0.331 94

900 n−0:5 −0.024 −0.016 0.047 0.044 91 −0.029 −0.020 0.092 0.104 96
n−0:6 −0.011 −0.007 0.053 0.052 94 −0.007 −0.005 0.123 0.139 97
n−0:8 −0.001 −0.001 0.089 0.084 92 0.035 0.024 0.278 0.269 94
n−0:9 −0.003 −0.002 0.116 0.112 93 0.090 0.060 0.389 0.386 96
auto 0.006 0.004 0.096 0.096 95 0.055 0.037 0.361 0.308 92

The simulation set-up is identical to that in Section 4.1, except that we increase the Poisson
intensity to 10. We employ the same bandwidth for the response and the covariate observation
times. In addition to a fixed bandwidth, we also adopt a data-adaptive bandwidth selection
procedure as described in Section 3.

The results (Table 2) are similar to those for the time-independent coefficient. For all functional
forms of β.t/, as the sample size increases, the bias is well controlled, the empirical and model-
based standard errors agree reasonably well and the empirical coverage probability is close to
the nominal 0.95-level. The performance tends to improve as the sample size increases. The
empirical results appear to support the .nh1h2/1=2 rate of convergence in theorem 2, with the
empirical standard errors diminishing roughly proportionally to this rate.

Similar results were obtained for a time-dependent logistic regression and have been omitted.

4.3. Comparison with last value carried forward method
In longitudinal studies, a naive approach to analysing asynchronous data is the last value carried
forward method. If data at a certain time point are missing, then the observation at the most
recent time point in the past is used in an analysis for synchronous data. It is well known that
this method is theoretically biased. However, in practice, it is often employed, owing to its
conceptual simplicity and ease of implementation. In this subsection, we study its performance
in simulation studies under the time-independent coefficient model (1).

The simulation set-up is the same as in Section 4.1. For the last value carried forward proce-
dure, in applying generalized estimating equations for synchronous data (Diggle et al., 2002), for
a response observed at time tij, the covariate at time tij was taken to be the covariate observed
at time s=max.x� tij, x∈{si1, : : : , simi}/. This corresponds to the most recent observation time
relative to the response. For a response, if no covariate is observed before the response’s obser-
vation time, then the observed response is omitted from the analysis.

Table 3 summarizes the results based on linear and logistic link functions when β1 =1:5. The
results for other choices of β1 are very similar and we omit the details. The bias is substantial and
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Table 2. Simulation results with time-dependent coefficient for linear regression

Model t Results for n=400 Results for n=900

BD RB SD SE CP (%) RB SD SE CP (%)

β.t/=0:4t +0:5 0.1 n−1=2 −0.011 0.113 0.109 92 0.006 0.101 0.091 92
auto −0.004 0.105 0.111 95 −0.047 0.086 0.090 96

0.3 n−1=2 −0.023 0.126 0.112 95 −0.004 0.095 0.094 94
auto 0.009 0.114 0.103 96 −0.024 0.084 0.092 95

β.t/=√
t 0.1 n−1=2 0.006 0.103 0.108 92 −0.025 0.084 0.094 96

auto 0.003 0.105 0.111 95 −0.072 0.086 0.090 98
0.3 n−1=2 −0.013 0.120 0.111 92 −0.005 0.112 0.096 95

auto 0.011 0.114 0.103 96 −0.025 0.084 0.092 95
β.t/= sin.2πt/ 0.1 n−1=2 −0.006 0.107 0.107 95 −0.006 0.114 0.094 91

auto −0.024 0.108 0.111 95 −0.024 0.096 0.091 95
0.3 n−1=2 −0.016 0.115 0.125 92 −0.009 0.092 0.106 98

auto −0.012 0.120 0.101 96 −0.021 0.090 0.090 96

Table 3. Summary statistics by using the last value carried forward approach

n Results for linear regression model Results for logistic regression model

Bias RB SD SE CP (%) Bias RB SD SE CP (%)

100 −0.122 −0.081 0.094 0.091 73 −0.199 −0.133 0.113 0.174 78
400 −0.123 −0.082 0.046 0.047 24 −0.206 −0.137 0.054 0.087 33
900 −0.123 −0.082 0.032 0.031 3 −0.208 −0.138 0.032 0.058 0

does not attenuate as the sample size increases. Because of decreasing variance, as the sample size
increases, the coverage probability deteriorates. This is especially true for the logistic regression
which has 0 coverage probability when the sample size n=900.

