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Analysis of the Proportional Hazards Model With
Sparse Longitudinal Covariates

Hongyuan CAO, Mathew M. CHURPEK, Donglin ZENG, and Jason P. FINE

Regression analysis of censored failure observations via the proportional hazards model permits time-varying covariates that are observed at
death times. In practice, such longitudinal covariates are typically sparse and only measured at infrequent and irregularly spaced follow-up
times. Full likelihood analyses of joint models for longitudinal and survival data impose stringent modeling assumptions that are difficult to
verify in practice and that are complicated both inferentially and computationally. In this article, a simple kernel weighted score function
is proposed with minimal assumptions. Two scenarios are considered: half kernel estimation in which observation ceases at the time of the
event and full kernel estimation for data where observation may continue after the event, as with recurrent events data. It is established
that these estimators are consistent and asymptotically normal. However, they converge at rates that are slower than the parametric rates
that may be achieved with fully observed covariates, with the full kernel method achieving an optimal convergence rate that is superior
to that of the half kernel method. Simulation results demonstrate that the large sample approximations are adequate for practical use
and may yield improved performance relative to last value carried forward approach and joint modeling method. The analysis of the
data from a cardiac arrest study demonstrates the utility of the proposed methods. Supplementary materials for this article are available
online.

KEY WORDS: Convergence rates; Cox model; Kernel weighted estimation.

1. INTRODUCTION

In biomedical and public health research, it is common to
observe both longitudinal data, with repeated measurements of
a variable at a number of time points, and event history data, in
which times to recurrent or terminating events are recorded. In
such studies, investigators may be interested in evaluating the ef-
fects of longitudinal covariates on the occurrence of events. The
usual proportional hazards analysis may not be applicable when
the time-dependent covariates are measured intermittently.

These issues may be understood more precisely by represent-
ing the event history using counting processes. In the failure
time setting, N (t) indicates whether an event has occurred by
time t and Z(·) is a p-dimensional covariate process. For single
event data, the Cox model specifies the hazard function for N (t)
conditionally on the history of Z(r), r ≤ t as

λ{t | Z(r), r ≤ t} = λ0(t)eβT
0 Z(t), (1.1)

where λ0(·) is an unspecified baseline hazard function and β0 is a
vector of unknown regression parameters. With recurrent event
data, there may be multiple jumps in N (t) and model (1.1) refers
to the Andersen and Gill (1982) proportional intensity model.
The standard partial likelihood analysis of the model (1.1) re-
quires the full trajectory of the covariates. Similar issues arise
with recurrent events when relaxing the intensity assumption
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(1.1) to the proportional rate model

E{dN(t)|Z(t)} = eβT
0 Z(t)dμ0(t), (1.2)

where μ0(·) is an unspecified function and β0 is a vector of
unknown regression parameters. The estimation procedures for
models (1.1) and (1.2) require knowledge of Z(t) at those event
times where a subject is still under observation.

The simplest method for handling incompletely observed lon-
gitudinal covariates in the above models is to naı̈vely impute
missing values using the last value carried forward approach.
The missing values of Z(r) may be replaced by the most recent
observed values of Z(u), u ≤ r. This approach may be general-
ized to permit additional usage of lagged covariates, as discussed
in Andersen and Liestol (2003). While these ad hoc imputation
approaches are conceptually simple and may be implemented
using standard software, they lack rigorous theoretical justifi-
cation and may incur substantial bias. An alternative to these
naı̈ve techniques is to jointly model the longitudinal covari-
ates and the event history data (Ibrahim, Chu, and Chen 2010).
There has been considerable interest in modeling the depen-
dence between these two processes via shared random effects
(Hogan and Laird 1997). Under such assumptions, the joint dis-
tribution of N (·) and Z(·) may be fully specified (Degruttola
and Tu 1994; Faucett and Thomas 1996; Henderson, Diggle,
and Dobson 2000; Xu and Zeger 2001). To obtain more flexi-
ble modeling, Yao (2007) adopted a nonparametric functional
principal component approach to model the longitudinal process
and Cox model for the time-to-event outcome. The modeling as-
sumptions are rather strong and the computation and inference
are complicated, requiring full nonparametric maximum like-
lihood (Tsiatis, Degruttola, and Wulfsohn 1995; Wulfsohn and
Tsiatis 1997; Zeng and Cai 2005; Dupuy, Grama, and Mesbah
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2006) or likelihood-motivated procedures, like the conditional
score approach in Tsiatis and Davidian (2001). The theoretical
justification depends critically on correct model specification,
which may involve assumptions that are unverifiable from the
observed data. A comprehensive review of the joint modeling
approach is given in Tsiatis and Davidian (2004) and Rizopoulos
(2012).

In this article, we develop simple, computationally efficient,
and theoretically justified estimators for models (1.1) and (1.2)
using intermittently collected longitudinal covariates that re-
quire minimal assumptions on the joint distribution of N (·)
and Z(·). The main idea is to modify the naı̈ve imputation ap-
proaches like those in Andersen and Liestol (2003) to obtain
theoretically justified estimation procedures that are valid un-
der weak assumptions. A kernel weighting scheme is used to
downweight imputed covariate values in the partial likelihood,
where those observations that are distant in time from the event
time receive less weight. Such kernel weighting approach has
been adopted by Cai and Sun (2003) and Tian, Zucker, and Wei
(2005) for time-dependent coefficient in Cox model. However,
there are fundamental differences between our work and the
time-varying coefficient methodology. The estimation of time-
varying regression parameters assumes that the covariate effect
varies with respect to time while we assume that the covariate is
a dynamic process with fixed coefficient. The smoothing meth-
ods employed by Cai and Sun (2003) and Tian, Zucker, and Wei
(2005), which localize the partial likelihood in time are not ap-
plicable in our setting, where smoothing occurs at the individual
level, as opposed to the population level, where the same weights
are applied to all individuals. The dependence structure between
the longitudinal measurements and the event history process is
otherwise unspecified, in contrast to the joint models. With a
suitable choice of the bandwidth, the estimators for the regres-
sion coefficients are consistent and asymptotically normal, with
simple plug-in variance estimators. Interestingly, the optimal
rates of convergence for β0 are slower than the usual parametric
rate with time-invariant covariates. For recurrent events data,
one may include both forward and backward lagged covariates,
employing covariate information observed after event times.
Our theoretical results demonstrate that using all available co-
variate information yields an estimator that converges at n2/5,
while the estimator that only uses backward lagged covariates
converges more slowly than n2/5. These results are detailed in
Sections 2 and 3.

