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In clinical studies, it is often of interest to see the diagnostic agreement among clinicians on certain
symptoms. Previous work has focused on the agreement between two clinicians under two different
conditions or the agreement among multiple clinicians under one condition. Few have discussed the
agreement study with a design where multiple clinicians examine the same group of patients under
two different conditions. In this paper, we use the intraclass kappa statistic for assessing nominal scale
agreement with such a design. We derive an explicit variance formula for the difference of correlated
kappa statistics and conduct hypothesis testing for the equality of kappa statistics. Simulation studies
show that the method performs well with realistic sample sizes and may be superior to a method that
did not take into account the measurement dependence structure. The practical utility of the method is
illustrated on data from an eosinophilic esophagitis (EoE) study.
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� Additional supporting information including source code to reproduce the results
may be found in the online version of this article at the publisher’s web-site

1 Introduction

In medical research, analysis of interobserver agreement often provides a useful means of assessing the
reliability of a rating system. High measures of agreement would indicate consensus in the diagnosis
and reproducibility of the testing measures of interest. The kappa coefficient (κ) is a common index
in medical and health research for measuring the agreement of binary (Cohen, 1960) and nominal
(Fleiss, 1971) outcomes among raters. Kappa is favored because it corrects the percentage of agreement
between raters by taking into account the proportion of agreement expected by chance.

Many variants and generalizations of kappa have been proposed in the literature, such as stratified
kappa (Barlow et al., 1991) and weighted kappa (Cohen, 1968). Kappa can be estimated from multiple
(Donner and Klar, 1996), stratified (Graham, 1995), and unbalanced samples (Lipsitz et al., 1994).
Kappa may also be modeled with covariate effects (Klar et al., 2000). Davies and Fleiss (1982)
developed a large sample theory of the kappa statistic for multiple raters. However, the variance is
calculated under the assumption of no rater agreement (κ = 0), which limits the practical utility of
the method. Kraemer et al. (2002) did an extensive overview of the kappa statistic. Other related work
can be found in Gwet (2008). Only recently has attention been given to analysis of dependent kappa.
Such analysis may arise when the comparison of interest is naturally conducted using the same group
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of subjects. Provided it is feasible to do so, it is clear that using the same sample of subjects rather
than two different samples should lead to a more efficient comparison. Most prior work has evaluated
the kappa statistic using different group of subjects, in this work, we evaluate the kappa statistic using
same group of subjects.

Such an important example, which is in fact the main motivation for the present research, is a
reliability study conducted by Peery et al. (2011). This was a prospective study of academic and
community gastroenterologists using two self-administered web-based online assessments. Gastroen-
terologists evaluated endoscopic images twice. First, they evaluated 35 single images obtained with
standard white light endoscopy. Next, they examined 35 paired images (from the same patients, but
in a random order) of the initial white light image and its narrow band imaging (NBI) counterpart,
respectively. The purpose of this study was to determine whether agreement among the gastroenterolo-
gists was improved with the addition of NBI. If so, the conclusion would be that this imaging modality
would have clinical utility. This comparison suggests a test of equality between two dependent kappa
statistics, where each statistic may be regarded as an index of reproducibility.

Early work on correlated kappa began with the resampling approach of McKenzie et al. (1996).
They proposed a resampling technique for comparing correlated kappa that makes minimum distribu-
tional assumptions and does not require large sample approximations. Donner et al. (2000) proposed
modeling the joint distribution of the possible outcomes for comparing dependent kappa under two
conditions with two raters. Generalized estimating equation (GEE) (Liang and Zeger, 1986; Zeger and
Liang, 1986) approaches have been developed for modeling kappa with binary responses (Klar et al.,
2000) and categorical responses (Williamson et al., 2000). Barnhart and Williamson (2002) used a least
squares approach proposed by Koch et al. (1997) to model dependent kappa under two conditions.

In this paper, we propose a large sample theory based comparison of dependent intraclass kappa
statistic with multiple raters and two categories. The method uses the multinomial distribution of the
contingency table. By taking into account the correlation structure of dependent kappa statistics, we
have improved power at the same level of type I error.

