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1. Introduction

Longitudinal data arise in many scientific inquiries, such as epidemiological stud-
ies, clinical trials and educational studies, among others. In such studies, data
are often collected at subject specific time points and the number of measure-
ments varies across subjects. Last observation carried forward (LOCF) is one
of the most commonly used approaches for analyzing incomplete longitudinal
data. This method imputes the most recent observation as the current observa-
tion and then employs standard analyses treating the imputed covariate as the
true covariate. Such analyses are problematic, see Lavori [4] and Molenberghs et
al. [9]. First, it is assumed that the longitudinal measurement does not change
from the time of the last measurement. Second, no distinction is made between
those subjects who had a valid measurement and those subjects with imputed
values, artificially increasing the amount of information in the data. These is-
sues can induce substantial biases in parameter estimates and lead to inaccurate
inferences, see Verbeke and Molenberghs [18]. To circumvent these problems,
likelihood based approaches such as Verbeke and Molenberghs [18] and Cook et
al. [2], inverse probability weighting such as Robins et al. [12] and Robins et al.
[13] and multiple imputation such as Rubin [14] have been proposed as more
principled and preferred methods for analysis. However, such methods impose
stringent modeling assumptions and the inferences they produce are typically
highly dependent on untestable and often implicit assumptions regarding the
distribution of the unobserved measurements given the observed measurements.

In this paper, our focus is regression with so-called asynchronous longitudinal
data as in Cao et al. [1], where the measurement times for a longitudinal response
and a longitudinal covariate are mismatched. We propose an intuitively appeal-
ing weighting approach which retains the simplicity of LOCF imputation for
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the current value of the covariate, enabling the use of methods for synchronous
data where response and covariate are measured at the same time points. As an
example, in a dialysis study of end-stage renal disease patients, infection-related
hospitalization status and serum C-reactive protein are obtained at distinct time
points within each patient. In clinical epidemiology, measurements of vital signs
and lab tests are often conducted at different times for the same individual. In
electronic medical records, a subject’s information may be pooled from different
sources to make treatment decisions, creating an asynchronous longitudinal data
structure. We consider the estimation of generalized linear models which relate
the current value of a longitudinal outcome to the current value of a longitudinal
covariate. We modify estimating equation techniques in Liang and Zeger [5] for
synchronous data to obtain unbiased inferences based on LOCF imputation of
the current value of the longitudinal covariate with mismatched measurement
times.

While regression analysis using estimating equations for synchronous longi-
tudinal data such as Liang and Zeger [5] has been widely studied, there has been
limited work on the analysis of regression models using asynchronous longitudi-
nal data. Xiong and Dubin [20] employed an ad hoc binning step to synchronize
covariates and response measurements to use existing methods for synchronous
data. Sentürk et al. [15] explicitly addressed the asynchronous setting for gen-
eralized varying coefficient model with one covariate but did not provide the
theoretical properties of the estimators. Cao et al. [1] proposed a nonparamet-
ric kernel weighting approach for the generalized linear model to explicitly deal
with the asynchronous structure and rigorously established the consistency and
asymptotic normality of the resulting estimates. In this paper, we formalize sim-
ple LOCF in a rigorous manner using weighting techniques similar to those in
Cao et al. [1]. We show that the weighted LOCF is also consistent and asymp-
totically normal but is valid under weaker assumptions on the covariate and
observation time processes, as detailed in the sequel.

The main idea of the weighting is that the further the last observation is
from the current observation, the less it should contribute to the estimating
equation. This is handled formally by weighting the last observation as a de-
creasing function of the time between the observed and missing measurement
occasions. We show that this may be generalized using the half kernel weight-
ing to utilize all previously observed covariates in addition to the most recent
observation. In contrast to full kernel method in Cao et al. [1] which uses
both previous and future covariate measurements, the proposed estimators are
valid under weaker assumptions on the covariate processes and allow obser-
vation times to depend on the response even conditionally on covariates. We
also relax the conditions for the validity of the full kernel methods, permit-
ting covariate processes with independent increments and allowing observation
times to depend on covariates but not responses, similarly to the conditional
independence approach to longitudinal data in Lin and Ying [7], Lin et al.
[6] and Sun et al. [16]. Interestingly, under independent increments, the rate
of convergence of the estimators differs from that without independent incre-
ments.
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The paper is organized as follows. In section 2, we recap results from Cao
et al. [1], discuss the proposed weighted LOCF and half kernel estimators and
corresponding theoretical findings. Section 3 reports simulation studies that
compare the proposed methods with Cao et al. [1]. The new methods demon-
strate improved performance in situations where the assumptions from the pre-
viously proposed estimator are violated, particularly with informative obser-
vation times. Interestingly, there is little loss of information in weighted LOCF
versus using all previously observed covariate values in the estimating equations.
Application to an HIV dataset illustrates the practical utility of the methods.
Concluding remarks are given in Section 4. Proofs of results from Section 2 are
relegated in the Appendix.

2. Main results

2.1. Full kernel estimation

This subsections presents the main results from [1]. We consider the generalized
linear model:

E{Y (t)|X(t)} = g{X(t)Tβ}, (2.1)

where g is a known, strictly increasing and continuously twice-differentiable
function, t is a univariate time index, X(t) is a vector of time-varying covariates
plus intercept term, Y (t) is a time-varying response and β is an unknown time-
invariant regression parameter. For subject i = 1, . . . , n, the observation times
of the longitudinal covariate process Xi(t) and response process Yi(t) may be
generated from a bivariate counting process like [7], where

Ni(t, s) =

Li∑
j=1

Mi∑
k=1

I(Tij ≤ t, Sik ≤ s)

counts the number of observation times up to t on the response and up to s
on the covariates, where {Tij , j = 1, . . . , Li} are the observation times of the
response and {Sik, k = 1, . . . ,Mi} are the observation times of the covariates. In
order to use existing methods for synchronous longitudinal data, where Li = Mi

and Tij = Sij , j = 1, . . . , Li, for each observed response, one may carry forward
the most recently observed covariate. This ad hoc approach incurs substantial
bias as shown in [1]. Furthermore, [1] proposed an estimating equation for β in
(2.1)

Uf
n (β) = n−1

n∑
i=1

∫ 1

0

∫ 1

0

Kh(t− s)Xi(s)
[
Yi(t)− g{Xi(s)

Tβ}
]
dNi(t, s), (2.2)

where Kh(t) = K(t/h)/h,K(t) is a symmetric kernel function, usually taken
to be the Epanechnikov kernel K(t) = 0.75(1 − t2)+ and h is the bandwidth.
The response Yi(t) may be a continuous, categorical, or count variable, while
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the covariate Xi(t) may include time-independent covariates, such as an inter-
cept term, in addition to time-varying covariates. The main requirement for the
validity of (2.2) is that if the time-varying covariates in Xi(t) are multivariate,
then the different covariates are measured at the same time points. The kernel
weighting accounts for the fact that the covariate and response are mismatched
and permits contributions to Uf

n (β) from all possible pairings of response and

covariate observations. We solve Uf
n (β) to obtain an estimate for β, denoted β̂f .

We next present the asymptotic properties of β̂f . We specify our assumptions
on the covariance structure as follows. For s, t ∈ [0, τ ], let var{Y (t)|X(t)} =
σ{t,X(t)}2 and cov{Y (s), Y (t)|X(s), X(t)} = r{s, t,X(s), X(t)}, where τ is
the maximum follow-up time.

We need the following conditions.

(A1) Ni(t, s) is independent of (Yi, Xi) and moreover,E{dNi(t, s)} = λ(t, s)dtds,
where λ(t, s) is a twice-continuous differentiable function for any 0 ≤ t, s ≤
τ . In addition, Borel measure for G = {λ(t, t) > 0, t ∈ [0, τ ]} is strictly
positive. For t1 �= s1, t2 �= s2, P{dN(t1, t2) = 1|N(s1, s2)−N(s1−, s2−) =
1} = f(t1, t2, s1, s2)dt1dt2 where f(t1, t2, s1, s2) is continuous for t1 �=
s1, t2 �= s2 and f(t1±, t2±, s1±, s2±) exists.

(A2) If there exits a vector γ such that γTX(s) = 0 for any s ∈ G with proba-
bility one, then γ = 0.

(A3) For any β in a neighborhood of β0, the true value of β, E[X(s)g{X(t)Tβ}]
is continuously twice-differentiable in (t, s) ∈ [0, τ ]⊗2 and |g′(X(t)T η)| ≤
q(‖X(t)‖) for some q(·) satisfying that E[‖X(t)‖4q(‖X(t)‖)2] is uniformly
bounded in t. Additionally, E{‖X(t)‖4} < ∞. Furthermore,
E[X(s1)X(s2)

T r{t1, t2, X(t1), X(t2)}] and
E[X(s1)X(s2)

T g{X(t1)
Tβ0}g{X(t2)

Tβ0}] are continuously twice differ-
entiable in (s1, s2, t1, t2) ∈ [0, τ ]⊗4. Moreover,∫

E
[
‖X(s)X(s)T ‖σ{s,X(s)}2

]
λ(s, s)ds < ∞, and

∫
E
[
‖X(s)X(s)T ‖g′{X(s)Tβ0}

]
λ(s, s)ds < ∞.