In Section 2, we propose an estimation for the Cox model
for single event data using half kernel smoothing with back-
ward lagged covariates and present the corresponding theoreti-
cal findings. The results for full kernel smoothing including both
forward and backward lagged covariates are given in Section 3.
We report the results of our simulation studies in Section 4,
exhibiting improved performance versus the last value carried
forward approach and joint modeling method. The joint model-
ing approach exhibits efficiency gains when the joint model is
correctly specified but may exhibit substantial bias and poor cov-
erage under model misspecification. We then apply our method
to data from a cardiac arrest study in Section 5. In this analysis,
the joint modeling approach has convergence issues, with the
corresponding results being somewhat unreliable. Concluding
remarks are given in Section 6. Proofs of the results from Sec-

tions 2 and 3 are given in the Appendix provided in an online
supplementary materials file.

2. HALF KERNEL ESTIMATION WITH BACKWARD
LAGGED COVARIATES

Let T be the failure time and let C be the corresponding
censoring variable. We assume that censoring is coarsened at
random such that T and C are conditionally independent given
Z(·) (Gill, van der Laan, and Robin 1997). Let {(Ti, Zi(·), Ci),
i = 1, . . . , n} be n independent copies of {(T ,Z(·), C)}. The
longitudinal covariates are observed at Mi observation times
Rik ≤ Xi, k = 1, . . . ,Mi, where Xi = min(Ti, Ci), and Mi is
assumed finite with probability one such that the observed co-
variates are sparse. The p-dimensional covariate process may
include both time-independent and time-dependent covariates,
under the restriction that the time-dependent covariates are ob-
served at the same time points within individuals. The timing of
the measurements Rik, k = 1, . . . ,Mi is assumed exogenous in
the sense that the decision to schedule a measurement is made
independently of the measurement. The observed data con-
sist of the n independent realizations {Xi,�i, Zi(Rik), Rik, k =
1, . . . ,Mi}, i = 1, . . . , n, where �i equals 1 if Xi = Ti and 0
otherwise.

Following Andersen and Liestol (2003), one may use back-
ward lagged covariates in imputing missing covariates in the
partial likelihood for estimation of β0 in model (1.1). To ease
the presentation, we adopt the counting process notation, where
Ni(t) = I (Xi ≤ t,�i = 1) and Yi(t) = I (Xi ≥ t). If the covari-
ate Zi(t) were fully observed for all t < Xi, then one might
construct the following partial likelihood

Ln(β) =
n∏

i=1

∏
t≥0

{
eβT Zi (t)∑n

j=1 Yj (t)eβT Zj (t)

}�Ni (t)

, (2.3)

where

�Ni(t) =
{

1 if Ni(t) − Ni(t−) = 1
0 otherwise.

The log partial likelihood is

ln(β) = n−1logLn(β) = n−1
n∑

i=1

∫ τ

0

[
βT Zi(u)

−log

{ n∑
j=1

Yj (u)eβT Zj (u)

}]
dNi(u),

where τ is a prespecified time point such that pr (Xi > τ ) > 0.
Because Zi(u), i = 1, . . . , n, are not observed continuously,
ln(β) is not computable from the observed data. We propose
using lagged covariate values with observation times smaller
than u, where we downweight covariates at times distant from u
in dNi(u) and Yi(u). This approach formalizes the lagging strat-
egy in Andersen and Liestol (2003), with the kernel weighting
enabling the use of all available lagged covariates. If the co-
variate observation times for a subject are all far away from
the event time, then this subject may be disregarded in the cal-
culation of partial likelihood but not in the last value carried
forward approach, where the most recent observed covariate is
used. With irregularly observed longitudinal covariates, as the
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number of subjects increases, borrowing strength across sub-
jects, the longitudinal measurements times will become dense.
To exploit this accumulation of information, one may “smooth”
an individual’s contributions to the partial likelihood based on
the distance of their observed covariates to the time of interest.
The resulting log partial likelihood up to time t is

l∗n(β, t) = n−1
n∑

i=1

∫ t

0

[ Mi∑
k=1

Khn
(u − Rik)I (Rik ≤ u)

×
{
βT Zi(Rik) − log

n∑
j=1

Mj∑
l=1

Khn
(u − Rjl)

× I (Rjl ≤ u)Yj (u)eβT Zj (Rjl )

}]
dNi(u), (2.4)

where Khn
(t) = K(t/hn)/hn, hn is the bandwidth and the kernel

function K(t) is a symmetric probability density with support
[−1, 1], mean 0, and bounded first derivative.

Define β̂n to be maximizer of l∗n(β, τ ). This estimator is a root
of the score function Un(β) = 0, where

Un(β) = n−1
n∑

i=1

∫ τ

0

[∫
Khn

(u − r)I (r ≤ u){Zi(r)

−Z̄(β, u)}dN∗
i (r)

]
dNi(u), (2.5)

Z̄(β, t) = S(1)
n (β, t)

S
(0)
n (β, t)

,

S(k)
n (β, t) = n−1

n∑
i=1

Mi∑
j=1

Khn
(t − Rij )I (Rij

≤ t)Yi(t)Zi(Rij )⊗keβT Zi (Rij ), k = 0, 1, 2,

a⊗0 = 1, a⊗1 = a, a⊗2 = aaT . For i = 1, . . . , n, N∗
i (t) =∑Mi

k=1 I (Rik ≤ t) is a realization of N∗(t), the counting process
for the covariate observation times. Observe that the smooth-
ing leads to different weights for different individuals inside
the integral in Un(β), which differs from smoothing methods
for proportional hazards model with time-dependent regression
parameters (Cai and Sun 2003; Tian, Zucker, and Wei 2005),
where the same weights are applied to all individuals inside the
integral. Since (2.4) is concave in β, there exists a unique root
of the estimating function (2.5).

In addition, E{dN∗(t)} = λ∗(t)dt, and E[dN(t)|Fs , s ≤ t]
= Y (t)eβT

0 Z(t)λ0(t)dt , where λ∗(t) and λ0(t) are twice continu-
ous differentiable and strictly positive for t ∈ [0, τ ], and Ft is
the filtration, which includes all information in N (s), Y (s), and
Z(s) up to time t, as well as the measurement times.