The paper is organized as follows. In Section 2, we set up the model and describe our statistical
method. Finite-sample performance of our method is investigated in Section 3. We apply our method
to analyze data from the eosinophilic esophagitis (EoE) study in Section 4. Some concluding remarks
and a discussion are given in Section 5. Proofs of results from Section 2 are given in the Supporting
Information.

2 Statistical method

Suppose that each of N subjects is classified into one of the two categories by each of the same set of
n raters under conditions A and B. Let the random vectors Xa = (X a

i j1, X a
i j2)

T and Xb = (X b
i j1, X b

i j2)
T

represent the resulting classification of the i-th subject (i = 1, . . . , N) by the j-th rater ( j = 1, . . . , n)
under conditions A and B. Thus, each X a

i jc and X b
i jc(c = 1, 2) assumes the value 0 or 1, and

∑2
c=1 X a

i jc =∑2
c=1 X b

i jc = 1 for all i and j. Let nica = ∑n
j=1 X a

i jc denote the number of raters who put the i-th subject
into the c-th category under condition A and nicb = ∑n

j=1 X b
i jc denote the number of raters who put the

i-th subject into the c-th category under condition B. If the probability of putting the i-th subject into
the c-th category is πica under condition A and πicb under condition B, then the vectors nia = (ni1a, ni2a)

and nib = (ni1b, ni2b) have probability density functions

fa(ni1a, ni2a; n, πi1a, πi2a) = n!
ni1a!ni2a!

π
ni1a
i1a π

ni2a
i2a (1)

and

fb(ni1b, ni2b; n, πi1b, πi2b) = n!
ni1b!ni2b!

π
ni1b
i1b π

ni2b
i2b , (2)

respectively.
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Table 1 For i-th subject.

B 1 2 Total

A 1 mi11 mi12 ni1a
2 mi21 mi22 ni2a

ni1b ni2b n

Intraclass kappa statistic introduced by Fleiss (1971) takes the general form

κ = po − pe

1 − pe
, (3)

where po is the observed proportion of agreement and pe is the proportion of agreement expected by
chance. For this study design, p0 and pe can be obtained as follows.

For each subject, there are a total of 1
2 n(n − 1) pairs of classifications. For the i-th subject, the

observed number of pairs that are in agreement is 1
2

∑2
c=1 nica(nica − 1) under condition A and

1
2

∑2
c=1 nicb(nicb − 1) under condition B. The observed proportion of agreement is then

pa
o = 1

Nn(n − 1)

N∑
i=1

2∑
c=1

nica(nica − 1) = 1
Nn(n − 1)

(
N∑

i=1

2∑
c=1

n2
ica − Nn

)
(4)

under condition A, and a similar expression holds for pb
o.

We get pa
e = ∑2

c=1(
1

nN

∑N
i=1 nica)

2, where 1
nN

∑N
i=1 nica is the proportion of all assignments that go to

the c-th category under condition A, and a similar expression holds for pb
e.

Therefore, we can calculate the kappa statistics under conditions A and B with the available data:

κa = 1 − 1 − pa
o

1 − pa
e

and κb = 1 − 1 − pb
o

1 − pb
e
. (5)

Our interest is to test whether agreement improves under condition B compared to condition A
using kappa statistics. We use the difference of the kappa statistics as our test statistic, calculate its
variance, and conduct a hypothesis testing for this purpose. Since the subjects are the same under both
conditions, there is strong correlation between κa and κb. This is exemplified through the relationship
between the vectors nia and nib, as shown in the contingency table (Table 1).

Entry mic1c2
represents the number of raters who put the i-th subject into c1-th category under

condition A and c2-th category under condition B. The joint probability density function for mic1,c2
, i =

1, . . . , N is

g(mic1,c2
; n, θic1c2

) = n!∏2
c1=1

∏2
c2=1 mic1c2

!

2∏
c1=1

2∏
c2=1

θ
mic1c2
ic1c2

, (6)

where θic1c2
is the cell probability of the i-th subject in the c1-th category under condition A and the

c2-th category under condition B, which can be estimated through the proportion θ̂ic1c2
= mic1c2

/n.