(A4) K(·) is a symmetric density function satisfying
∫
z2K(z)dz < ∞ and∫

K(z)2dz < ∞. Additionally, nh → ∞.
(A5) nh5 → 0.

The following theorem states the asymptotic properties of β̂f .

Theorem 1. Under conditions (A1)-(A4), the asymptotic distribution of β̂f

satisfies:
(nh)1/2

{
A(β0)(β̂f − β0) + Ch2

}
→ N(0,Σ), (2.3)

where A(β0) =
∫
s
E[X(s)g′{X(s)Tβ0}X(s)T ]λ(s, s)ds, β0 is the true regression

coefficient and C is a constant, which can be found in [1]. The asymptotic vari-
ance

Σ =

∫
K(z)2dz

∫
E
[
X(s)X(s)Tσ{s,X(s)}2

]
λ(s, s)ds. (2.4)
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If the bandwidth is further restricted by condition (A5), then the asymptotic

bias in (2.3) vanishes and β̂f is consistent:

Corollary 1. Under conditions (A1)-(A5), β̂f is consistent and converges to a
mean zero normal distribution given in Theorem 1.

2.2. Weighted LOCF estimation

In this subsection, we propose a weighted LOCF for the asynchronous longitu-
dinal data. For the LOCF approach using generalized estimating equations for
synchronous data as in [3], for a response at time tij , the covariate at time tij is
taken to be the covariate observed at time s = max(x < tij , x ∈ {si1, . . . , simi}).
This method assumes that either the subject’s response or the subject’s covari-
ate is constant from the most recent observation time and does not account for
the variability inherent in this imputation. These assumptions may not hold in
practice and violations can confound covariates with time, which in turn can
bias estimates of covariate effects and their standard errors. As a result, the
magnitude and even the direction of bias from LOCF is extremely difficult, if
not impossible, to determine a priori.

We propose to remedy this bias by adopting a simple weighting strategy,
downweighing imputed values which are far in time from the current response.
To be specific, for a sample of n independent subject, the weighted generalized
estimating equation for β is

Un(β) = n−1
n∑

i=1

∫ 1

0

∫ 1

0

Kh(t− s)I
{
s < t,

∫ t

s

dNi(t, u) = 0
}

Xi(s)
[
Yi(t)− g{Xi(s)

Tβ}
]
dNi(t, s), (2.5)

where Kh(x) = K(x/h)/h,K(x) is a symmetric kernel function defined on
[−1, 1] and h is the bandwidth. Covariates are aggregated into the estimating
equation (2.5) and for a response, there are multiple covariates contributing to
the estimating equation with different weights. If there is no covariate measured
before a response, such response does not contribute to the estimating equation
(2.5). As the measurement times for the covariates and response are random
and asynchronous, incorporating the correlation structure into the estimating
equation to improve efficiency is unclear.

For s < t, the measurement times are allowed to depend on covariates through

E
[
dN(t, s)I{N(t, t)−N(t, s+) = 0}|X(s), Y (t)

]
= λ{t, s;X(s)}dtds. (2.6)

This assumption permits dependence on Y (t) at times t < s, that is, future
covariate observation times may depend on previous values of the response. The
estimator presented above is valid under such informative observation times,
which differs from [1], which did not allow dependence of the bivariate observa-
tion process on Y (t) at any time points as can be seen from (A1). Additional
regularity conditions are stated in condition (C0) below.
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Before we present our asymptotic results, we need some notations and as-
sumptions. The observations of X(·) can be arbitrarily correlated. We spec-
ify our assumptions on the covariance structure as follows. For s, t,∈ [0, 1], let
var{Y (t)|X(t)} = σ{t,X(t)}2 and cov{Y (s), Y (t)|X(s), X(t)} =
r{s, t,X(s), X(t)}. Furthermore, denote

Fβ(s, t) = E[X(s)g{X(t)Tβ}λ{t, s;X(s)}].

Its first order partial right and left derivative are

Ḟβ(s, s+) = lim
u→0+

u−1{Fβ(s, s+ u)− Fβ(s, s)},

and

Ḟβ(s, s−) = lim
u→0−

u−1{Fβ(s, s+ u)− Fβ(s, s)}.

By the same token, its second order partial right and left derivative are

F̈β(s, s+) = lim
u→0+

(0.5u2)−1{Fβ(s, s+ u)− Fβ(s, s)− Ḟβ(s, s+)u}

and

F̈β(s, s−) = lim
u→0−

(0.5u2)−1{Fβ(s, s+ u)− Fβ(s, s)− Ḟβ(s, s−)u}.

Moreover, denote Kβ(s, t) = E[X(s)g{X(s)Tβ}λ{t, s;X(s)}] and its first order
partial right and left derivative are defined in exactly the same way and de-
noted by K̇β(s, s+) and K̇β(s, s−). Let K̈β(s, s+) and K̈β(s, s−) be its second
order partial right and left derivative. In addition, denote Gβ(s1, s2, t1, t2) =

E
[
X(s1)X(s2)

T g{X(t1)
Tβ}g{X(t2)

Tβ}λ{t2, s2;X(s2)}
]
, its first order partial

right and left derivative as Ġβ(s1, s2, s1+, s2+) and Ġβ(s1, s2, s1−, s2−); de-

note Jβ(s1, s2, t1, t2) = E
[
X(s1)X(s2)

T r{t1, t2, X(t1), X(t2)}λ{t2, s2;X(s2)}
]
,

its first order partial right and left derivative as J̇β(s1, s2, s1+, s2+) and

J̇β(s1, s2, s1−, s2−).
We need the following conditions.

(C0) For s < t, (2.6) is satisfied by N(t, s). In addition, for any β in a neigh-
borhood of β0, the true regression coefficient, Fβ(s, t), Ḟβ(s, s+), F̈β(s, s+),

Kβ(s, t), K̇β(s, s+), and K̈β(s, s+) are continuous functions for (s, t) ∈ [0, 1]⊗2.

Moreover, Gβ(s1, s2, t1, t2), Ġβ(s1, s2, s1+, s2+), Jβ(s1, s2, t1, t2) and

J̇β(s1, s2, s1+, s2+) are continuous functions for (s1, s2, t1, t2) ∈ [0, 1]⊗4. Fur-
thermore, P{dN(t1, t2) = 1|N(s1, s2)−N(s1−, s2−) = 1} = f(t1, t2, s1, s2)dt1dt2
for t1 �= s1, t2 �= s2, where f(t1, t2, s1, s2) is continuous for t1 �= s1, t2 �= s2 and
f(t1±, t2±, s1±, s2±) exist.

(C1) F ≡ {s ∈ [0, 1] | X(s) �= 0} has positive Borel measure with probability
1 and for s ∈ F , X(s) is not a constant function with probability 1. In addition,
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with positive probability, Borel measure for G =
[
λ{t, t;X(t)} > 0, t ∈ F

]
is

strictly positive.
(C2) For any β in a neighborhood of β0, |g′{X(t)Tβ}| ≤ q(‖X(t)‖) for

some q(·) satisfying E{‖X(t)‖4q(‖X(t)‖)2} is uniformly bounded in t. More-

over, E
[
X(s)X(s)Tσ{t,X(t)}2λ{t, s;X(s)}

]
is continuous and has partial right

and left derivative with respect to t. Additionally, E{‖X(t)‖4} < ∞,

∫ 1

0

E
[
‖X(s)X(s)T ‖σ2{s,X(s)}λ{s, s;X(s)}

]
ds < ∞,

and ∫ 1

0

E
[
‖X(s)X(s)T ‖g′{X(s)Tβ0}λ{s, s;X(s)}

]
ds < ∞.

(C3) K(·) is a symmetric density function defined on [−1, 1] satisfying

|
∫ 1

0
zK(z)dz| = |

∫ 0

−1
zK(z)dz| < ∞ and

∫ 1

−1
K(z)2dz < ∞. Additionally,

nh → ∞ and nh5 → 0.

For s < t, the condition (C0) requires conditionally independent observation
times in which the expectation of the bivariate counting process at times t and s
is conditionally independent of the responses at time t and s given the covariates
at times t and s. No assumptions are needed for t < s, unlike that specified
in (A1). In addition, this condition assumes the existence of right continuous
derivatives on Fβ(s, t). Such assumptions are satisfied by X(t) with independent
increments, such as Poisson process and Brownian motion. These stochastic
processes do not satisfy (A3). We show below that the estimator’s asymptotic
behavior, in particular, the rate of convergence, may depend critically on the
smoothness of the covariate processes. The other assumptions (C1)–(C3) are
similar to those in Theorem 1.