To state our key results, additional notation and regularity
conditions are needed. Denote

u1(β) ≡
∫ τ

0
λ0(u)

{
s(1)(β0, u) − z̄(β, u)s(0)(β0, u)

}
du,

where s(k)(β, t) is the limit of S(k)
n (β, t), k = 0, 1, 2. That is,

s(k)(β, t) = 2−1E
{
Y (t)Z(t)⊗keβT Z(t)

}
λ∗(t), and

z̄(β, t) = s(1)(β, t)

s(0)(β, t)
.

Let

v1(β) ≡ 2−1
∫ τ

0
λ∗(u)λ0(u)

s(0)(β0, u)

s(0)(β, u)

∗E

[
Y (u)eβT Z(u)

{
Z(u) − s(1)(β, u)

s(0)(β, u)

}⊗2]
du

and let B be a compact set of Rp that includes a neighborhood
of β0. Assume that the following conditions hold:

(A1) The covariate process Z(t) is left continuous, has right-
hand limit, and is contained in a bounded subset with
total variation bounded by a constant c < ∞ almost
surely. Moreover, E[{Z(v) − Z̄(β0, u)}Y (u)eβT

0 Z(v)] is
twice continuously differentiable for u, v ∈ [0, τ ]⊗2.

(A2) N∗(t) is independent of N (t) and Z(t). In addition,∫ τ

0 λ0(t)dt < ∞ and N∗(τ ) is bounded by a finite con-
stant.

(A3) There exists a neighborhood B of β0 such that

E
{
supt∈[0,τ ],β∈BY (t)||Z(t)Z(t)T ||eβT Z(t)

}
< ∞.

(2.6)

(A4) v1(β0) is nonsingular.
(A5) K(z) is a symmetric density function satisfying∫

K(z)2dz < ∞, hn → 0, nh3
n → 0, and nhn → ∞.

Condition (A1) posits a certain level of smoothness on Z(t). It
is worth emphasizing that joint modeling strategies (Tsiatis and
Davidian 2004) generally imply at least this level of smoothness,
if not stronger. The condition (A2) requires that the covariate ob-
servation process is independent of the covariates and the event
history process. This is somewhat stronger than the missing at
random assumption under which a valid likelihood might be
constructed with joint modeling assumptions. Condition (A3)
places mild restrictions on the variability of Z(t), which would
typically be satisfied in practice, and guarantees that β̂n has fi-
nite variance in large samples. Condition (A4) ensures that the
variance-covariance matrix is positive definite. Condition (A5)
states the restrictions on the kernel bandwidths.

The following theorem, which is established in the Appendix,
states the asymptotic properties of β̂n based on solving (2.5) with
kernel bandwidth selected to yield consistent estimation:

Theorem 1. Under conditions (A1)–(A5), β̂n is consistent and
the asymptotic distribution of β̂n satisfies√

nhn(β̂n − β0) → N
[
0,W (β0)−1�(β0){W (β0)−1}T

]
, (2.7)

where

W (β0) =
∫ τ

0

[
s(2)(β0, u) − s(1)(β0, u)⊗2

s(0)(β0, u)

]
λ0(u)du,

and

�(β0) =
∫ ∞

0
K(z)2dz

∫ τ

0

[
s(2)(β0, u) − s(1)(β0, u)⊗2

s(0)(β0, u)

]
λ0(u)du.

For statistical inference, it is challenging to estimate the
variance in (2.7) directly, owing to time-varying quantities
that depend on unknown values of Z(·), which are not avail-
able in the intermittent longitudinal covariate observations.
In practice, we employ estimating Equation (2.5) to estimate
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�(β0) by �̂ = n−2 ∑n
i=1[

∫ τ

0

∫ ∞
0 Khn

(u − r)I (r ≤ u){Zi(r) −
Z̄(β̂n, u)}dN∗

i (r)dNi(u)]⊗2 and estimate the variance of β̂n by
the sandwich formula

(
∂Un(β)

∂β

∣∣∣∣
β=β̂n

)−1

�̂

{(
∂Un(β)

∂β

∣∣∣∣
β=β̂n

)−1}T

.

Corollary 1. Under conditions (A1)–(A5), the sandwich for-
mula consistently estimates the variance of β̂n.

Our method depends on an appropriate choice of bandwidth.
Theoretically speaking, condition (A5) says that the bandwidth
cannot be too small; otherwise, the variance will be quite large.
On the other hand, to eliminate the asymptotic bias, one re-
quires a small bandwidth. With hn = o(n−1/3), we achieve an
optimal rate of convergence o(n1/3). This result provides in-
sight into the ad hoc procedure of Andersen and Liestol (2003).
When tuning the partial likelihood estimation using backward
lagged covariates to obtain a theoretically rigorous estimator,
parametric convergence rates are not achievable. This contrasts
with joint modeling approaches (Tsiatis and Davidian 2004),
where strong modeling assumptions on the joint distribution of
the covariate process and event times facilitate likelihood-based
inferences, which may achieve parametric rates of convergence
for the regression parameter β.

Numerical studies reported in Section 4 show that small bias
may be achieved for bandwidths between n−0.9 and n−0.4, with
stable variance estimation and confidence interval coverage for
bandwidths larger than n−0.7. Within this range, the bias di-
minishes as the sample size increases, as predicted by Theorem
1. In Section 4, an automatic bandwidth selection procedure is
proposed, with both the corresponding model-based variance es-
timators and confidence intervals exhibiting good performance.

3. FULL KERNEL ESTIMATION WITH FORWARD
AND BACKWARD LAGGED COVARIATES

If data continue to be collected on subjects for whom an
event has occurred, as in the recurrent events case, we may
use full kernel to impute missing values using both forward
and backward lagged covariates. Andersen and Liestol (2003)
investigated scenarios where observation terminates at the time
of the first event, as with classical right censored data, hence, did
not consider the use of forward lagged covariates. Let Ni(t) be a
recurrent event counting process and let Yi (t) = I (Ci ≥ t) be the
at risk process for subject i up to time Ci, i = 1, . . . , n. Similarly
to half kernel estimation, one may construct a smoothed partial
likelihood score function using full kernel smoothing:

Ũn(β, t) = n−1
n∑

i=1

∫ t

0

[
Mi∑
k=1

Khn
(u − Rik)

{Zi(Rik) − Z̃(β, u)}
]
dNi(u), (3.8)

where Z̃(β, t) = S̃(1)
n (β, t)/S̃(0)

n (β, t) and

S̃(k)
n (β, t) = n−1

n∑
i=1

Mi∑
j=1

Khn
(t − Rij )Yi(t)Zi(Rij )⊗keβT Zi (Rij ),

k = 0, 1, 2.