Define the marginal probabilities πica = θic1 + θic2 and πicb = θi1c + θi2c for c = 1, 2. Denote Ca =
1/N

∑N
i=1

∑2
c=1 πica(1 − πica),Cb = 1/N

∑N
i=1

∑2
c=1 πicb(1 − πicb),C∗

a = ∑2
c=1 π̄ca(1 − π̄ca), and C∗

b =∑2
c=1 π̄cb(1 − π̄cb), where π̄ca = 1/N

∑N
i=1 πica and π̄cb = 1/N

∑N
i=1 πicb for c = 1, 2.

Next, we present our main result.
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Theorem 2.1. Assuming the raters are i.i.d. and the subjects are independent, there exists a positive
definite � such that,

√
nN

{
(κa − κb) −

(
Ca

C∗
a

− Cb

C∗
b

)}
→ N(0, �), as n → ∞, N → ∞. (7)

Corollary 2.2. The variance in (7) can be written as � = limn→∞,N→∞ V, where

V = 1
C∗4

a

{
4C∗2

a
1
N

N∑
i=1

πi1a(1 − πi1a)(1 − 2πi1a)
2 + 4C2

a (1 − 2π̄1a)
2 1

N

N∑
i=1

πi1a(1 − πi1a) +

− 8C∗
aCa(1 − 2π̄1a)

1
N

N∑
i=1

πi1a(1 − πi1a)(1 − 2πi1a)

}
+

+ 1

C∗4
b

{
4C∗2

b
1
N

N∑
i=1

πi1b(1 − πi1b)(1 − 2πi1b)
2 + 4C2

b (1 − 2π̄1b)
2 1

N

N∑
i=1

πi1b(1 − πi1b) +

− 8C∗
bCb(1 − 2π̄1b)

1
N

N∑
i=1

πi1b(1 − πi1b)(1 − 2πi1b)

}
+

− 1

C∗2
a C∗2

b

{
8C∗

aC∗
b

1
N

N∑
i=1

(1 − 2πi1a)(1 − 2πi1b)[θi11 − πi1aπi1b] +

− 8C∗
aCb(1 − 2π̄1b)

1
N

N∑
i=1

(1 − 2πi1a)[θi11 − πi1aπi1b] +

− 8CaC
∗
b (1 − 2π̄1a)

1
N

N∑
i=1

(1 − 2πi1b)[θi11 − πi1aπi1b] +

+ 8CaCb
1
N

N∑
i=1

(1 − 2π̄1a)(1 − 2π̄1b)[θi11 − πi1aπi1b]

}
+ O

(
1
n

)
.

Remark 2.3. Under the stronger assumption that the marginal probabilities πica = πicb for i =
1, . . . , N and c = 1, 2, Ca = Cb and C∗

a = C∗
b . Theorem 2.1 can be used for testing the equality of

kappa statistics.

Remark 2.4. Theorem 2.1 provides a benchmark for the large sample behavior of the difference
of kappa statistics. A consistent estimate of � can be used for carrying out statistical inference by
plugging in observed proportions for corresponding probabilities. Matlab code for such analysis is
available in the Supporting Information.

Based on this result, we can construct a confidence interval for the difference of the population
kappas. Both the score and Wald statistics can be obtained to test the hypothesis of equality of the
population kappa after plugging in consistent estimates of the cell probabilities.