The following theorem, which is proved in the appendix, states the asymptotic
properties of β̂ from Un(β) in (2.5) under the weaker conditions specified above.

Theorem 2. Under (C0)–(C3), we have

(nh)1/2
{
A(β0)(β̂ − β0) + Ch

}
→ N(0,Σ), (2.7)

where

A(β0) =
1

2

∫ 1

0

E[X(s)g′{X(s)Tβ0}X(s)Tλ{s, s;X(s)}]ds,

C = 2

∫ 1

0

zK(z)dz

∫ 1

0

{Ḟβ0(s, s+)− K̇β0(s, s+)}ds

and

Σ =

∫ 1

0

K(z)2dz

∫ 1

0

E
[
X(s)X(s)Tσ2{s,X(s)}λ{s, s;X(s)}

]
ds.
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From Theorem 2, the bias is generally of higher order h and we achieve a
rate of convergence n1/3, slower than n2/5 specified in Theorem 1, where the
bias is of order h2. This is the price to pay for only requiring right continuous
differentiability of certain functionals as specified in (C0). The increased bias
resembles the boundary bias phenomenon in classical nonparametric regresion
due to the boundary asymmetric kernel. To reduce the bias, one might employ
boundary adjustment approaches which have been well studied in the nonpara-
metric literature.

Regarding the computation, once the kernel function K has been chosen and
the bandwidth has been fixed, the estimating equation can be solved using a
standard Newton-Raphson implementation for generalized linear models, with
good convergence properties.

Along the lines of [1], the variance of the estimators may be obtained using
a sandwich formula {∂Un(β)/∂β |β=β̂}−1Σ̂[{∂Un(β)/∂β |β=β̂}−1]T , where Σ̂ =

n−2
∑n

i=1

( ∫ 1

0

∫ 1

0
Kh(t− s)Xi(s)I{s < t,

∫ t

s
dNi(t, u) = 0}[Yi(t)− g{Xi(s)

T β̂}]

dNi(t, s)
)⊗2

. The consistency proof of Σ̂ is in the appendix. Automatic band-

width selection may be achieved as in [1], with bias of order h, as described in
the appendix.

2.3. Half kernel estimation

To improve efficiency, the weighted LOCF can be extended to include informa-
tion on all previously observed covariate, not only the most recently observed
covariate. This is achieved by applying kernel weighting to all covariates ob-
served before the response. The half kernel estimating equation is

U∗
n(β) = n−1

n∑
i=1

∫ 1

0

∫ 1

0

K∗
h(t− s)Xi(s)

[
Yi(t)− g{Xi(s)

Tβ}
]
dNi(t, s), (2.8)

where

K∗
h(x) =

{
2Kh(x) if x ≥ 0
0 if x < 0.

This accounts for the fact that the covariates and response are mismatched and
only covariates that are observed before the response are used. If the observation
times for covariates and response are close to each other, the kernel weight is
close to 1; on the other hand, if they are far apart, the contribution to the
estimating equation (2.8) may be 0. We solve U∗

n(β) = 0 to obtain an estimate

for β, denoted by β̂∗. We modify the assumption on the bivariate counting
process for simple weighted LOCF using half kernel estimation.

For s ≤ t, the bivariate counting process N(t, s) satisfies

E{dN(t, s) | X(s), Y (t), s ≤ t} = E{dN(t, s) | X(s)} = λ∗{t, s;X(s)}dtds.
(2.9)
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Similar to condition (2.6), (2.9) allows an informative observation process for
times t < s. Hence, the half kernel estimation procedure above enjoys a robust-
ness similar to that of weighted LOCF, which is not shared by the full kernel
approach as in Theorem 1.

The asymptotic distribution of β̂∗ is stated in the following theorem and
proved in the appendix.

Theorem 3. Under (C0) with (2.6) replaced by (2.9), (C1)–(C3), we have

(nh)1/2
{
A∗(β0)(β̂∗ − β0) + C∗h

}
→ N(0,Σ∗), (2.10)

where A∗(β0) is obtained by replacing λ{s, s;X(s)} by λ∗{s, s;X(s)} in A(β0),

C∗ = 2

∫ 1

0

zK(z)dz

∫ 1

0

{Ḟ ∗
β0
(s, s+)− K̇∗

β0
(s, s+)}ds,

where Ḟ ∗
β0

and K̇∗
β0

are obtained by replacing λ{t, s;X(s)} by λ∗{t, s;X(s)} in

Ḟβ0 and K̇β0 , respectively, and

Σ∗ =

∫ 1

0

K(z)2dz

∫ 1

0

E
[
X(s)X(s)Tσ2{s,X(s)}λ∗{s, s;X(s)}

]
ds.

For the half kernel approach, the bias and variance are generally of the same
order as in the weighted LOCF. Improved bias properties are also possible under
the following condition which may be satisfied by processes with independent
increments:

(C4) Ḟ ∗
β0
(s, s+) = 0 and K̇∗

β0
(s, s+) = 0.

When X(t) follows a homogeneous Poisson process or the Brownian motion and
g is the identify function, Ḟ ∗

β (s, s+) = 0 holds for all β. If λ∗{t, s;X(s)} in (2.9)

is constant, K̇∗
β(s, s+) = 0 for all β. Consequently, C∗ = 0 and the estimation

bias for the half kernel based estimator β̂∗ is of order O(h2) as specified in the
following corollary.

Corollary 2. Under same conditions as in Theorem 3 and with the addition of
(C4), we have

(nh)1/2
{
A∗(β0)(β̂∗ − β0) + C2h

2
}
→ N(0,Σ∗), (2.11)

where

C2 =

∫ 1

0

z2K(z)dz

∫ 1

0

{F̈ ∗
β0
(s, s+)− K̈∗

β0
(s, s+)}ds,

where F̈ ∗
β0

and K̈∗
β0

are obtained by replacing λ{t, s;X(s)} by λ∗{t, s;X(s)} in

F̈β0 and K̈β0 , respectively, and Σ∗ is the same as in Theorem 2.
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This improvement in the convergence rate is shared by the weighted LOCF
estimator. One might expect that half kernel estimation has smaller variance
than the weighted LOCF, owing to the use of all previously observed covari-
ates. While it is not possible to show that the half kernel estimator generally
has smaller theoretical variance than weighted LOCF, simulations reported in
Section 3 evidence some improvements. Interestingly, these differences are fairly
small and diminish with large sample sizes. Variance estimation and bandwidth
selection for half kernel estimation follow that for the weighted LOCF case and
are omitted.

2.4. Revisiting full kernel estimation

For further efficiency improvement, a full kernel approach may be employed, as
in section 2.1. We here consider the properties of this estimator under weaker
conditions than those specified in section 2.1 We relax (A1) by allowing the
measurement times to depend on covariates through

E{dN(t, s) | X(s), Y (t)} = E{dN(t, s) | X(s)} = λf{t, s;X(s)}dtds. (2.12)

We solve Uf
n (β) = 0 to obtain an estimate for β, denoted by β̂∗

f .
We require a stronger assumption than (C0) for weighted LOCF and for half

kernel estimation, as specified below.

(C0*) The intensity function of the counting processN(t, s) is specified in (2.12)
for all s, t. In addition, for any β in a neighborhood of β0, the true re-
gression coefficient, F f

β (s, t), Ḟ
f
β (s, s+), Ḟ f

β (s, s−), F̈ f
β (s, s+), F̈ f

β (s, s−),

Kf
β (s, t), K̇

f
β (s, s+), K̇f

β (s, s−), K̈f
β (s, s+) and K̈f

β (s, s−) are continuous

functions for (s, t) ∈ [0, 1]⊗2, where λ{t, s;X(s)} is replaced by λf{t, s;
X(s)} in their respective definitions. Gf

β(s1, s2, t1, t2), Ġf
β(s1, s2, s1+,

s2+), Ġf
β(s1, s2, s1−, s2−), Jf

β (s1, s2, t1, t2), J̇
f
β (s1, s2, s1+, s2+) and

J̇f
β (s1, s2, s1−, s2−) are continuous functions for (s1, s2, t1, t2) ∈ [0, 1]⊗4,

where λ{t, s;X(s)} is replaced by λf{t, s;X(s)}, respectively. P{dN(t1, t2)
= 1|N(s1, s2) − N(s1−, s2−) = 1} = f(t1, t2, s1, s2)dt1dt2 for t1 �=
s1, t2 �= s2, where f(t1, t2, s1, s2) is continuous for t1 �= s1, t2 �= s2 and
f(t1±, t2±, s1±, s2±) exist.