5. Application to human immunodeficiency virus data

We now illustrate the proposed inferential procedures for models (1) and (2) with a comparison
with the last value carried forward approach on data from the HIV study that was described in
Section 1. A total of 190 HIV patients were followed from July 1997 to September 2002. Details
of the study design, methods and medical implications are given in Wohl et al. (2005). During
this study, all patients were scheduled to have their measurements taken during semiannual
visits, with HIV viral load and CD4 cell counts obtained separately at different laboratories.
Because many patients missed visits and the HIV infection occurred randomly during the study,
there are unequal numbers of repeated measurements on viral load and CD4 cell count and
there are different measurement times for the two variables. These data are sparse and purely
asynchronous.

In our analysis, we took the CD4 cell counts as the covariate and HIV viral load as the
response. Both CD4 cell count and HIV viral load are continuous variables with skewed dis-
tribution. As is customary, we log-transformed these variables before the analysis. Since the
measurement timescale is not in Unif.0, 1/, we use the interquantile range to do adjustment. We
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Table 4. Summary statistics for β̂1 based on model (11)

Parameter Results for the following values of h(n−γ):

289(n−0:3) 101(n−0:5) 35(n−0:7) 134(auto) lvcf

β̂1 −1.182 −1.130 −1.074 −1.178 0.003
SE.β̂1/ 0.685 0.832 1.143 0.816 1.806
z-value −1.727 −1.359 −0.940 −1.444 0.0001

first fit model (1) with bandwidths h=2.Q3 −Q1/n−γ , where Q3 is the 0.75-quantile and Q1 is
the 0.25-quantile of the pooled sample of measurement times for the covariate and response, n

is the number of patients and γ=0:3, 0:5, 0:7. The time-independent coefficient model is

HIV.t/=β0 +β1 CD4.t/+ ".t/: .11/

Coefficient estimates were obtained by the estimating equation (3) based on different bandwidths
and data-driven bandwidth selection procedure, auto. For comparison, we also use the last value
carried forward approach, lvcf, for coefficient estimation. The resulting estimates and standard
errors are given in Table 4.

From Table 4, using the estimates from equation (3), we can clearly see the negative relationship
between CD4 cell counts and HIV viral load, which has been verified in earlier medical studies.
For different choices of bandwidth, the point estimate does not change much, but the variance
decreases as the bandwidth increases, as expected. Overall, on the basis of these analyses, there
appears to be at least some evidence that CD4 cell count and HIV viral load are associated. In
contrast, the last value carried forward approach suggests a very weak positive association, in
a direction which is opposite to that observed in previous studies and in the current analysis
using estimating equation (3).

To investigate whether the relationship between CD4 cell counts and HIV viral load varies
over time, we fit the varying-coefficient model

HIV.t/=β0 +β1.t/CD4.t/+ ".t/: .12/

In Fig. 2, we depict the coefficient estimates and 95% confidence intervals based on automatic
bandwidth selection. From the plot, we see that the negative association is relatively constant
over time and comparable in magnitude with that obtained under model (11). The pointwise
intervals cover 0 at all time points. The results seem to support the use of a simpler model based
on an assumption of time-independent regression parameters.

To check conditions 1 and 1′ on the observation intensity, one may construct plots of the
observation times. For condition 1, a histogram (which has been omitted) of the differences
between Tij and the closest Sik was roughly normal and centred near 0, suggesting that the
assumption holds in this data set. For condition 1′, we plotted Tij versus Sik (which has been
omitted) and found that, for time points between 400 and 1400, there was sufficient information
on the diagonal where s= t to permit estimation of β.t/:

6. Concluding remarks

In this paper, we proposed kernel-weighted estimating equations for generalized linear models



768 H. Cao, D. Zeng and J. P. Fine

400 600 800 1000 1200 1400

−
6

−
4

−
2

4
2

0

Days

B
et

a(
t)

Fig. 2. Trajectory of time varying coefficient estimation with a data-adaptive bandwidth based on model
(12): hD102 days

with asynchronous longitudinal data. The methods include estimators for models with either
time invariant coefficientβ or time-dependent coefficientβ.t/. The procedures were developed by
extending the univariate counting process framework for the observation process for synchron-
ous data to a bivariate counting process set-up that is appropriate for asynchronous data. The
resulting theory demonstrates that the rates of convergence that are achieved with asynchronous
data are generally slower than those achieved with synchronous data and that, even under the
time-independent model (1), parametric rates of convergence are not achievable.