3 Numerical studies

In this section, we investigate finite-sample properties of the estimator, type I error control, and power
proposed in Section 2 through Monte Carlo simulation.
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3.1 Type I error control

We first study the type I error control and evaluate the accuracy of the proposed variance formula. We
take expected value of the kappa statistic and define the population kappa as

kA = 1 − lim
N→∞

2∑
c=1

1
N

N∑
i=1

πica(1 − πica)

2∑
c=1

π̄ca(1 − π̄ca)

, (8)

under condition A, where π̄ca = 1
N

∑n
i=1 πica and we use the fact that

∑2
c=1 πica = 1. We vary the number

of raters from small (n = 30), moderate (n = 70) to large (n = 200), and the number of subjects from
small (N = 40) to large (N = 120). In order to generate data with population kappa equal to 0.49, from
Table 1, half of the two-by-two table has cell probabilities θi11 = 0.05, θi12 = θi21 = 0.1, θi22 = 0.75 with
πi1a = πi1b = 0.15; and the other half of the two-by-two table has cell probabilities θi11 = 0.75, θi12 =
θi21 = 0.1, θi22 = 0.05 with πi1a = πi1b = 0.85. The population kappa is calculated from (8). For i-th
subject, data in the cell counts of Table 1 are generated from a multinomial distribution with parameters
(n; θi11, θi12, θi21, θi22). We then calculate ni1a = mi11 + mi12, ni1b = mi11 + mi21, and subsequently, the
difference of kappa statistic and its estimated variance �̂ by plugging in consistent estimates of relevant
parameters. z-Value is constructed and we compare its absolute value with 97.5% quantile of standard
normal distribution, which is 1.96. We replicate this 1000 times and calculate how many times rejection
occurs for type I error control. Empirical variance of the kappa difference can be obtained through
Monte Carlo to compare with our proposed estimate. Similar generation is used for other kappa values
in Table 2.

The results are summarized in Table 2. In the table, σ 2
t is the variance calculated from the Monte

Carlo, σ 2
e is the estimated variance using the formula we propose, and σ 2

i is the variance calculated
ignoring the dependence. RBe represents the relative bias of the variance estimate based on the method
we propose and RBi denotes the relative bias of the variance estimate ignoring the dependence.
Rejectione means empirical rejection based on the method we propose and Rejectioni means empirical
rejection ignoring the dependence. We use a two-sided test at significance level 5%.

As we can observe in Table 2, the method ignoring the dependence is overly conservative; on the
other hand, the method we propose controls the type I error at the nominal level when both number
of raters and number of subjects are large. Variance estimates based on our approach have smaller
bias compared to the approach that ignores the dependence completely. When the number of raters
is large enough, the relative bias of the variance estimate is controlled at around 3%. The

√
nN rate

of convergence pattern is very clear and consistent across different scenarios, verifying our theoretical
prediction.

3.2 Power comparison

Next, we compare the empirical powers for different number of raters, number of subjects, and
population kappas. The population kappa is calculated by (8). Suppose half of the two-by-two table has
cell probabilities θi11 = 0.05, θi12 = 0.1, θi21 = 0.11, and θi22 = 0.74, then πi1a = 0.15 and πi1b = 0.16;
the other half of the two-by-two tables has cell probabilities θi11 = 0.74, θi12 = 0.11, θi21 = 0.1, and
θi22 = 0.05 with πi1a = 0.85 and πi1b = 0.84. The population kappas are kA = 0.49 and kB = 0.46,

respectively. Samples are drawn from these two-by-two tables. The procedures are exactly the same as
in type I error control, except that now the population kappas are different. The results are summarized
in Table 3. In Table 3, we can observe that as kappa decreases, the power gets smaller. The power using
our proposed method is better than the method that ignores the dependence, especially when sample
sizes are small. The sample size for the EoE study is relatively small. For moderate sample sizes
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Table 2 Type I errors for testing H0 : kA = kB = k at α = 0.05 (two-sided).

n N k σ 2
t (10−4) σ 2

e (10−4) RBe(%) Rejectione(%) σ 2
i (10−4) RBi(%) Rejectioni(%)

30 40 0.85 4.44 3.84 −13.61 6.70 7.36 65.51 1.16
0.74 7.87 6.78 −13.87 7.18 10.97 39.37 2.12
0.64 8.63 7.43 −13.96 7.26 13.23 53.26 1.78
0.49 13.97 11.53 −17.47 7.52 14.59 4.41 4.54