This assumption is stronger than those for weighted LOCF and half kernel
estimation. This assumption does not permit dependence of the bivariate obser-
vation process on the response Y (t) at any times s and t. It is weaker than (A3)
in that it permits the observation process to depend on the covariate process.
It also weakens (A3) by relaxing the smoothness conditions on X(s), covering
the important special case of independent increments. The following theorem,
which is proved in the appendix, states the asymptotic properties of the full
kernel estimator under these more general conditions.

Theorem 4. Under (C0*), (C1)–(C3), we have



1166 H. Cao et al.

(nh)1/2
{
Af (β0)(β̂

∗
f − β0) + Cfh

}
→ N(0,Σf ), (2.13)

where

Af (β0) =

∫ 1

0

E[X(s)g′{X(s)Tβ0}X(s)Tλf{s, s;X(s)}]ds,

Cf =

∫ 1

0

zK(z)dz
[ ∫ 1

0

{Ḟ f
β0
(s, s+)− Ḟ f

β0
(s, s−)}ds

−
∫ 1

0

{K̇f
β0
(s, s+)ds− K̇f

β0
(s, s−)}ds

]
,

and

Σf =

∫ 1

−1

K(z)2dz

∫ 1

0

E
[
X(s)X(s)Tσ2{s,X(s)}λf{s, s;X(s)}

]
ds.

For full kernel approach, the bias is of the same order as that in weighted
LOCF and half kernel approach. However, the variance is smaller if
λ{s, s;X(s)} = λ∗{s, s;X(s)} = λf{s, s;X(s)}. This is accomplished through
utilizing both lagged and forward observations.

A special case of Theorem 4 gives the result in Theorem 1.

Corollary 3. Under the special case that λf{t, s;X(s)} = λ(t, s), a twice
continuously differentiable function in [0, 1]⊗2 and E[X(s)g{X(t)Tβ}] is twice

continuously differentiable for any β in a neighborhood of β0, Ḟ f
β0
(s, s+) =

Ḟ f
β0
(s, s−) and K̇f

β0
(s, s+) = K̇f

β0
(s, s−). Theorem 3 is the same as Theorem

1.

3. Simulation studies and a real example

We conducted extensive simulation studies to evaluate the properties of the
proposed estimators in practical settings. We first study the performance of
LOCF estimate, the proposed weighted LOCF estimate, half kernel estimate
and full kernel estimate when assumptions in Cao et al. [1] hold. We generate
1, 000 dataset, each consisting of n = 400 or 1000 subjects. The numbers of
observation times for the response Y (t) and covariate X(t) are generated from
Poisson distribution with intensity rate 5. The observation times for the response
and covariates are generated from uniform distribution U(0, 1) independently.
The covariate process is Gaussian, with values at observed time points being
multivariate normal with mean 0, variance 1 and correlation e−|tij−tik|, where
tij and tik are jth and kth measurement time for the response, both on subject
i. The response process was generated from

Y (t) = β0 +X(t)β1 + ε(t),

where β0 is the intercept, β1 is regression coefficient and ε(t) is Gaussian, with
mean 0, variance 1 and cov{ε(s), ε(t)} = 2−|t−s|. Once the response is generated,
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we remove the covariate measurements at the response observation times to
create the asynchronous data structure. In this simulation, we set β0 = 1.5 and
β1 = 1.5 and assess the performance of β̂1. The results are very similar for other
choices of βs.

For weighted LOCF, half kernel and full kernel estimation, the kernel function
is the Epanechnikov kernel, which is K(x) = 0.75(1− x2)+, with the automatic
bandwidth selection described in the appendix used in the estimation. Similar
results were obtained using other kernel functions. A total of 1000 simulated
dataset were analyzed.

Table 1A and 2A summarize the results of these simulations. Additional re-
sults with n = 200 can be found in the Appendix. For standard LOCF, the biases
and coverage probabilities are −0.192 and 4.4% when n = 400 and −0.189 and 0
when n = 1000. Weighted LOCF, half kernel estimation, and full kernel estima-
tion perform satisfactorily in terms of bias, variance, and coverage probability,
particularly with larger sample sizes. In this setting, where the assumptions in
Theorem 1 are satisfied, full kernel estimation exhibits smaller bias and variance
than either weighted LOCF or half kernel estimation.

We next study the case that covariates follow Poisson process with intensity 3.
The independent increments set-up violates the assumptions in Theorem 1 and
our theory suggests an improved rate of convergence for half kernel estimation
versus full kernel estimation. The data generation scheme is otherwise the same.
For LOCF, the biases and coverage probabilities are −0.053 and 69.6% when
n = 400 and −0.055 and 38.0% when n = 1000. From Table 1B and 2B, we
observe that the full kernel approach has substantially larger bias than the
weighted LOCF and half kernel approach, as predicted by Corollary 2. The
empirical variances and variance estimates are in good agreement. The coverage
probabilities for the weighted LOCF and half kernel approach are close to the
nominal level. Those for the full kernel are much lower than the nominal level,
owing to the large biases.

We then study informative observation times depending on responses. We
first generate the observation time of one response t0, which is U(0, 1) dis-
tributed. The raw observation times for covariates follows Poisson{exp(3)} uni-
formly distributed in the 0.3 neighborhood of t0. The rest of data genera-
tion is exactly the same as before. We use a thinning algorithm to determine
whether to keep the covariate observation times, where the probability of keep-
ing covariates observed before the response is 0.2 and after the response is
min[1, 15exp{Y (t)/3}]. For LOCF, the biases and coverage probabilities are
−0.123 and 14.2% when n = 1000 and −0.123 and 0 when n = 5000. The as-
sumptions in Theorems 2 and 3 on the bivariate intensity process for weighted
LOCF and half kernel estimation are satisfied whereas those for full kernel esti-
mation in Theorem 4 are violated. This is evidenced in Table 1C and 2C, where
the bias is larger and the coverage probability is poor for full kernel. Weighted
LOCF and half kernel approach have small bias, good agreement between es-
timated and empirical standard errors and coverage probabilities close to the
nominal level. As full kernel approach uses more data, it has smaller standard
error compared with weighted LOCF and half kernel approach.
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Table 1

Results of 1000 simulations under different scenarios: A: assumptions in Cao et al. [1] are
satisfied; B: covariates follow Poisson process; C: informative observation time.

BD Bias RB SD SE CP Bias RB SD SE CP
Weighted LOCF

A
n = 400 n = 1000
0.005 0.1 0.1 0.168 0.155 91 -0.5 -0.4 0.102 0.099 94
0.015 -0.8 -0.5 0.094 0.097 95 -0.7 -0.5 0.062 0.062 94
0.025 -1.4 -0.9 0.078 0.080 95 -1.2 -0.8 0.051 0.051 93
0.035 -1.9 -1.3 0.071 0.071 94 -1.7 -1.1 0.046 0.046 92
auto -0.7 -0.5 0.163 0.151 92 -0.6 -0.4 0.103 0.099 93
B

n = 400 n = 1000
0.05 0.1 0.1 0.043 0.042 95 -0.1 -0.1 0.027 0.027 95
0.10 -0.1 -0.1 0.036 0.036 95 -0.2 -0.2 0.023 0.023 95
0.15 -0.3 -0.2 0.034 0.035 95 -0.4 -0.3 0.022 0.022 94
0.20 -0.6 -0.4 0.033 0.034 95 -0.7 -0.5 0.022 0.022 92
auto -0.2 -0.1 0.043 0.042 94 -0.1 -0.1 0.028 0.027 93
C

n = 1000 n = 5000
0.015 -0.9 -0.6 0.104 0.100 94 -0.7 -0.5 0.045 0.046 95
0.020 -1.1 -0.7 0.092 0.088 94 -1.1 -0.7 0.040 0.040 94
0.025 -1.3 -0.8 0.083 0.080 94 -1.4 -0.9 0.036 0.036 94
0.030 -1.6 -1.1 0.077 0.075 94 -1.7 -1.1 0.033 0.034 92
auto -0.9 -0.6 0.101 0.100 93 -0.7 -0.5 0.043 0.046 95

Half kernel
A

n = 400 n = 1000
0.005 -0.6 -0.4 0.165 0.154 93 0.1 0.1 0.102 0.100 93
0.015 -0.9 -0.6 0.101 0.098 93 -0.5 -0.3 0.064 0.063 94
0.025 -1.3 -0.9 0.084 0.081 94 -1.2 -0.8 0.066 0.065 95
0.035 -1.9 -1.2 0.075 0.073 94 -1.8 -1.2 0.048 0.046 92
auto 3.1 2.0 0.135 0.156 92 1.1 0.8 0.104 0.100 92
B

n = 400 n = 1000
0.05 -1.1 -0.7 0.043 0.044 96 0.5 0.3 0.027 0.028 94
0.10 -0.8 -0.5 0.038 0.038 95 0.4 0.3 0.022 0.024 96
0.15 -1.0 -0.7 0.036 0.036 95 0.0 0.0 0.022 0.023 95
0.20 -1.3 -0.9 0.035 0.036 97 -0.5 -0.3 0.022 0.023 94
auto -0.0 -0.0 0.037 0.038 96 0.4 0.3 0.027 0.026 94
C

n = 1000 n = 5000
0.015 -0.6 -0.4 0.104 0.103 94 -1.1 -0.7 0.047 0.047 94
0.020 -1.0 -0.7 0.092 0.091 93 -1.3 -0.9 0.042 0.041 94
0.025 -1.3 -0.9 0.084 0.083 93 -1.6 -1.0 0.038 0.038 92
0.030 -1.6 -1.1 0.078 0.078 93 -1.8 -1.2 0.036 0.035 92
auto -2.2 -1.5 0.086 0.076 93 -0.6 -0.4 0.046 0.048 95

Note: “BD” represents different bandwidths, “Bias’ (% )’ is the empirical bias, “RB (%)” is
the “Bias” divided by the true β1, “SD” is the sample standard deviation, “SE” is the

average of the standard error estimates and “CP (%)” represents the coverage probability of

the 95% confidence interval for β̂1.