To borrow information from nearby points, we require the covariance function of X.t/ to be
twice continuously differentiable for t = s: These assumptions are sufficient for our theoretical
arguments and are similar to those required for synchronous data for estimation of β.t/, where
at least some smoothness of X.t/ is needed. One may relax the continuous differentiability
assumption such that the covariance function of X.t/ is continuously differentiable from either
the left-hand or right-hand side. This relaxation allows a more general class of X.t/, including
processes with independent increments, such as Poisson processes and Brownian motion. The
trade-off is that the resulting kernel-weighted estimators will have an asymptotic bias which
is of the order h instead of h2 as stated in theorem 1, and the resulting convergence rates and
optimal bandwidths may differ. The theoretical justification for these results requires non-trivial
modifications of the proofs in this paper and are left for further research.

Global approaches like functional data analysis (Yao et al., 2005; Sentürk and Muller, 2010)
or basis approximations (Zhou et al., 2008) for synchronized data provide added structure
for incorporating correlation between observations in the estimation procedure. The extension
to asynchronous data does not appear to have been studied in the literature. Given the slow
rates of convergence for the local method, the extent to which global methods will improve
efficiency is unclear. Additional assumptions may be required to achieve such gains and may
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be more restrictive than the minimal set of conditions that are specified in theorems 1 and 2. A
deeper investigation of these issues is clearly warranted but is beyond the scope of the current
paper.

In this paper, we did not consider the partially time-dependent model, in which some coef-
ficients are time invariant and some coefficients are time dependent. As in earlier work on this
model with synchronous data, a two-step procedure may be useful for estimation. This merits
further investigation.

The asymptotic theory for β̂.t/ under model (2) in Section 3 is pointwise. The construction
of simultaneous confidence intervals and hypothesis tests for the time-dependent coefficients
would be useful in applications, like the HIV study. This requires a careful theoretical study of
the uniform convergence properties of the estimator like in Zhou and Wu (2010). Future work
is planned.
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Appendix A

In this appendix, we provide details on the proofs of theorem 1 and theorem 2. Our main tools are empirical
processes and central limit theorems.

A.1. Proof of theorem 1
The key idea is to establish the relationship

sup
|β−β0|<M.nh/−1=2

|.nh/1=2 Un.β/− .nh/1=2[Un.β0/−E{Un.β0/}]− .nh/1=2 A.β0/.β−β0/|

=Cn1=2h5=2 +op.n1=2h5=2/+op{1+ .nh/1=2|β−β0|}, .13/

where A.β0/ is given in theorem 1 and

C =
∫

z

z2 K.z/

[
2−1

∫
s

@λ2.x, s/

@x2

∣∣∣∣
x=s

{Fβ0 .s, 0/−Fβ.s, 0/}ds

+
∫

s

{
@λ.x, s/

@x

∣∣∣∣
x=s

@Fβ0 .s, y/

@y

∣∣∣∣
y=0

+2−1 λ.s, s/
@F 2

β0
.s, y/

@y2

∣∣∣∣
y=0

}
ds

]
dz,

where Fβ.s, y/=E[X.s/g{X.s+y/Tβ}]. To obtain result (13), first, using Pn and P to denote the empirical
measure and true probability measure respectively, we obtain

.nh/1=2 Un.β/=.nh/1=2.Pn −P/

(∫ ∫
Kh.t − s/X.s/[Y.t/−g{X.s/Tβ}]dN.t, s/

)

+ .nh/1=2 E

(∫ ∫
Kh.t − s/X.s/[Y.t/−g{X.s/Tβ}]dN.t, s/

)

= I+ II .14/

For the second term on the right-hand side of equation (14), we have

II= .nh/1=2
∫ ∫

Kh.t − s/.E[X.s/g{X.t/Tβ0}]−E[X.s/g{X.s/Tβ}]/λ.t, s/dt ds
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= .nh/1=2
∫ ∫

K.z/.E[X.s/g{X.s+hz/Tβ0}]−E[X.s/g{X.s/Tβ}]/λ.s+hz, s/dsdz:

Recall that Fβ0 .s, hz/=E[X.s/g{X.s+hz/Tβ0}]. Using condition 3 and after the Taylor series expansion
of Fβ0 .s, hz/, since

∫
zK.z/dz=0 and

∫
K.z/dz=1, we obtain

II= .nh/1=2
∫

s

.E[X.s/g{X.s/Tβ0}]−E[X.s/g{X.s/Tβ}]/λ.s, s/ds

+
(∫

z

z2K.z/

[
2−1

∫
s

@λ2.x, s/

@x2

∣∣∣∣
x=s

{Fβ0 .s, 0/−Fβ.s, 0/}ds

+
∫

s

{
@λ.x, s/

@x

∣∣∣∣
x=s

@Fβ0 .s, y/

@y

∣∣∣∣
y=0

+2−1 λ.s, s/
@F 2

β0
.s, y/

@y2

∣∣∣∣
y=0

}
ds

]
dz

)
n1=2h5=2 +op.n1=2h5=2/: .15/

We then extract the main terms

II=−.nh/1=2
∫

s

E[X.s/g′{X.s/Tβ0}X.s/T]λ.s, s/ds.β−β0/+Cn1=2h5=2 +op.n1=2h5=2/

+ .nh/1=2 o.|β−β0|/
≡−.nh/1=2 A.β0/.β−β0/+Cn1=2h5=2 +op.n1=2h5=2/+ .nh/1=2 o.|β−β0|/: .16/

Moreover, if γT A.β0/γ= 0, then γT X.s/ = 0 almost surely for s ∈G, so γ= 0 from condition 2. Thus,
A.β0/ is a positive definite matrix, and thus non-singular. For the first term on the right-hand side of
equation (14), we consider the class of functions{∫ ∫

h1=2 Kh.t − s/X.s/[Y.t/−g{X.s/Tβ}]dN.t, s/ : |β−β0|<"

}

for a given constant ". Note that the functions in this class are Lipschitz continuous in β and the Lipschitz
constant is uniformly bounded by

M1 = sup
|β−β0|<"

∫ ∫
h1=2Kh.t − s/‖X.s/‖2‖g′{X.s/Tβ}‖dN.t, s/:

Since, by condition 3,

M2
1 � .‖β0‖+ "/2

∫ ∫
hKh.t − s/2‖X.s/‖4 q{‖X.s/‖}2 dN.t, s/N.τ , τ /,

we have

E[M2
1 |N.·, ·/]� .‖β0‖+ "/2 N.τ , τ /

∫ ∫
hKh.t − s/2 E[‖X.s/‖4 q{‖X.s/‖}2]dN.t, s/

�M2N.τ , τ /

∫ ∫
hKh.t − s/2 dN.t, s/

for some constant M2. Conditionally on N.τ , τ /, E{∫ ∫
hKh.t − s/2 dN.t, s/|N.τ , τ /} can be easily verified

to be finite. Therefore, E.M2
1 / is finite. Therefore, this class is a P-Donsker class by the Jain–Marcus

theorem (van der Vaart and Wellner, 1996). As the result, we obtain that the first term on the right-hand
side of equation (14) for |β−β0|<M.nh/−1=2 is equal to

.nh/1=2.Pn −P/

(∫ ∫
Kh.t − s/X.s/[Y.t/−g{X.s/Tβ0}]dN.t, s/

)
+op.1/

= .nh/1=2[Un.β0/−E {Un.β0/}]+op.1/: .17/

Combining equations (15) and (17) and by condition 4, we obtain result (13).
Consequently,

.nh/1=2 A.β0/.β̂−β0/+Cn1=2h5=2 +op.n1=2h5=2/+op{1+ .nh/1=2|β̂−β0|}= .nh/1=2[Un.β0/−E {Un.β0/}]:
.18/
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In contrast, following a similar argument to that before, we can calculate

Σ=var
(∫ ∫

h1=2 Kh.t − s/X.s/[Y.t/−g{X.s/Tβ0}]dN.t, s/

)

as follows:

Σ=hE

[
var

{∫ ∫
Kh.t − s/X.s/Y.t/dN.t, s/

∣∣∣∣X.s/, s∈ [0, τ ]; N.t, s/, .t, s/∈ [0, τ ]⊗2

}]