120 0.85 1.47 1.28 −12.64 6.64 2.45 66.99 1.22
0.74 2.54 2.25 −11.38 6.52 3.65 43.53 2.28
0.64 2.92 2.47 −15.48 7.48 4.40 50.67 1.58
0.49 4.46 3.84 −13.97 7.26 4.85 8.82 4.04

70 40 0.85 1.89 1.81 −4.12 5.36 3.47 83.80 0.78
0.74 3.32 3.17 −4.62 5.52 5.15 55.15 1.30
0.64 3.70 3.44 −6.98 5.66 6.18 66.86 1.06
0.49 5.84 5.31 −9.14 6.46 6.75 15.54 3.72

120 0.85 0.63 0.60 −3.91 5.42 1.15 84.15 0.78
0.74 1.16 1.06 −8.76 5.90 1.72 48.22 1.72
0.64 1.20 1.15 −4.64 5.26 2.06 71.04 1.08
0.49 1.98 1.77 −10.78 6.34 2.25 13.40 3.68

200 40 0.85 0.68 0.66 −2.25 4.96 1.27 87.51 0.56
0.74 1.22 1.16 −5.37 5.26 1.88 53.96 1.38
0.64 1.31 1.25 −4.46 5.54 2.25 71.81 1.04
0.49 1.99 1.92 −3.13 5.54 2.45 23.41 2.82

120 0.85 0.22 0.22 −0.25 5.14 0.42 91.32 0.66
0.74 0.40 0.39 −3.45 5.32 0.63 57.02 1.58
0.64 0.43 0.42 −1.64 5.52 0.75 76.76 1.00
0.49 0.66 0.64 −2.44 5.08 0.82 24.22 2.80

(n = 70, N = 40), the powers are at least 25% when the difference between two population kappas is
only 0.03.

4 Application to EoE data

In this section, we return to the motivating example using our newly proposed methods of variance
estimation. In Peery et al. (2011), the variance was calculated using the jackknife method rather than
results based on asymptotics. In clinical practice, findings of endoscopic mucosal abnormalities are
used for supporting a diagnosis of EoE, direct esophageal biopsies to sample tissue, and to assess a
response to treatment. This was a prospective study of 77 gastroenterologists using self-administered
web-based online assessments of endoscopic images in patients with suspected EoE. The endoscopic
findings of interest included the presence or absence of three key endoscopic features: esophageal
rings, linear furrows, and white plaques. Under the missing completely at random assumption (Little
and Rubin, 2002), we eliminated five gastroenterologists who did not have complete data. Analysis
was based on 72 gastroenterologists’ assessment of 35 images under white light endoscopy and then
35 paired images using white light endoscopy enriched with NBI. Our interest was to see whether
agreement is improved by adding NBI to the standard white light endoscopy.
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Table 3 Empirical power for testing H0 : kA = kB = k at α = 0.05 (two-sided).

n N kA kB σ 2
t (10−4) σ 2

e (10−4) RBe(%) Re(%) σ 2
i (10−4) RBi(%) Ri(%)

30 40 0.85 0.81 5.41 4.67 −13.71 39.81 8.04 48.48 19.92
0.74 0.71 8.69 7.44 −14.40 26.29 11.41 31.37 14.08
0.64 0.61 9.17 7.96 −13.24 22.58 13.47 46.90 9.14
0.49 0.46 14.29 11.77 −17.64 15.70 14.58 1.99 11.02

120 0.85 0.81 1.79 1.56 −13.12 80.78 2.68 49.16 62.67
0.74 0.71 2.80 2.47 −11.72 57.51 3.80 35.60 40.37
0.64 0.61 3.11 2.64 −14.99 49.97 4.48 44.04 29.57
0.49 0.46 4.54 3.92 −13.68 29.37 4.85 6.89 21.76

70 40 0.85 0.81 2.27 2.20 −3.16 67.91 3.79 66.78 44.67
0.74 0.71 3.65 3.47 −4.87 45.29 5.35 46.76 28.13
0.64 0.61 3.94 3.69 −6.31 39.41 6.29 59.72 19.68
0.49 0.46 5.97 5.41 −9.38 23.30 6.73 12.77 16.82