One should recognize that the smoothed estimating function
(3.8) is valid under both model (1.1) and under the weaker
proportional rate model (1.2). The results provided below hold
under the weaker assumption (1.2).

To state the main asymptotic findings for full kernel estima-
tor β̃n solving (3.8), some additional notations and conditions
are needed. For i = 1, . . . , n, Ni, Yi , and Ci are independent
realizations of random variables N, Y, and C. Denote

s̃(k)(β, t) = E[Y (t)Z(t)⊗keβT Z(t)]λ∗(t), (3.9)

where the definition of λ∗(t) is given in Section 2. We assume
that the following conditions are satisfied:

(C1) {Ni(·), Yi(·), Zi(·)}(i = 1, . . . , n) are independent and
identically distributed.

(C2) pr(C ≥ τ ) > 0, where τ is a predetermined constant.
(C3) N (τ ) and N∗(τ ) are bounded by finite constants and

μ0(t) and λ∗(t) are twice continuously differentiable.
(C4) For i = 1, . . . , n, Zi have bounded total varia-

tion, where |Zij (0)| + ∫ τ

0 |dZij (t)| ≤ K for all j =
1, . . . , p, where Zij is the jth component of Zi and K
is a constant. In addition, E{Z(s)Y (t)eβT

0 Z(t)} is twice
continuously differentiable for s, t ∈ [0, τ ]⊗2.

(C5) A(β0) ≡ ∫ τ

0 E[{Z(t) − s̃(1)(β0,t)
s̃(0)(β0,t)

}⊗2Y (t)eβT
0 Z(t)]μ0(t)dt

is positive definite.
(C6) K(z) is a symmetric density function satisfying∫ ∞

−∞ K(z)2dz < ∞. In addition, hn → 0 and nhn →
∞.

(C7) nh5
n → 0.

Conditions (C1)–(C6) are similar in spirit to those for half
kernel estimation in Section 2. Conditions (C1) and (C2) are
standard for the proportional rate model (1.2). The assumption
of bounded N (t) in (C3) is also conventional with recurrent
events over finite time intervals. Conditions (C4) and (C5) are
full kernel analogs for model (1.2) of half kernel conditions (A3)
and (A4) for model (1.1). These guarantee finiteness and positive
definiteness of the full kernel estimator’s variance-covariance
matrix. The kernel requirements in (C6) are similar to those
in (A5), with (C6) and (C7) indicating the allowable range of
bandwidth for full kernel estimation is larger than that for half
kernel estimation given in (A5). The implications of this weaker
bandwidth requirement are discussed below.

The asymptotic properties of the full kernel estimator β̃n are
detailed in the following theorem:

Theorem 2. Under conditions (C1)–(C6), the asymptotic dis-
tribution of β̃n satisfies

(nhn)1/2
{
A(β0)(β̃n − β0) + Dh2

n

} → N{0, �̃(β0)}, (3.10)

where

A(β0) = −
∫ τ

0

{
s̃(2)(β0, t) − s̃(1)(β0, t)⊗2

s̃(0)(β0, t)

}
μ0(t)dt,
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β0 is the true regression coefficient, and D is a constant vector,
which can be found in the Appendix. The asymptotic variance

�̃(β0) =
∫ ∞

−∞
K(z)2dz

∫ τ

0

{
s̃(2)(β0, t) − s̃(1)(β0, t)⊗2

s̃(0)(β0, t)

}
μ0(t)dt.

Theorem 2 permits bandwidths yielding nonzero asymptotic
biases in the standardized distribution of the estimator. If we
further restrict the bandwidths under (C7), then the asymptotic
bias vanishes. This result is stated in the following corollary:

Corollary 2. Under conditions (C1)–(C7), β̃n is consistent
and converges to a mean zero normal distribution given in The-
orem 2.

The variance estimate for β̃n may be obtained by expand-
ing the estimating Equation (3.8). With ∂Ũn(β)

∂β
|β=β̃n

estimating

A(β0) and ˆ̃�(β̃n) = n−2 ∑n
i=1[

∫ τ

0

∫ ∞
0 Khn

(u − r){Zi(r) − Z̃

(β̃n, u)}dN∗
i (r)dNi(u)]⊗2 estimating �̃(β0), we can do valid

inference.

Corollary 3. Under conditions (C1)–(C7), the sandwich for-
mula consistently estimates the variance of β̃n.

With full kernel estimation, the bias is of order O(n1/2h
5/2
n ).

Taking hn = o(n−1/5), the maximum allowable bandwidth un-
der (C7) giving negligible asymptotic bias, the estimator
achieves o(n2/5) rate of convergence. One can easily show that
the convergence rates in Theorem 1 hold for half kernel es-
timation based on recurrent events data where only backward
lagged covariates are used. Thus, full kernel estimation using
both forward and backward lagged covariates yields an optimal
convergence rate, which is superior to the optimal o(n1/3) rate
for half kernel estimation giving negligible asymptotic bias. The
practical gains associated with using both forward and backward
covariates are examined in the simulations in Section 4.

4. SIMULATION STUDIES

We first study the performance of the half kernel estimator
using backward lagged covariates in estimating Equation (2.5)
with classical right censored data. We generate 1000 datasets,
each consisting of n = 100, 400, or 900 subjects. The total num-
ber of covariate observation times for each subject was Poisson
distributed with intensity rate 8. The covariate observation times
are generated from uniform distribution Unif(0, 1). The covari-
ate process is generated through a piecewise constant function

Z(t) =
20∑
i=1

I {(i − 1)/20 ≤ t < i/20}zi,

where (zi)20
i=1 follows a unit variance multivariate normal distri-

bution with mean 0 and correlation e−|i−j |/20, i, j = 1, . . . , 20.

The survival time is simulated from model (1.1) with λ0(t) = 1
and β0 = 1.5. The censoring time is generated from a uniform
distribution with lower bound 0 and upper bound giving censor-
ing percentages of 15% and 50%. The results for other choices
of the model parameters are rather similar and are omitted.

Based on Theorem 1, to obtain a half kernel estimator with
asymptotically negligible bias, we employ bandwidths in the
range (n−1, n−1/3) when calculating β̂n using the smoothed like-

lihood score function. The kernel function is the Epanechnikov
kernel, which is K(x) = 0.75(1 − x2)+. Further simulations
(not reported) evidence that the use of other kernel function
has little impact on the estimator’s empirical performance.