+hvar
(∫ ∫

Kh.t − s/X.s/[g{X.t/Tβ0}−g{X.s/Tβ0}]dN.t, s/

)

=hE

(∫ ∫ ∫ ∫
Kh.t1 − s1/Kh.t2 − s2/X.s1/X.s2/

T[r{t1, t2, X.t1/, X.t2/

}

+g{X.t1/
Tβ0}g{X.t2/

Tβ0}]dN.t1, s1/dN.t2, s2/

)
−hE

([∫ ∫
Kh.t − s/X.s/g{X.t/Tβ0}dN.t, s/

]2 )

+hE

(∫ ∫ ∫ ∫
Kh.t1 − s1/Kh.t2 − s2/X.s1/X.s2/

T[g{X.t1/
Tβ0}−g{X.s1/

Tβ0}]

× [g{X.t2/
Tβ0}−g{X.s2/

Tβ0}]dN.t1, s1/dN.t2, s2/

)

−h

{∫ ∫
Kh.t − s/E.X.s/[g{X.t/Tβ0}−g{X.s/Tβ0}]/λ.t, s/dt ds

}2

= I1 − I2 + I3 − I4:

Using conditioning arguments, we obtain

I1 =h

∫
t1 �=t2

∫
s1 �=s2

Kh.t1 − s1/Kh.t2 − s2/E.X.s1/X.s2/
T[r{t1, t2, X.t1/, X.t2/}

+g{X.t1/
Tβ0}g{X.t2/

Tβ0}]/f.t1, t2, s1, s2/λ.t2, s2/dt1 ds1 dt2 ds2

+h

∫
t1

∫
s1 �=s2

Kh.t1 − s1/Kh.t1 − s2/E.X.s1/X.s2/
T[σ2{t1, X.t1/}

+g{X.t1/
Tβ0}2]/f.t1, t1, s1, s2/λ.t1, s2/dt1 ds1 ds2

+h

∫
t1 �=t2

∫
s1

Kh.t1 − s1/Kh.t2 − s1/E.X.s1/X.s1/
T[r{t1, t2, X.t1/, X.t2/}

+g{X.t1/
Tβ0}g{X.t2/

Tβ0}]/f.t1, t2, s1, s1/λ.t2, s1/dt1 ds1 dt2

+h

∫
t1

∫
s1

Kh.t1 − s1/
2 E.X.s1/X.s1/

T[σ2{t1, X.t1/}+g{X.t1/
Tβ0}2]/λ.t1, s1/dt1 ds1:

After a change of variables and incorporating conditions 3 and 4, the first three terms in term I are all of
order O.h/ and the last term equals

∫
K.z/2 dz

∫
E.X.s/X.s/T[σ2{s, X.s/}+g{X.s/Tβ0}2]/λ.s, s/ds:

So we have

I1 =
∫

K.z/2 dz

∫
E.X.s/X.s/T[σ2{s, X.s/}+g{X.s/Tβ0}2]/λ.s, s/ds+O.h/: .19/

Similarly, it can be shown that

I2 =
∫

K.z/2 dz

∫
E[X.s/X.s/Tg{X.s/Tβ0}2]λ.s, s/ds+O.h/ .20/
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and I3 − I4 =O.h2/. Therefore, we have

Σ=
∫

K.z/2 dz

∫
E{X.s/X.s/T}σ{s, X.s/}2λ.s, s/ds: .21/

To prove the asymptotic normality, we verify the Lyapunov condition. Define

ψi = .nh/1=2n−1
∫ ∫

Kh.t − s/Xi.s/[Yi.t/−g{Xi.s/
Tβ0}]dNi.t, s/:

Similarly to the calculation of Σ,
n∑

i=1
E{|ψi −E.ψi/|3}=nO{.nh/3=2n−3h−2}=O{.nh/−1=2}:

Therefore,

.nh/1=2[Un.β0/−E{Un.β0/}]→
d

N.0, Σ/: .22/

Combining with equation (18), we finish the proof of theorem 1.