Per the request of the referee, we conducted additional simulations to com-
pare with IPW as in [12, 13]. Strictly speaking, the assumptions for IPW are
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Table 2

Results of 1000 simulations under different scenarios: A: assumptions in Cao et al. [1] are
satisfied; B: covariates follow Poisson process; C: informative observation time.

BD Bias RB SD SE CP Bias RB SD SE CP
Full kernel

A
n = 400 n = 1000
0.005 -0.2 -0.1 0.120 0.110 94 -0.5 -0.4 0.075 0.074 94
0.015 -0.8 -0.5 0.078 0.075 93 -0.9 -0.6 0.049 0.048 94
0.025 -1.2 -0.8 0.066 0.065 95 -1.4 -0.9 0.042 0.041 93
0.035 -1.7 -1.2 0.061 0.060 94 -1.9 -1.3 0.038 0.038 92
auto -0.7 -0.5 0.104 0.116 96 -0.9 -0.6 0.074 0.074 92
B

n = 400 n = 1000
0.05 -2.6 -1.7 0.035 0.036 90 -2.0 -1.3 0.022 0.023 86
0.10 -4.7 -3.1 0.034 0.033 67 -4.3 -2.9 0.022 0.021 42
0.15 -7.4 -4.9 0.033 0.032 34 -6.9 -4.6 0.022 0.020 9
0.20 -10.4 -6.9 0.032 0.032 11 -9.8 -6.5 0.022 0.020 1
auto -3.8 -2.6 0.032 0.033 72 -2.6 -1.7 0.021 0.022 81
C

n = 1000 n = 5000
0.015 -4.2 -2.8 0.069 0.069 91 -4.2 -2.8 0.033 0.031 73
0.020 -7.4 -4.9 0.059 0.059 76 -7.5 -5.0 0.028 0.027 22
0.025 -9.4 -6.3 0.054 0.054 58 -9.5 -6.4 0.025 0.024 3
0.030 -10.8 -7.2 0.051 0.050 43 -11.0 -7.3 0.023 0.023 0
auto -12.3 -8.2 0.049 0.050 28 -3.4 -2.7 0.033 0.033 79

Note: “BD” represents different bandwidths, “Bias’ (% )’ is the empirical bias, “RB (%)” is
the “Bias” divided by the true β1, “SD” is the sample standard deviation, “SE” is the

average of the standard error estimates and “CP (%)” represents the coverage probability of

the 95% confidence interval for β̂1.

Table 3

Results of 1000 simulations based on IPW. A: last observed covariate; B: nearest covariate.

n Bias RB SD SE CP
A
400 -0.1893 -9.1262 0.0512 0.0513 3.90
1000 -0.1906 -0.1271 0.0325 0.0325 0.00
B
400 -0.1301 -0.0867 0.0462 0.0461 19.28
1000 -0.1312 -0.0874 0.0294 0.0292 0.40

Note: “Bias” is the empirical bias, “RB” is the “Bias” divided by the true β1, “SD” is the
sample standard deviation, “SE” is the average of the standard error estimates and “CP

(%)” represents the coverage probability of the 95% confidence interval for β̂1.

not satisfied. For any subject, the covariate and response observation times are
mismatched and the probability of observing complete data is 0. The data gen-
eration and implementation are detailed in the Appendix and the results are
summarized in Table 3. We can see that IPW incurs substantial bias, which
does not attenuate as sample size increases and therefore should not be used to
analyze asynchronous longitudinal data.
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Table 4

Summary statistics for β̂1 based on (2.2), (2.5) and (2.8).

h n−0.3 n−0.5 n−0.7 auto
full kernel 290 102 36 67

β̂1 -1.202 -1.148 -1.074 -1.112

SE(β̂1) 0.153 0.177 0.228 0.195
z-value -7.866 -6.481 -4.710 -5.692

weighted LOCF 290 102 36 87

β̂1 -1.195 -1.118 -1.030 -1.117

SE(β̂1) 0.157 0.222 0.326 0.234
z-value -7.593 -5.033 -3.169 -4.779

half kernel 290 102 36 36

β̂1 -1.257 -1.165 -1.030 -1.030

SE(β̂1) 0.190 0.219 0.326 0.326
z-value -6.604 -5.312 -3.168 -3.168

We now illustrate the proposed inferential procedures on a dataset from an
HIV study [19], previously analyzed in [1]. A total of 190 patients were followed
from July 1997 to September 2002 in a university hospital. There are unequal
numbers of repeated measurements on viral load and CD4 count and there
are different measurement times for these two variables. In our analysis, we
take log transformed CD4 counts as covariate and log transformed HIV viral
load as response. We use estimating equations (2.5) and (2.8) with bandwidths
h = 2(Q3 −Q1)n

−γ , where Q3 is the 0.75 quantile and Q1 is the 0.25 quantile
of the pooled sample of measurement times for the covariate and response, n
is the number of patients and γ = 0.3, 0.5, 0.7. The results are summarized in
Table 3 with fixed bandwidths and data adaptive bandwidth. Results based on
Theorem 1 are presented for comparison.

Earlier work has shown that LOCF produces a weak positive association
between CD4 counts and HIV viral load, which is in an opposite direction to the
known relationship between these variables. From Table 4, we see that weighted
LOCF and half kernel produce similar point estimates and standard deviations,
especially when bandwidths are small (n−0.5 or n−0.7). Full kernel approach
in [1] has similar point estimates, but smaller standard deviation, due to the
fact that it uses both forward and lagged covariates. Analysis based on newly
proposed procedure and earlier method in [1] all showed statistically significant
association between CD4 counts and HIV viral load, consistent with findings in
the medical literature [11].

4. Concluding remarks

In this paper, we provide an intuitively appealing and rigorous formalization
of LOCF for regression analysis with asynchronous longitudinal data. The re-
sulting estimators are consistent and asymptotically normal, but with a rate
of convergence which is slower than the usual parametric rate. The procedure
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performed well in simulations, evidencing substantial improvements in bias and
coverage properties over the näıve LOCF. Its ease of implementation suggests
that it has the potential to be practically useful in applications where LOCF is
currently the method of choice, requiring only the addition of a weight to the
generalized estimating equations.

Interestingly, the simulation studies demonstrated only a small loss of effi-
ciency relative to half kernel estimation, which utilizes all previous covariate
observations. Our intuition is that without stronger assumptions than those in
the current paper, the most recently observed covariate contains the majority
of information about the previous covariate values. As the sample size increases
and the bandwidth shrinks, the half kernel estimation procedure only uses the
most recent values of the covariates, similarly to weighted LOCF. Further work
is needed for a rigorous comparison of the theoretical variances of these estima-
tors.

Both weighted LOCF and half kernel estimation performed well with infor-
mative observation times, while full kernel estimation exhibited large biases and
poor coverage. This lack of robustness should be weighted against the improved
efficiency which may occur when necessary regularity conditions are satisfied.
A related loss of efficiency may occur with covariates having independent in-
crements, in which case both theoretical and simulation studies point to the
superior performance of weighted LOCF and half kernel estimation. Additional
numerical work would be valuable in further elucidating these issues.

Both GEE with synchronous data and our proposed approach for asyn-
chronous data are valid when the data are missing completely at random as
in [5, 8]. In GEE, with time-dependent covariates, [10] showed that parameter
estimates are generally biased unless (i) the mean for the response at time t
given all past, present, and future covariate values is equal to the that given the
covariate values observed at t or unless (ii) independence estimating equations
are used. The condition (i) is a strong assumption. When data are missing at
random, (i) cannot be verified with the observed data and (ii) is a conserva-
tive approach which ensures valid estimation using complete data observations
regardless whether (i) holds. When (ii) is adopted, it is challenging to improve
efficiency, since the correlation structure in the data cannot be exploited in the
working covariance matrix. Similar issues arise in our asynchronous data set-up,
with further work needed to understand the extent to which valid estimation
may be achieved with non-diagonal working covariance matrices and whether
efficiency gains might be achievable. The efficiency issue is complicated by the
fact that the asynchronous data estimators converge more slowly than the usual
parametric rate obtained by GEE with synchronous data.