Table 1 summarizes the main findings over 1000 simulations.
We observe that as the sample size increases, the bias decreases
and is small, that the empirical and model-based standard errors
agree reasonably well, and that the coverage is close to the nom-
inal 0.95 level. The performance improves with larger sample
sizes.

We next study the properties of the full kernel estimator under
model (1.1). The data generation is identical to that presented
above, where covariate observation was terminated at the mini-
mum of the failure and censoring times. To use full kernel esti-
mation, if a failure occurs prior to censoring, then the covariate
process continues to be observed beyond the event time until
the right censoring time. This is equivalent to a recurrent events
setup. Following Corollary 2, the allowable bandwidth range for
full kernel estimation with negligible bias is (n−1, n−1/5). The
results presented in Table 1 enable a direct assessment of im-
provements provided by full kernel estimation with forward and
backward lagged covariates over half kernel estimation, which
only employs backward lagged covariates.

Similarly to half kernel estimation, as the sample size in-
creases, the bias is well controlled, the empirical and model-
based standard errors agree reasonably well, and the empirical
coverage probability is close to 0.95. As predicted by the theoret-
ical developments, full kernel estimation yields empirical gains
over half kernel estimation. With the same bandwidth and same
sample size, the standard error is markedly diminished when
using both forward and backward lagged covariates relative to
using only backward lagged covariates, with the magnitude of
the bias being comparable.

We also propose a strategy for automatic bandwidth selec-
tion. The idea is to minimize the mean squared error, where
the bias and variance are calculated separately. For half kernel
method, the bias is of order hn as shown in the proofs in the
Appendix. So we regress β̂(hn) with 30 equally spaced hn in
the allowable range to get an estimate for the slope Ĉ. To cal-
culate the variance, we randomly split the data into two parts,
and calculate β̂1(hn) and β̂2(hn), respectively. We then choose
hn to minimize Ĉ2h2

n + {β̂1(hn) − β̂2(hn)}2/4. For full kernel
method, we use similar idea except that the bias is of order h2

n

and we regress β̂(hn) with h2
n in the allowable range to calculate

the bias. The results are summarized in Table 1. From the table,
the automatic bandwidth procedure performs well relative to the
fixed bandwidth results, both for half and full kernel estimation.

With longitudinal covariates in time-to-event analysis, a
naı̈ve approach is the last value carried forward approach. If
data at a particular time point are missing, then the backward
lagged covariate observed at the most recent time point in the
past is imputed for the missing value. Andersen and Liestol
(2003) discussed bias reduction strategies, in which the back-
ward lagged covariate is only imputed if it falls in a window
around the time point of interest. Last value carried forward is
conceptually simple and its ease of implementation has led to its
use in practice. However, because backward lagged covariates
are not weighted by their distance from the imputation time,
such procedure lacks theoretical validity. To demonstrate that
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Table 1. Simulation results with different censoring rate

Censoring rate is 15% Censoring rate is 50%

n BD Bias RB SD SE CP(%) Bias RB SD SE CP(%)

Half kernel
100 n−0.7 0.051 0.034 0.420 0.502 91 0.169 0.113 0.543 0.740 90

n−0.6 0.019 0.013 0.346 0.384 91 0.084 0.056 0.451 0.584 91
Auto 0.042 0.028 0.434 0.385 93 0.047 0.031 0.595 0.500 90

400 n−0.7 0.040 0.026 0.299 0.321 93 0.046 0.031 0.365 0.423 92
n−0.6 −0.009 −0.006 0.222 0.242 93 0.008 0.006 0.277 0.301 93
Auto 0.028 0.019 0.298 0.263 93 0.035 0.023 0.378 0.332 95

900 n−0.7 0.008 0.005 0.247 0.253 95 0.033 0.022 0.305 0.327 93
n−0.6 0.006 0.004 0.181 0.188 94 0.007 0.005 0.220 0.236 94
Auto 0.014 0.010 0.244 0.216 94 0.020 0.013 0.306 0.260 93

Last value
100 −0.157 −0.104 0.232 0.220 85 −0.086 −0.057 0.339 0.309 90
400 −0.180 −0.120 0.115 0.106 59 −0.130 −0.087 0.146 0.146 83
900 −0.178 −0.119 0.073 0.070 30 −0.137 −0.091 0.098 0.095 69

Full kernel
100 n−0.7 0.005 0.003 0.294 0.316 93 0.025 0.017 0.354 0.383 93

n−0.6 −0.053 −0.035 0.242 0.247 93 0.011 0.007 0.298 0.305 94
Auto 0.039 0.026 0.311 0.278 93 0.018 0.012 0.359 0.335 91

400 n−0.7 −0.003 −0.002 0.204 0.209 94 0.015 0.010 0.247 0.247 95
n−0.6 −0.020 −0.014 0.159 0.160 95 −0.013 −0.008 0.192 0.192 94
auto −0.022 −0.015 0.185 0.186 94 0.013 0.009 0.235 0.222 94

900 n−0.7 0.001 0.001 0.172 0.179 94 0.004 0.003 0.209 0.213 94
n−0.6 −0.018 −0.012 0.126 0.135 95 −0.003 −0.002 0.223 0.231 94
auto −0.004 −0.003 0.146 0.151 96 −0.005 −0.004 0.206 0.185 94

Nearest value
100 −0.196 −0.130 0.159 0.155 73 −0.190 −0.126 0.204 0.188 76
400 −0.220 −0.145 0.081 0.073 20 −0.219 −0.146 0.100 0.088 3
900 −0.218 −0.146 0.056 0.048 2 −0.220 −0.146 0.065 0.058 7

NOTE: “BD” represents different bandwidths, “Bias” is the empirical bias, “RB” is the “Bias” divided by the true β0, “SD” is the sample standard deviation, “SE” is the average of
the standard error estimates, and “CP” represents the coverage probability of the 95% confidence interval for β̂n.

this approach may lead to substantially biased inferences, we
studied its properties under the above simulation setup.

The results in Table 1 exhibit that rather large bias may be
incurred by the naı̈ve last value carried forward analysis. Such
biases do not attenuate as the sample size increases and the
coverage probabilities may be much lower than the nominal
0.95 level. The coverage probability is worse with decreased
censoring percentage. Heuristically, as the censoring rate de-
creases, more events are observed and the estimator’s variance
decreases, yielding lower coverage probabilities.