A.2. Proof of corollary 2
We next show the consistency of the variance estimate. To begin with, we have

@Un.β/

@β
=n−1

n∑
i=1

∫ ∫
Kn.t − s/Xi.s/[−g′{Xi.s/

Tβ}Xi.s/
T]dNi.t, s/: .23/

Using a similar argument to that to obtain equation (17), we show that{∫ ∫
Kn.t − s/Xi.s/[−g′{Xi.s/

Tβ}Xi.s/
T]dNi.t, s/ : |β−β0|<"

}

is a P-Glivenko–Cantelli class. Therefore,

sup
|β−β0|<"

∣∣∣∣@Un.β/

@β

∣∣∣∣
β=β̂

−E

{
@Un.β/

@β

∣∣∣∣
β=β̂

}∣∣∣∣→0

in probability. Since β̂ is consistent for β0, by the continuous mapping theorem, @Un.β/=@β|β=β̂ converges
in probability to −A.β0/: Similarly, let

Σ̃.β/= 1
n2

n∑
i=1

(∫ ∫
Kh.t − s/Xi.s/[Yi.t/−g{Xi.s/

Tβ}]
)⊗2

;

then sup|β−β0|<" |Σ̃.β/−E{Σ̃.β/}|→0 in probability. However,

E{Σ̃.β/}= 1
n

E

(∫ ∫
Kh.t − s/X.s/[Y.t/−g{X.s/Tβ}]

)⊗2

:

After a change of variables, and by condition 3,

E{Σ̃.β/}= 1
nh

∫ ∫
{K.z/2 E.X.s/[σ{s+hz, X.s+hz/}2 +g{X.s+hz/Tβ}2

−2g{X.s+hz/Tβ}g{X.s/Tβ}+g{X.s/Tβ}2]X.s/T/λ.s, s/+o.h/}dsdz

= 1
nh

{∫ ∫
K.z/2 E[X.s/σ{s, X.s/}2 X.s/T]λ.s, s/dzds+o.h/

}
:

Therefore,

.nh/Σ̂
p→Σ as nh→∞:

The consistency of the variance estimate follows.
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A.3. Proof of theorem 2
Denote G.s1, s2/=E[X.t + s1/g{X.t + s2/

Tβ0.t + s2/}−X.t + s1/g{X.t + s1/
T β.t/}]: We first establish the

relationship

sup
|β.t/−β0.t/|<M.nh1h2/−1=2

|.nh1h2/
1=2 Un{β.t/}− .nh1h2/

1=2 B{β0.t/, t}{β.t/−β0.t/}

− .nh1h2/
1=2.Un{β0.t/}−E[Un{β0.t/}]/|= .nh1h2/

1=2{D1.t/h
2
1 +D2.t/h1h2 +D3.t/h

2
2}

+op{.nh1h2/
1=2.h2

1 +h1h2 +h2
2/}

+op{1+ .nh1h2/
1=2|β.t/−β0.t/|}, .24/

where B{β0.t/, t} is defined in theorem 2,

D1.t/=
∫ ∫

K.z1, z2/

{
@G.x, y/

@x

∣∣∣∣
x=0
y=0

@λ.x, y/

@x

∣∣∣∣
x=t
y=t

+2−1 G.0, 0/
@λ2.x, y/

@x2

∣∣∣∣
x=t
y=t

+2−1 λ.t, t/
@G2.x, y/

@x2

∣∣∣∣
x=0
y=0

}
z2

1 dz1 dz2,

D2.t/=
∫ ∫

K.z1, z2/

{
@G.x, y/

@x

∣∣∣∣
x=0
y=0

@λ.x, y/

@y

∣∣∣∣
x=t
y=t

+ @G.x, y/

@y

∣∣∣∣
x=0
y=0

@λ.x, y/

@x

∣∣∣∣
x=t
y=t

+G.0, 0/
@λ2.x, y/

@x@y

∣∣∣∣
x=t
y=t

+λ.t, t/
@G2.x, y/

@x@y

∣∣∣∣
x=0
y=0

}
z1z2 dz1 dz2,

and

D3.t/=
∫ ∫

K.z1, z2/

{
@G.x, y/

@y

∣∣∣∣
x=0
y=0

@λ.x, y/

@y

∣∣∣∣
x=t
y=t

+2−1 G.0, 0/
@λ2.x, y/

@y2

∣∣∣∣
x=t
y=t

+2−1 λ.t, t/
@G2.x, y/

@y2

∣∣∣∣
x=0
y=0

}
z2

2 dz1 dz2:

To obtain equation (24), first, using Pn and P to denote the empirical measure and true probability meas-
ure respectively, we have