A key assumption for the proposed estimators is that the measurement times
for previous covariates are independent of the current and future observed re-
sponses. This assumption excludes certain missing at random settings under
which GEE with synchronous data might yield valid estimation based only on
complete observations. On the other hand, GEE does not allow non-ignorable
missingness. This contrasts with our approach, in which the missingness mecha-
nism is specified by the bivariate intensity for the measurement times for the re-
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sponses and covariates. Our assumptions allow non-ignorable missingness when
the probability of observing a covariate, e.g., the measurement time intensity,
depends on the value of the missing covariate. Our approach fails with non-
ignorable missingness when the probability of observing a response depends on
the value of the missing response.

Appendix A: Appendix

This appendix includes proofs of Theorems 2–4, practical implementation of the
proposed method and its proof and additional simulations.

A.1. Proof of Theorem 2

Proof. The key idea is to establish the following relationship

sup
|β−β0|<M(nh)−1/2

∣∣∣(nh)1/2Un(β)− (nh)1/2[Un(β0)− E{Un(β0)}] + (nh)1/2

A(β0)(β − β0)
∣∣∣Cn1/2h3/2 + op(n

1/2h3/2) + op{1 + (nh)1/2|β − β0|}, (A.1)

where A(β0) is given in Theorem 2 and

C = 2

∫ 1

0

zK(z)dz

∫ 1

0

{∂Fβ0(s, t)/∂tt=s+ − ∂Kβ0(s, t)/∂tt=s+}ds.

To obtain (A.1), first, using Pn and P to denote the empirical measure and true
probability measure respectively, we obtain

(nh)1/2Un(β) = (nh)1/2(Pn − P)∫ 1

0

∫ 1

0

Kh(t− s)I{s < t, dNi(t, u) = 0}X(s)
[
Y (t)− g{X(s)Tβ}

]
dN(t, s)

+ (nh)1/2E∫ 1

0

∫ 1

0

Kh(t− s)I{s < t, dNi(t, u) = 0}X(s)
[
Y (t)− g{X(s)Tβ}

]
dN(t, s)

= I + II. (A.2)

For the second term on the right-hand side of (A.2), we have

II = (nh)1/2
∫ 1

0

∫ 1

0

Kh(t− s)E
( [

X(s)g{X(t)Tβ0} −X(s)g{X(s)Tβ}
]

λ{t, s;X(s)}
)
dtds

= (nh)1/2
∫ 1

0

∫ 1

0

K(z)E
( [

X(s)g{X(s+ hz)Tβ0} −X(s)g{X(s)Tβ}
]

λ{s+ hz, s;X(s)}
)
dzds.
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Note Fβ0(s, t) = E[X(s)g{X(t)Tβ0}λ{t, s;X(s)}, Kβ(s, t) = E[X(s)g{X(s)Tβ}
λ{t, s;X(s)}]. After Taylor expansion of Fβ0(s, s + hz) and Kβ(s, s + hz), we
obtain

II = (nh)1/2
[ ∫ 1

s=0

∫ 1

z=0

K(z)dz{Fβ0(s, s)−Kβ(s, s)}ds
]

+ n1/2h3/2
[ ∫ 1

s=0

∫ 1

0

zK(z)dz{∂Fβ0(s, s+)/∂t− ∂Kβ(s, s+)/∂t}ds

+ Op(n
1/2h5/2),

where we use the assumptions that Fβ0(s, t) and Kβ(s, t) are continuous func-
tions for (s, t) ∈ [0, 1]⊗2 and they have continuous left and right derivatives

specified in (C0). Let h → 0 and since
∫ 1

0
K(z) = 0.5, we extract the main

terms

II = −1

2
(nh)1/2

∫ 1

s=0

E
[
X(s)g′{X(s)Tβ0}X(s)Tλ{s, s;X(s)}

]
ds(β − β0)

+ Cn1/2h3/2 + op(n
1/2h3/2) + (nh)1/2o(|β − β0|) (A.3)

≡ −(nh)1/2A(β0)(β − β0) + Cn1/2h3/2 + op(n
1/2h3/2) + (nh)1/2o(|β − β0|).

Moreover, A(β0) is a positive-definite matrix from (C1), thus non-singular.
For the first term on the right-hand side of (A.2), we consider the class of

functions

{
∫ ∫

h1/2Kh(t− s)I{s < t,

∫ t

s

dNi(t, u) = 0}X(s)
[
Y (t)− g{X(s)Tβ}

]

dN(t, s) : |β − β0| < ε}
for a given constant ε. Note that the functions in this class are Lipschitz con-
tinuous in β and the Lipschitz constant is uniformly bounded by

M1 = sup
|β−β0|<ε

∫ ∫
h1/2Kh(t− s)‖X(s)‖2‖g′(X(s)Tβ)‖dN(t, s).

Since by (C2),

M2
1 ≤

∫ ∫
hKh(t− s)2‖X(s)‖4q(‖X(s)‖)2dN(t, s)N(τ, τ),

we have

{M2
1 |N(·, ·)} ≤ N(τ, τ)

∫ ∫
hKh(t− s)2E{‖X(s)‖4q(‖X(s)‖)2}dN(t, s)

≤ M2N(τ, τ)

∫ ∫
hKh(t− s)2dN(t, s)

for some constantM2. Conditional onN(τ, τ), E{
∫ ∫

hKh(t−s)2dN(t, s)|N(τ, τ)}
can be easily verified to be finite. Thus, E(M2

1 ) is finite. Therefore, this class
is a P-Donsker class by the Jain-Marcus theorem [17]. As the result, we obtain
that the first term in the right-hand side of (A.2) for |β − β0| < M(nh)−1/2 is
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equal to

(nh)1/2(Pn − P)

∫∫
Kh(t− s)

I{s < t,

∫ t

s

dNi(t, u) = 0}X(s)
[
Y (t)− g{X(s)Tβ0}

]
dN(t, s) + op(1)

= (nh)1/2
[
Un(β0)− E {Un(β0)}

]
+ op(1). (A.4)

Combining (A.3) and (A.4) and by condition (C3), we obtain (A.1). Conse-
quently,

(nh)1/2A(β0)(β̂ − β0) + Cn1/2h3/2 + op(n
1/2h3/2)

+ op{1 + (nh)1/2|β̂ − β0|} = (nh)1/2 [Un(β0)− E {Un(β0)}] . (A.5)

On the other hand, following the similar argument as before, we can calculate

Σ = hvar

∫∫
Kh(t− s)I{s < t,

∫ t

s

dNi(t, u) = 0}X(s)
[
Y (t)− g{X(s)Tβ0}

]

dN(t, s) == hE
[
var

{
D
∣∣∣X(s), s ∈ [0, τ ];N(t, s), (t, s) ∈ [0, 1]⊗2

}]

+ hvar
(
E{D

∣∣∣X(s), s ∈ [0, τ ];N(t, s), (t, s) ∈ [0, 1]⊗2}
)

= hE
(∫∫ ∫∫

Kh(t1 − s1)Kh(t2 − s2)X(s1)X(s2)
T [r{t1, t2, X(t1), X(t2)}

+ g{X(t1)
Tβ0}g{X(t2)

Tβ0}]I{s1 < t1,

∫ t1

s1

dN(t1, u1) = 0}

{s2 < t2,

∫ t2

s2

dN(t2, u2) = 0}dN(t1, s1)dN(t2, s2)
)

− hE
[ ∫∫

Kh(t− s)I{s < t,

∫ t

s

dN(t, u) = 0}X(s)g{X(t)Tβ0}dN(t, s)
]2

+ hE

∫∫ ∫∫
Kh(t1 − s1)

[
g{X(t1)

Tβ0} − g{X(s1)
Tβ0}

]
X(s1)X(s2)

T

I{s1 < t1,

∫ t1

s1

dN(t1, u1) = 0}
[
g{X(t2)

Tβ0} − g{X(s2)
Tβ0}

]

I{s2 < t2,

∫ t2

s2

dN(t2, u2) = 0}Kh(t2 − s2)dN(t1, s1)dN(t2, s2)

− h{
∫∫

Kh(t− s)I(s < t)E(X(s)[g{X(t)Tβ0} − g{X(s)Tβ0}]

λ{t, s;X(s)}dtds)}2

= I1 − I2 + I3 − I4.