To make fair comparison with full kernel approach, we adopt
a nearest value method. In this approach, the nearest observa-
tion that could be either backward lagged covariates or forward
lagged covariates is used in the calculation of partial likelihood.
The results are similar to last value carried forward as both
methods are biased but the nearest value approach has smaller
variability as seen in Table 1.

Per the request of a referee, we have provided additional sim-
ulations comparing our approach and last value carried forward
with two covariates, one time-dependent covariate and one time-
independent covariate, to see the performance of our method in
a multivariate regression case. The results presented in Table 2
indicate that last value carried forward does not generally con-
trol the Type I error and that there may be either gain or loss

of power with last value carried forward versus our approach
with multiple covariates. This depends in part on the direction
of the bias of the last value carried forward estimates and in
part on their variances. The simulation setup is similar to those
in previous sections. The hazard function is generated from
h(t) = 2eβ1X1(t)+β2X2 , where X1(t) follows a multivariate normal
distribution for 20 equally spaced piecewise constant function
in (0, 1). It has mean μ(t) = 4sin(2πt) and variance covariance
matrix with 1 at diagonal and e−|t1−t2| off diagonal at time points
t1 and t2. The time-independent covariate X2 follows a standard
normal distribution. We also employed binomial X2, obtaining
similar results that are omitted due to space constraints. In the
simulation h = n−0.7 and we use Wald statistics to test the hy-
pothesis β1 = 0. Four scenarios were investigated. In the first,
β1 = 0, β2 = 0.5, which looks at the Type I error control for
time-dependent covariate in the presence of time-independent
covariate; the second scenario is β1 = −0.3, β2 = 0, 5, which
looks at the power for testing time-dependent covariate with a
time-independent covariate; the third is β1 = −0.15, β2 = 0.5,

which looks at the power for testing time-dependent covari-
ate at the presence of time-independent covariate with reduced
signal strength; and the last scenario is β1 = −0.3, β2 = 0,

which looks at the power for testing time-dependent covariate
only.
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Table 2. Simulation results comparing power

Our approach Last value carried forward

n Bias SD SE CP Power(%) Bias SD SE CP Power(%)

Case 1: β1 = 0, β2 = 0.5
100 −0.017 0.263 0.244 92 7 0.137 0.080 0.073 56 44
400 −0.002 0.183 0.181 94 5 0.129 0.039 0.035 6 94
900 0.001 0.159 0.155 94 5 0.126 0.025 0.023 0 100

Case 2: β1 = −0.3, β2 = 0.5
100 0.015 0.266 0.247 91 24 0.282 0.062 0.065 1 5
400 0.012 0.190 0.186 94 36 0.278 0.033 0.032 0 11
900 0.012 0.167 0.161 94 47 0.274 0.021 0.021 0 22

Case 3: β1 = −0.15, β2 = 0.5
100 0.016 0.256 0.243 94 12 0.191 0.068 0.068 20 9
400 0.014 0.183 0.182 94 13 0.186 0.033 0.032 0 18
900 0.005 0.168 0.157 93 17 0.185 0.022 0.021 0 39

Case 4: β1 = −0.3, β2 = 0
100 0.017 0.284 0.251 91 24 0.268 0.064 0.065 2 8
400 0.004 0.190 0.185 94 38 0.268 0.031 0.032 0 16
900 0.006 0.166 0.164 95 45 0.269 0.021 0.021 0 33

As can be seen in Table 2, last value carried forward ap-
proach continues to evidence bias, with reduced variance. The
Type I error is not controlled using last value carried forward ap-
proach when there are time-independent covariates. The power
can either increase or decrease using last value carried forward
approach as the bias can be either up or down when there are
time-independent covariates. Our approach has better power
when the model contains only time-dependent covariate, with
the power improving as sample size increases.

Joint modeling of longitudinal and survival data has been
proposed to incorporate the most commonly used first-choice
assumptions from both subject areas. In the joint modeling, one
assumes that there is a true, hypothetical unobserved value of
the longitudinal outcome at time t, denoted by mi(t). That is,
the observed covariate Zi(t) is assumed to be subject to mea-
surement error. In contrast to the standard proportional hazards
model, which assumes no measurement error, the hazard func-
tion for the event of interest is specified conditionally on mi(t)
and not Zi(t). Specifically,

h(t |mi(u), 0 ≤ u < t) = h0(t) exp{γ T wi + αmi(t)}, (4.11)

where wi is a vector of baseline covariates with a corresponding
vector of regression coefficients γ. The parameter α quantifies
the effect of the underlying longitudinal outcome on the risk
of an event. A linear mixed effects model is specified for the
longitudinal data:

Zi(t) = mi(t) + εi(t), εi(t) ∼ N (0, σ 2), (4.12)

where Zi(t) is the observed covariate, mi(t) is assumed to fol-
low a linear mixed model, and εi(t) is assumed independent of
mi(t), with mean 0 and variance σ 2. To complete the model
specification, the distribution of εi(t) must be specified up to
σ 2, with normality commonly assumed. In the case that the
measurement error σ 2 = 0, the standard proportional hazards
specification that conditions on Zi(t) is obtained.

The joint modeling relies heavily on the underlying assump-
tions in (4.13) and may result in invalid inferences under model

misspecification. Moreover, due to the complexity of the model
specification, the procedure may be computationally unstable
with small and moderate sample sizes. We compare the perfor-
mance of joint models to our approach and last value carried
forward under the simulation setup in Table 1. We fit the joint
model using the R package JM (Rizopoulos 2010), assuming
normal measurement error. Note that JM cannot accommodate
σ 2 = 0. When we generate data from correctly specified models
(4.12) and (4.13) with zero measurement error, as is assumed
by the standard proportional hazards model, the program fails
to converge.

We instead compared our proposed estimator with the joint
modeling strategy using JM with small measurement error, giv-
ing approximately the same survival models. The longitudinal
process is generated from the linear mixed model

Zi(tij ) = βi + 1.1tij + εij ,

where random intercept βi ∼ N (−0.01, 0.72) and indepen-
dently, the measurement error εij ∼ N (0, 0.052). The num-
ber of measurements for each subject is Poisson distributed
with intensity rate 8, and conditional on this, observation time
tij ∼ Unif(0, 2). We then generate the survival time based on
hazard function

hi(t) = exp{βi + 1.1t}.