.nh1h2/
1=2 Un{β.t/}= .nh1h2/

1=2.Pn −P/

(∫ ∫
Kh1,h2 .t1 − t, t2 − t/X.t1/[Y.t2/−g{X.t1/

T β.t/}]dN.t1, t2/

)

+ .nh1h2/
1=2 E

(∫ ∫
Kh1,h2 .t1 − t, t2 − t/X.t1/[Y.t2/−g{X.t1/

Tβ.t/}]dN.t1, t2/

)

= I+ II: .25/

For the second term on the right-hand side of equation (25), we have

II= .nh1h2/
1=2

∫ ∫
Kh1,h2 .t1 − t, t2 − t/E.X.t1/[g{X.t2/

Tβ0.t2/}−g{X.t1/
Tβ.t/}]/λ.t1, t2/dt1 dt2:

Recall that G.s1, s2/ = E[X.t + s1/g{X.t + s2/
Tβ0.t + s2/}− X.t + s1/g{X.t + s1/

T β.t/}] and we can do a
Taylor series expansion of G around .0, 0/: Taking into account conditions 3′ and 4′, and after a change
of variables, we obtain

II= .nh1h2/
1=2

∫ ∫
K.s1, s2/E.X.t/[g{X.t/T β0.t/}−g{X.t/T β.t/}]/λ.t, t/ds1 ds2

+ .nh1h2/
1=2{D1.t/h

2
1 +D2.t/h1h2 +D3.t/h

2
2}+op{.nh1h2/

1=2.h2
1 +h1h2 +h2

2/}
≡−.nh1h2/

1=2 B{β0.t/, t}{β.t/−β0.t/}+ .nh1h2/
1=2{D1.t/h

2
1 +D2.t/h1h2 +D3.t/h

2
2}

+op{.nh1h2/
1=2|β.t/−β0.t/|}+op{.nh1h2/

1=2.h2
1 +h1h2 +h2

2/}, .26/
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where we did another Taylor series expansion of function g{X.t/T β.t/} at X.t/T β0.t/ for any fixed t.
For any fixed t, if γT B{β0.t/, t}γ=0, then γT X.t/=0, so γ=0 from condition 2′. Thus B{β0.t/, t} is a

non-singular matrix. For term I, we consider the class of functions{
.h1h2/

1=2
∫ ∫

Kh1,h2 .t1 − t, t2 − t/X.t1/[Y.t2/−g{X.t1/
Tβ.t/}]dN.t1, t2/ : |β.t/−β0.t/|<"

}

for a given constant ". Similarly to the proof in theorem 1, we can show that this is a P-Donsker class
for any fixed time point t by the Jain–Marcus theorem. We therefore obtain that the first term on the
right-hand side of equation (25) for |β.t/−β0.t/|<M.nh1h2/

−1=2 is equal to

.nh1h2/
1=2.Pn −P/

(∫ ∫
Kh1,h2 .t1 − t, t2 − t/X.t1/[Y.t2/−g{X.t1/

Tβ0.t/}]
)

dN.t1, t2/+op.1/

= .nh1h2/
1=2.Un{β0.t/}−E[Un{β0.t/}]/+op.1/: .27/

Combining equations (25), (26) and (27) and, by condition 4′, we obtain equation (24). Therefore,

.nh1h2/
1=2 B{β0.t/, t}{β̂.t/−β0.t/}+ .nh1h2/

1=2{D1.t/h
2
1 +D2.t/h1h2 +D3.t/h

2
2}

+op{.nh1h2/
1=2.h2

1 +h1h2 +h2
2/}+op{1+ .nh1h2/

1=2|β̂.t/−β0.t/|}
= .nh1h2/

1=2.Un{β0.t/}−E[Un{β0.t/}]/:

Now we show that .nh1h2/
1=2 Un {β0.t/} follows the central limit theorem. In other words, we wish to derive

the distribution of

.nh1h2/
1=2

{
n−1

n∑
i=1

∫ ∫
Kh1,h2 .t1 − t, t2 − t/Xi.t1/[Yi.t2/−g{Xi.t1/

Tβ0.t/}]dNi.t1, t2/

−n−1
n∑

i=1
E

(∫ ∫
.nh1h2/

1=2Kh1,h2 .t1 − t, t2 − t/Xi.t1/[Yi.t2/−g{Xi.t1/
T β0.t/}]dNi.t1, t2/

)}
:

.28/

For convenience, we denote the above sum as n1=2n−1Σn
i=1Wi.t/, where

Wi.t/=
∫ ∫

.h1h2/
1=2 Kh1, h2 .t1 − t, t2 − t/Xi.t1/[Yi.t2/−g{Xi.t1/

Tβ0.t/}]dNi.t1, t2/

−E

(∫ ∫
.h1h2/

1=2 Kh1,h2 .t1 − t, t2 − t/Xi.t1/[Yi.t2/−g{Xi.t1/
T β0.t/}]dNi.t1, t2/

)
: .29/

Since this is an independent and identically distributed sum, we need to calculate only ΣÅ.t/=var{W1.t/}.
We have

var{W1.t/}=E[var{W1.t/|X.s/, s∈ [0, τ ]; N.t, s/, .t, s/∈ [0, τ ]⊗2}]
+var[E{W1.t/|X.s/, s∈ [0, τ ]; N.t, s/, .t, s/∈ [0, τ ]⊗2}]:

Similarly to calculation of the order of Σ, we obtain

E[var{W1.t/|X.s/, s∈ [0, τ ]; N.t, s/, .t, s/∈ [0, τ ]⊗2}]

=E

[
var

{∫ ∫
.h1h2/

1=2 Kh1,h2 .t1 − t, t2 − t/X.t1/Y.t2/dN.t1, t2/

∣∣∣∣X.s/, s∈ [0, τ ]; N.t, s/∈ [0, τ ]⊗2

}]

=
∫ ∫ ∫ ∫

h1h2 Kh1,h2 .t1 − t, t2 − t/Kh1,h2 .s1 − t, s2 − t/E.X.t1/X.s1/
T[r{s2, t2, X.s2/, X.t2/}

+g{X.s2/
Tβ0}g{X.t2/

Tβ0}]/E {dN.t1, t2/dN.s1, s2/}−
∫ ∫ ∫ ∫

h1h2 Kh1,h2 .t1 − t, t2 − t/

×Kh1,h2 .s1 − t, s2 − t/E[X.t1/X.s1/
T g{X.t2/

Tβ0.t/}g{X.s2/
Tβ0.t/}]E{dN.t1, t2/dN.s1, s2/}
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=
∫ ∫

K.z1, z2/
2 dz1 dz2 E[X.t/X.t/Tσ{t, X.t/}2]λ.t, t/+O{h1h2.h1 +h2/},

by conditions 4′ and 5′ and a change of variables. Similarly to the proof of theorem 1, we have

var[E{W1.t/|X.s/, s∈ [0, τ ], Ni.t, s/, .t, s/∈ [0, τ ]⊗2}]

=var
(∫ ∫

.h1h2/
1=2Kh1,h2 .t1 − t, t2 − t/X.t1/[g{X.t2/

Tβ0.t2/}−g{X.t1/
Tβ0.t/}]dN.t1, t2/

)

=E

∫ ∫
h1h2 Kh1,h2 .t1 − t, t2 − t/2X.t1/X.t1/

T[g{X.t2/
Tβ0.t2/}−g{X.t1/

Tβ0.t/}]2 dN.t1, t2/

+O.h1h2/−
{∫ ∫

.h1h2/
1=2 Kh1,h2 .t1 − t, t2 − t/E.X.t1/[g{X.t2/

T β0.t2/}−g{X.t1/
T β0.t/}]/

×λ.t1, t2/dt1 dt2

}2

=O.h2
1 +h1h2 +h2

2/:

Therefore, we have

ΣÅ.t/=
∫ ∫

K.z1, z2/
2 dz1 dz2 E[X.t/X.t/Tσ{t, X.t/}2]λ.t, t/: .30/

Similarly, we have

n∑
i=1

E{|Wi −E .Wi/ |3}=nO{.nh1h2/
3=2n−3.h1h2/

−2}=O{.nh1h2/
−1=2},

which verifies that the Lyapunov condition holds.
Thus

.nh1h2/
1=2.Un{β0.t/}−E[Un{β0.t/}]/→

d
N{0, ΣÅ.t/}: .31/

Combining with equation (24), the conclusion of theorem 2 holds.

A.4. Proof of corollary 4
The consistency of the variance estimate can similarly be shown as in the proof of corollary 2 and we omit
the details.
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