Using conditioning argument, we obtain

I1 = h

∫
t1 �=t2

∫
s1 �=s2

I(s1 < t1, s2 < t2)Kh(t1 − s1)Kh(t2 − s2)
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E
(
X(s1)X(s2)

T [r{t1, t2, X(t1), X(t2) + g{X(t1)
Tβ0}g{X(t2)

Tβ0}]

λ{t2, s2;X(s2)}
)
f(t1, t2, s1, s2)dt1ds1dt2ds2

+ h

∫
t1

∫
s1 �=s2

I(s1 < t1, s2 < t1)Kh(t1 − s1)Kh(t1 − s2)

E
{
X(s1)X(s2)

T [σ2{t1, X(t1)}

+ g{X(t1)
Tβ0}2]λ{t1, s2;X(s2)}

}
f(t1, t1, s1, s2)dt1ds1ds2

+ h

∫
t1 �=t2

∫
s1

I(s1 < t1, s1 < t2)Kh(t1 − s1)Kh(t2 − s1)

E
(
X(s1)X(s1)

T [r{t1, t2, X(t1), X(t2)}

+ g{X(t1)
Tβ0}g{X(t2)

Tβ0}]λ{t2, s1;X(s1)}
)
f(t1, t2, s1, s1)dt1ds1dt2

+ h

∫
t1

∫
s1

I(s1 < t1)Kh(t1 − s1)
2E

(
X(s1)X(s1)

T

[σ2{t1, X(t1)}+ g{X(t1)
Tβ0}2]λ{t1, s1;X(s1)}

)
dt1ds1.

After change of variable and incorporating conditions (C2) and (C3), the first
three terms in I1 are all of order O(h) and the last term equals to

∫ 1

0

K(z)2dz

∫
E
(
X(s)X(s)T [σ2{s,X(s)}+ g{X(s)Tβ0}2]λ{s, s;X(s)}

)
ds.

So we have

I1 =

∫ 1

0

K(z)2dz

∫
E
(
X(s)X(s)T [σ2{s,X(s)}+ g{X(s)Tβ0}2]

λ{s, s;X(s)}
)
ds+O(h).

Similarly, it can be shown that

I2 =

∫ 1

0

K(z)2dz

∫
E
[
X(s)X(s)T g{X(s)Tβ0}2λ{s, s;X(s)}

]
ds+O(h), (A.6)

and I3 − I4 = O(h). Therefore, we have

Σ =

∫ 1

0

K(z)2dz

∫
E
[
X(s)X(s)Tσ2{s,X(s)}λ{s, s;X(s)}

]
ds. (A.7)

To prove the asymptotic normality, we verify the Lyapunov condition. Define

ψi = (nh)1/2n−1

∫∫
I{s < t,

∫ t

s

dNi(t, u) = 0}Kh(t− s)Xi(s)

[
Yi(t)− g{Xi(s)

Tβ0}
]
dNi(t, s).

Similar to the calculation of Σ,
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n∑
i=1

E
(
|ψi − Eψi|3

)
= nO{(nh)3/2n−3h−2} = O{(nh)−1/2}.

Therefore,

(nh)1/2
[
Un(β0)− E {Un(β0)}

]
→d N(0,Σ). (A.8)

Combing with (A.5), we finish the proof of Theorem 2.

A.2. Proofs of Theorem 3 and Theorem 4

Proof. The proofs of Theorem 3 and Theorem 4 are very similar to the proof
of Theorem 2 and thus omitted.

A.3. Consistency of variance estimation

For statistical inference, we estimate Σ by

Σ̂ = n−2
n∑

i=1

(∫ 1

0

∫ 1

0

I{s < t,

∫ t

s

dNi(s, u) = 0}

Kh(t− s)Xi(s)[Yi(t)− g{Xi(s)
T β̂}]dNi(t, s)

)⊗2

and estimate the variance of β̂ by the sandwich formula
{∂Un(β)/∂β |β=β̂}−1Σ̂[{∂Un(β)/∂β |β=β̂}−1]T . Similar estimator can be ob-

tained for Σ̂∗ and Σ̂f . Denote Lβ(s, t) = E
[
X(s)σ2{t,X(t)}X(s)Tλ{t, s;X(s)}

]
and its first order partial right and left derivative with respect to t ∈ [0, 1] as
L̇β(s, s+) and L̇β(s, s−). We need the following assumptions.

(C5) For any β in a neighborhood of β0, Lβ(s, t) and L̇(s, s+) are continuous
functions.

(C5*) For any β in a neighborhood of β0, Lβ(s, t), L̇β(s, s+) and L̇β(s, s−) are
continuous functions.

Theorem 5. Under (C5) and the assumptions in Theorem 1, Σ̂ is consistent
for Σ; under (C5) and assumptions in Theorem 2, Σ̂∗ is consistent for Σ∗; and
under (C5*) and assumptions in Theorem 3, Σ̂f is consistent for Σf .

Proof. To begin with, we have

∂Un(β)

∂β
= n−1

n∑
i=1

∫∫
I{s < t,

∫ t

s

dNi(s, u) = 0}

Kn(t− s)Xi(s)
[
− g

′{Xi(s)
Tβ}Xi(s)

T
]
dNi(t, s).

Using a similar argument to obtain equation (A.4), we show

{
∫∫

I{s < t,

∫ t

s

dN(s, u) = 0}Kn(t− s)X(s)
[
− g

′{X(s)Tβ}X(s)T
]
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dN(t, s) : |β − β0| < ε}

is a P-Glivenko-Cantelli class. Therefore,

sup
|β−β0|<ε

|∂Un(β)

∂β
|β=β̂ − E{∂Un(β)

∂β
}|β=β̂ | → 0

in probability. Since β̂ is consistent for β0, by continuous mapping theorem,
∂Un(β)

∂β |β=β̂ converges in probability to −A(β0). Similarly, let

Σ̂(β) = n−2
n∑

i=1(∫∫
I{s < t,

∫ t

s

dN(s, u) = 0}Kh(t− s)Xi(s)[Yi(t)− g{Xi(s)
Tβ}]dNi(t, s)

)⊗2

then sup|β−β0|<ε |Σ̂(β)− E{Σ̂(β)}| → 0 in probability. On the other hand,

E{Σ̂(β)} = n−1

E
(∫∫

I{s< t,

∫ t

s

dN(s, u)= 0}Kh(t− s)X(s)[Y (t)− g{X(s)Tβ}]dNi(t, s)
)⊗2

.

After change of variables, and by (C0),

E{Σ̂(β)}

= (nh)−1

∫∫ {
K(z)2E

(
X(s)

[
σ2{s+ hz,X(s+ hz)}+ g{X(s+ hz)Tβ}2

− 2g{X(s+ hz)Tβ}g{X(s)Tβ}+ g{X(s)Tβ}2
]
X(s)Tλ{s+ hz, s;X(s)}

)

+ o(h)
}
dsdz

= (nh)−1
{∫∫

K(z)2E[X(s)σ2{s,X(s)}X(s)Tλ{s, s;X(s)}]dzds+ o(h)
}

= (nh)−1Σ.

Therefore,

(nh)Σ̂
p→ Σ as nh → ∞.

The consistency of variance estimate follows.
Similarly, we can show that Σ̂∗ → Σ∗ in probability and Σ̂f → Σf in proba-

bility.

A.4. Automatic bandwidth selection

Our method depends on the selection of bandwidth. We propose a data adaptive
bandwidth selection procedure due to the fact that traditional cross-validation
methods are not applicable as we have asynchronous measurement times for
the covariates and response. Based on (2.7), (2.10) and (2.13), we first regress
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β̂(h) on h in a reasonable range of h to obtain the slope estimate Ĉ. To obtain
the variance, we split the data randomly into two parts and obtain regression
coefficient estimates β̂1(h) and β̂2(h) based on each half sample. The variance

of β̂(h) is estimated by V̂ (h) = {β̂1(h) − β̂2(h)}2/4. Using both Ĉ and V̂ (h),
we thus calculate the mean squared error as Ĉ2h2+ V̂ (h). Finally, we select the
optimal bandwidth h minimizing this mean squared error.