A uniformly distributed random variable is used to produce 15%
censoring rate. For our method, which is based on the usual pro-
portional hazards model conditioned on the observed covariates,
the data-generation step for the event time is identical except we
use Zi in the hazard model. For estimation, we use automatic
bandwidth selection approach introduced earlier. From Table 3,
we see that both methods perform well in terms of bias, vari-
ance, and coverage probability in the correctly specified setup.
The efficiency gains predicted from joint modeling are reflected
in the smaller empirical standard errors.
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Table 3. Summary statistics comparing our method and joint modeling method

Our method Joint modeling method

n Bias RB SD SE CP(%) Bias RB SD SE CP(%)

Correct model
100 0.050 0.050 0.420 0.423 95 0.041 0.041 0.252 0.231 94
400 −0.037 −0.037 0.361 0.291 91 −0.008 −0.008 0.125 0.112 95
900 −0.032 −0.032 0.242 0.247 94 −0.008 −0.008 0.073 0.075 97

Misspecified model
100 0.015 0.010 0.330 0.267 92 −0.017 −0.011 0.299 0.248 89
400 0.018 0.012 0.204 0.174 92 −0.173 −0.115 0.154 0.111 56
900 0.012 0.008 0.177 0.142 93 −0.218 −0.145 0.133 0.070 32

NOTE: See Table 1.

Next we generate data when the longitudinal model (4.13) is
misspecified. The covariate process is generated through

Z(t) =
20∑
i=1

I {(i − 1)/20 ≤ t < i/20}zi .

(zi)20
i=1 follows a normal mixture model z = 0.4z1 + 0.6z2,

where z1 is a unit variance multivariate normal distribution with
mean −1 and correlation e−|i−j |/20, and z2 is also a unit variance
multivariate normal distribution with mean 1.5 and correlation
2−|i−j |/20, i, j = 1, . . . , 20. The survival time is simulated from
model (1.1) with λ0(t) = 1 and β0 = 1.5. We use censoring rate
= 15% to illustrate and the bandwidth selection is based on
automatic procedure introduced earlier. The results in Table 3
demonstrate that our method continues to provide unbiased esti-
mates, the model-based standard errors agree with the empirical
standard errors, and our inferences provide coverage that agrees
with the nominal level. On the other hand, JM exhibits substan-
tial bias that does not diminish as the sample size increases, the
empirical and model-based standard errors do not agree, and the
coverage probability may be much less than the nominal level,
particularly for larger sample sizes. In addition, under sample
size n = 900, JM failed to converge in 20 datasets, with the
results in Table 2 based on those datasets where JM converged.

5. CARDIAC ARREST STUDY

We now illustrate the proposed inferential procedure in Sec-
tion 2 with a comparison to the last value carried forward ap-
proach and joint modeling method on data from a cardiac arrest
study. A database of 58,132 patients who were hospitalized in
the wards at the University of Chicago from November 2008
until August 2011 is used. During this period, there were 109
cardiac arrests in the hospital wards and we are interested in
risk factors associated with cardiac arrest. Details of the study
design, methods, and medical implications can be found in
Churpek et al. (2012).

Patients in the general hospital wards have vital signs, such
as heart rate, blood pressure, and respiratory rate, collected rou-
tinely every few hours, and studies have found that abnormal
vital signs are common before cardiac arrest on the wards as
a signal of worsening condition (Churpek et al. 2012). Impor-
tantly, the collection of vital signs for these patients is erratic,
occurring at different time intervals for each patient. A statistical
model that associates vital signs and time to cardiac arrest would

yield improved detection of high-risk patients and earlier detec-
tion of clinical deterioration resulting in better patient outcomes.

To this end, we adopt model (1.1) to analyze the relationships
between vital signs and time to cardiac arrest. Because heart rate
has been shown to be positively correlated with cardiac arrest
and is measured accurately in patients using an electronic mon-
itor, we took the heart rate as the covariate and studied its effect
on the time to occurrence of cardiac arrest. A last value carried
forward analysis yields point estimate 0.041 with standard er-
ror 0.0042, which is highly statistically significant. However,
because this analysis is ad hoc and lacks formal theoretical jus-
tification, it is worthwhile to assess potential biases using our
proposed methods. We computed the half kernel estimates for
model (1.1) with bandwidths hn = 3 ∗ (Q3 − Q1) ∗ n−γ , where
Q3 is the 0.75 quantile, Q1 is the 0.25 quantile of the measure-
ment times for heart rate, and γ = 0.5, 0.6, 0.7. We take n as
total number of events of cardiac arrest after eliminating miss-
ing values, which is 107, due to the relatively low event rate.
Thus, the effective sample size in this dataset, for example, the
number of events, is comparable to the effective sample size in
the simulation studies in Section 4, owing to the very high cen-
soring rate. Parameter estimators were obtained from estimating
function (2.5) with different choices of bandwidths, confirming
the ad hoc results from the last value carried forward approach.
The resulting estimates and standard errors are 0.029 and 0.0037
when γ = −0.5; 0.029 and 0.0040 when γ = −0.6; 0.030 and
0.0047 when γ = −0.7; and 0.030 and 0.0039 for automatic
bandwidth selection procedure. We can clearly see the positive
association between heart rate and time to cardiac arrest, which
has been verified in medical studies (Churpek et al. 2012). For
different choices of bandwidths, both point estimate and vari-
ance do not change much, which shows that our method is not
sensitive to bandwidth selection. While the effect magnitude is
somewhat diminished from the last value carried forward anal-
ysis, statistical significance is achieved at the 0.05 level for all
bandwidth choices, confirming the ad hoc results.

We then fit the joint model using R package JM (Rizopoulos
2010) with random intercept. The point estimate was 0.048,
but standard errors were not computable due to the lack of
positive definiteness of the Hessian matrix at convergence. This
raises questions about whether the point estimate is the actual
maximizer of the full likelihood function used to estimate the
joint model. In addition to these computational stability issues,
the joint model required 2 hr computing time, while the proposed
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approach and the last value carried forward method required
several minutes, on the same computer.

6. CONCLUDING REMARKS

We have presented kernel weighting methods for estimation
of proportional intensity models (1.1) and (1.2) with intermit-
tently observed longitudinal covariates. The weighting tech-
niques formalize the ad hoc last value carried forward approach
by reducing the impact of covariates measured distant in time
from the missing values. One may view the half kernel esti-
mator based on backward lagged covariates as a theoretically
justified adaptation of the “windowing” idea in Andersen and
Liestol (2003). Our theoretical results show that this approach
yields an estimator that cannot achieve parametric rates of con-
vergence, unlike joint modeling (Tsiatis and Davidian 2004),
where much stronger modeling assumptions are invoked. Inter-
estingly, we find that using forward lagged covariates observed
after the occurrence of an event via full kernel estimation may
lead to improved rates of convergence relative to half kernel
estimation but which are still slower than the parametric rate.
Whether parametric rates of convergence are achievable without
strong joint modeling assumptions is unclear and merits further
investigation.