120 0.85 0.81 0.77 0.73 −5.05 98.74 1.26 63.44 94.72
0.74 0.71 1.26 1.16 −8.17 87.82 1.78 41.50 75.72
0.64 0.61 1.31 1.23 −6.38 81.30 2.09 59.58 61.23
0.49 0.46 2.03 1.80 −11.04 54.47 2.24 10.67 45.49

200 40 0.85 0.81 0.82 0.80 −2.27 98.24 1.39 68.37 93.26
0.74 0.71 1.35 1.27 −5.74 84.84 1.96 45.48 70.79
0.64 0.61 1.41 1.34 −4.56 77.92 2.29 63.09 56.51
0.49 0.46 2.03 1.96 −3.20 50.17 2.44 20.69 41.19

120 0.85 0.81 0.27 0.27 −1.05 100.00 0.46 70.44 100.00
0.74 0.71 0.44 0.42 −3.29 99.96 0.65 49.19 99.82
0.64 0.61 0.45 0.45 −0.87 99.70 0.76 69.30 98.16
0.49 0.46 0.67 0.65 −2.18 92.92 0.81 21.90 89.00

Table 4 Test results of the agreement on endoscopic mucosal abnormalities.

Symptom pw
o pw

e pn
o pn

e κw κn κw − κn ze pe zi pi

Rings 0.817 0.593 0.812 0.628 0.550 0.493 0.056 3.073 0.002 2.474 0.013
Furrow 0.756 0.533 0.747 0.501 0.478 0.493 −0.015 −0.769 0.442 −0.662 0.508
Plaque 0.724 0.613 0.701 0.607 0.287 0.241 0.046 2.538 0.011 2.486 0.013
None 0.853 0.784 0.909 0.884 0.318 0.217 0.101 3.627 0.000 3.168 0.002

We summarize our results in Table 4. We use pw
o to denote observed proportion of agreement under

white light endoscopy, pw
e to denote proportion of agreement expected by chance under white light

endoscopy, pn
o to denote observed proportion of agreement with the addition of NBI, pn

e to denote
proportion of agreement expected by chance with the addition of NBI, κw to denote the kappa statistic
under white light endoscopy, and κn to denote the kappa statistic with the addition of NBI. ze represents
the z-value of the difference based on our approach, zi represents the z-value of the difference obtained
ignoring the dependence, pe represents the p-value of the difference based on our approach, and pi
represents the p-value of the difference obtained ignoring the dependence.
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The results show that except for furrows, the agreement is better using white light endoscopy alone.
Overall, we conclude that it is better to use white light endoscopic based on the statistical testing
results. Whether the difference is meaningful in clinic is subject to clinical experts’ opinions, but these
results suggest that there is not added utility to performing examination with NBI.

5 Concluding remarks

Kappa statistic is the most commonly reported measure of interobserver agreement in the medical
literature. It does not assess agreement with the gold standard as the true values are usually not
available. This is very different from the multireader multicase studies considered in Chen et al. (2014),
where the probabilities of agreement with the reference standard are compared. Chen et al. (2014)
used a measurement of accuracy, while we use kappa statistic as a measure of reliability. The purpose
of our study is to provide support to a diagnosis of EoE and as such there is no gold standard. More
discussion on accuracy and reliability can be found in Viera et al. (2005).

We propose a large sample based testing procedure using kappa statistics by taking into account
the measurement dependence on the subjects. This newly proposed procedure is shown to improve
power while controlling type I error in large samples. For small-to-moderate samples, the type I error
is slightly inflated. The advantage of this approach is that it can test the equality of kappa statistics
taking values different from zero.

An important assumption is that the subjects are independent and the raters are independent
and identically distributed so that each rater generates a rating without knowledge, and thus without
influence, of the other rater’s rating. Equally, ratings on the first occasion may sometimes influence those
given on the second occasion, which will threaten the assumption of independence. Thus, apparent
agreement may reflect a recollection of the previous decision compared to a genuine judgement. In
our study, we sent out the second survey at least 14 days after the first survey with random ordering of
the images in order to overcome the bias due to memory.
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