A.5. Additional simulations

We report additional simulations with sample size n = 200 in Table 5.
The data generation for IPW is as follows. For each subject, the number

of measurements is 5 for both covariate and response. Covariate observation
times sik, k = 1, . . . ,Mi and response observation times tij , j = 1, . . . , Li are
independently generated as U(0, 1). sik and tij are pooled together to have
measurement times for both covariate and response. For each subject, covariate
X(t) is generated as a multivariate normal distribution with mean 0, variance 1
and covariance e−|t1−t2| between X(t1) and X(t2); error term ε(t) is generated
as a multivariate normal distribution with mean 0, variance 1 and covariance
2−|t1−t2| between ε(t1) and ε(t2). For subject i, Yi(t) = 1.5+1.5Xi(t)+εi(t). We
remove observations Yi(sik), k = 1, . . . ,Mi to create asynchronous longitudinal
data structure. The estimating equation with IPW is

U1(β) = n−1
n∑

i=1

Li∑
j=1

Δij{Yi(tij)− β0 −Xi(t
0
ij)β1}

p(Δij = 1)
, (A.9)

where Δij is the indicator function for the complete pair (Xi(t
0
ij), Yi(tij)). For

the last observation carried forward, t0ij = max(x ≤ tij , x ∈ {si1, . . . , siMi})
and for the nearest covariate, we have t0ij = {x ∈ (si1, . . . , siMi), such that|x −
tij |is minimized}. Xi singletons are missing responses. We then fit a logistic
regression to the missing data variable defined in this way using covariate mea-
surement times to estimate p(Δij = 1). The results are summarized in Table 3.
It can be seen that IPW incurs substantial bias, which does not attenuate as
sample size increases and therefore should be not used to analyze asynchronous
longitudinal data.

References

[1] Cao, H., Zeng, D. and Fine, J. P. (2015). Regression analysis of sparse asyn-
chronous longitudinal data. J. R. Stat. Soc. B 77, 755–776. MR3382596

[2] Cook, R. J., Zeng, L. and Yi, G. Y. (2004). Marginal analysis of incom-
plete longitudinal binary data: a cautionary note on LOCF imputation.
Biometrics 60, 820–838. MR2101446

[3] Diggle, P., Heagerty, P., Liang, K. Y. and Zeger, S. L. (2002). Analysis of
Longitudinal Data (2nd ed.), Clarendon, TX: Clarendon Press. MR2049007

http://www.ams.org/mathscinet-getitem?mr=3382596
http://www.ams.org/mathscinet-getitem?mr=2101446
http://www.ams.org/mathscinet-getitem?mr=2049007


Weighted last observation carried forward 1179

Table 5

Results of 1000 simulations with n = 200. A: assumptions in Cao et al. (2015) hold; B:
covariates follow Poisson process.

BD Bias RB SD SE CP
A

weighted LOCF
0.005 0.0117 0.0078 0.2423 0.2115 89.61
0.015 -0.0098 -0.0065 0.1424 0.1336 92.51
0.025 -0.0165 -0.0110 0.1168 0.1106 92.61
0.035 -0.0217 -0.0144 0.1055 0.0994 92.41
auto -0.0187 -0.0124 0.2440 0.2053 88.71

half kernel
0.005 -0.0047 -0.0031 0.2462 0.2085 87.21
0.015 -0.0097 -0.0065 0.1452 0.1349 92.91
0.025 -0.0142 -0.0095 0.1174 0.1128 93.11
0.035 -0.0188 -0.0125 0.1045 0.1013 93.51
auto -0.0013 -0.0009 0.2087 0.1837 89.51

full kernel
0.005 -0.0122 -0.0081 0.1754 0.1574 91.91
0.015 -0.0119 -0.0079 0.1079 0.1043 93.61
0.025 -0.0181 -0.0120 0.0940 0.0896 92.81
0.035 -0.0227 -0.0151 0.0874 0.0823 91.21
auto -0.0040 -0.0027 0.1594 0.1458 91.01
B

weighted LOCF
0.05 -0.0054 -0.0036 0.0637 0.0589 92.61
0.1 -0.0054 -0.0036 0.0536 0.0507 92.21
0.15 -0.0073 -0.0048 0.0504 0.0483 93.21
0.2 -0.0097 -0.0065 0.0492 0.0475 93.51
auto 0.0014 0.0010 0.0619 0.0591 94.31

half kernel
0.05 -0.0060 -0.0040 0.0653 0.0603 93.01
0.1 -0.0057 -0.0038 0.0560 0.0527 91.71
0.15 -0.0082 -0.0055 0.0530 0.0508 92.91
0.2 -0.0114 -0.0076 0.0519 0.0505 93.61
auto -0.0019 -0.0012 0.0614 0.0597 93.81

full kernel
0.05 -0.0207 -0.0138 0.0510 0.0496 92.11
0.1 -0.0452 -0.0301 0.0454 0.0454 81.92
0.15 -0.0717 -0.0478 0.0442 0.0444 63.44
0.2 -0.1012 -0.0674 0.0444 0.0444 38.56
auto -0.0703 -0.0469 0.0466 0.0443 63.34

Note: “BD” represents different bandwidths, “Bias” is the empirical bias, “RB” is the “Bias”
divided by the true β1, “SD” is the sample standard deviation, “SE” is the average of the
standard error estimates and “CP (%)” represents the coverage probability of the 95%

confidence interval for β̂1.

[4] Lavori, P. W. (1992). Clinical trials in psychiatry: should protocol deviation
censor patient data? Neuropsychopharmacology 6, 39–48.

[5] Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using gen-
eralized linear model. Biometrika 73, 13–22. MR0836430

[6] Lin, H., Scharfstein, D. O. and Rosenheck, R. A. (2004). Analysis of longi-
tudinal data with irregular, outcome-dependent follow-up. J. Roy. Statist.
Soc. Ser. B 66, 791–813. MR2088782

http://www.ams.org/mathscinet-getitem?mr=0836430
http://www.ams.org/mathscinet-getitem?mr=2088782


1180 H. Cao et al.

[7] Lin, D. and Ying, Z. (2001). Semiparametric and nonparametric regres-
sion analysis of longitudinal data. J. Amer. Statist. Assoc. 96, 103–113.
MR1952726

[8] Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing
Data (2nd ed.), New York: Wiley. MR1925014

[9] Molenberghs, G., Thijs, H., Jansen, I., Beunckens, C., Kenward, M. G.,
Mallinckrodt, C. and Carroll, R. J. (2004). Analyzing incomplete longitu-
dinal clinical trail data. Biostatistics 5, 445–464.

[10] Pepe, M. S. and Anderson, G. L. (1994) A cautionary note on inference for
marginal regression models with longitudinal data and general correlated
response data. Communications in Statistics – Simulation and Computa-
tion 23, 939–951.

[11] Phillips, A. N. et al. (2001). HIV viral load response to antiretroviral ther-
apy according to the baseline CD4 cell count and viral load. The Journal
of American Medical Association. 286, 2560–2567.

[12] Robins, J. M., Rotnitzky, A., Zhao, L. P. (1994). Estimation of regression
coefficients when some regressors are not always observed. J. Amer. Statist.
Assoc. 89, 846–866. MR1294730

[13] Robins, J. M., Rotnitzky, A., Zhao, L. P. (1995). Analysis of semiparametric
regression models for repeated outcomes in the presence of missing data.
J. Amer. Statist. Assoc. 90, 106–121.. MR1325118

[14] Rubin, D. (1996). Multiple imputation after 18+ years. J. Amer. Statist.
Assoc. 91, 473–489.

[15] Sentürk, D., Dalrymple, L. S., Mohammed, S. M., Kaysen, G. A. and
Nguyen, D. V. (2012). Modeling time-varying effects with generalized and
unsynchronized longitudinal data. Statist. Med. 32, 2971–2987. MR3073830

[16] Sun, J., Park, D-H., Sun, L. and Zhao, X. (2005). Semiparametric regression
analysis of longitudinal data with informative observation times. J. Amer.
Statist. Assoc. 100, 882–889. MR2201016

[17] van der Vaart A. and Wellner, J. (1996). Weak Convergence and Empirical
Processes. New York: Springer. MR1385671

[18] Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longi-
tudinal Data. New York: Springer. MR1880596

[19] Wohl, D, Zeng, D., Stewart, P., Glomb, N., Alcorn, T., Jones, S., Handy,
J., Fiscus, S., Weinberg, A., Gowda, D. and van der Horst, C. (2005).
Cytomegalovirus viremia, mortality and cmv end-organ disease among pa-
tients with AIDS receiving potent antiretroviral therapies. Journal of AIDS
38, 538–544.

[20] Xiong, X. and Dubin, J. A. (2010). A binning method for analyzing mixed
longitudinal data measured at distinct time points. Statist. Med. 29, 1919–
1931. MR2758463

http://www.ams.org/mathscinet-getitem?mr=1952726
http://www.ams.org/mathscinet-getitem?mr=1925014
http://www.ams.org/mathscinet-getitem?mr=1294730
http://www.ams.org/mathscinet-getitem?mr=1325118
http://www.ams.org/mathscinet-getitem?mr=3073830
http://www.ams.org/mathscinet-getitem?mr=2201016
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=1880596
http://www.ams.org/mathscinet-getitem?mr=2758463

	Introduction
	Main results
	Full kernel estimation
	Weighted LOCF estimation
	Half kernel estimation
	Revisiting full kernel estimation

	Simulation studies and a real example
	Concluding remarks
	Appendix
	Proof of Theorem 2
	Proofs of Theorem 3 and Theorem 4
	Consistency of variance estimation
	Automatic bandwidth selection
	Additional simulations

	References