Both smoothed and nonsmoothed covariates may be used in
our estimation procedure. Our theoretical derivations assume
that the probability that the covariates are observed when the
event occurs is zero. Scenarios may arise in practice where
covariates are observed at the time of events. The assumption is
that the probability of this occurring has zero measure, such that
the information in these covariates is asymptotically negligible
and only the smoothed covariates contribute information. If the
probability is nonzero, then in theory, the rate of convergence
of the estimator is determined by covariates observed at event
times and is the usual

√
n rate.

Modeling the hazard function conditionally on the current
value is the standard form of the proportional hazards model;
see Therneau and Grambsch (2001) for a discussion of the pro-
portional hazards model with time-dependent covariates. All
of the standard software implements the proportional hazards
model with time-dependent covariates based on the specifica-
tion in which the current value of the time-dependent covariate
is used. That said, there may be applications in which the re-
lationship between the hazard and a complicated function of
the covariate’s trajectory, such as the trend, may be of inter-
est. To conduct such analyses, more complicated models are
needed, for example, joint models, in which the failure time and
the time-dependent covariate are jointly modeled. The usual
proportional hazards model that does not require modeling the
time-dependent covariate may not be as amenable to capturing
such covariate effects.

The standard form of the proportional hazards model is spec-
ified conditionally on the observed value of the covariate and
does not permit measurement error. The goal of this article is
to provide methods for fitting the standard proportional haz-
ards model with sparsely observed time-dependent covariates
in the absence of measurement error. We note that even with
time-independent covariates the presence of measurement error
invalidates the standard partial likelihood estimators and more

complicated models and estimation procedures are needed. With
time-dependent covariates, the presence of measurement error
necessitates the use of joint models and simultaneous estimation
of the longitudinal and survival models via maximum likelihood,
which is complicated both computationally and inferentially.

We note that in general when employing a standard pro-
portional hazards model with “internal” (or endogenous) time-
dependent covariate it is not possible to predict survival based
on Z(t). Such “internal” covariates are measured on the in-
dividual being followed for the event of interest. For details,
please see the discussion in Kalbfleisch and Prentice (2002).
If the covariate is “external” (or exogenous), for example, not
measured at the individual level, then prediction may be pos-
sible. Both the half and full kernel methods provide consistent
and asymptotically normal estimates of the regression param-
eters in the proportional hazards model, regardless of whether
the time-dependent covariates are “internal” or “external.” If the
covariates are “internal,” then prediction is not possible, while if
they are “external,” prediction is possible. These results regard-
ing prediction are true for the usual partial likelihood estimator
with time-dependent covariates when the covariates are fully
observed. For the case of “internal” covariates, if prediction is
desired, alternative modeling strategies, like joint modeling, are
needed.

While the joint modeling approach has certain modeling ad-
vantages over the standard Cox model, in addition to poten-
tial improvements in efficiency, these gains depend heavily on
strong assumptions about the model for the longitudinal co-
variates and considerable care is needed in the implementation
of these full likelihood methods. In the cardiac data analysis,
computational problems resulted in questionable results, while
simpler partial likelihood procedures converged reliably. Mini-
mal assumptions are required for the longitudinal covariates for
the validity of the kernel weighted partial likelihood estimators,
which only use assumptions on the model for the failure time,
leading to the bias variance trade-off evidenced in the simula-
tions in Section 4.

Additional simulations were performed to assess whether our
proposed method might be severely underpowered relative to the
last value carried forward approach for testing the effect of the
time-dependent covariate. Results (omitted) demonstrate that
the relative power of the two procedures depends in part on the
magnitude and direction of the bias for last value carried forward
and in part on the improved efficiency of last value carried for-
ward. In certain scenarios, where the bias is strongly toward the
null, last value forward may lose considerable power relative to
our proposed methods. In these simulations, the time-dependent
covariate had a strong and nonlinear trend, where the mean func-
tion for the time-dependent covariate is a sinusoidal function,
which oscillates strongly over the time interval of observation.
Our proposed method performed well in this scenario with a
moderate number of observation times for the time-dependent
covariate. To further explore the efficiency issue, we conducted
simulations in which the trajectory is completely observed. In
this case, the naı̈ve last value carried forward analysis is valid
as covariate values are observed at all event times. This may
be viewed as a “gold standard” analysis. In such settings, our
proposed method is unbiased but unsurprisingly may incur sub-
stantial efficiency loss relative to the “gold standard,” which is
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also unbiased. The efficiency loss in the simulations diminishes
as the number of observations of the covariate process increases.

As mentioned previously, the methods of Cai and Sun
(2003) and Tian, Zucker, and Wei (2005) for the proportional
hazards model with time-dependent regression parameter apply
identical kernel weights to all individuals when smoothing the
partial likelihood. These methods are not directly applicable
in our setting, where different weights are needed for different
individuals. Moreover, the methods for time-dependent regres-
sion parameters with time-dependent covariates require that
the trajectory of the time-dependent covariate is fully observed.
If the covariate is sparsely observed, then the methods are not
applicable. It would be of interest to generalize our smoothed
partial likelihood approach for the standard formulation of the
Cox model with time-independent regression parameter to the
time-dependent proportional hazards model with sparsely
observed time-dependent covariates. This is a topic for future
research.

When the observation times are informative, as might occur
when there is more frequent monitoring of high risk subjects, the
usual assumption of independent observation times is violated
and our methods are not valid. Relevant literature on this topic
includes Sun et al. (2005), Liu, Huang, and O’Quigley (2008),
and Sun et al. (2012), among others. Future work is needed to
extend our methods to accommodate such informative observa-
tion times.

7. SUPPLEMENTARY MATERIALS

Supplementary materials contain relevant proofs for Sections
2 and 3.

[Received October 2013. Revised July 2014.]

REFERENCES

Andersen, P., and Gill, R. (1982), “Cox’s Regression Models for Counting
Processes: A Large-Sample Study,” The Annals of Statistics, 10, 1100–1120.
[1187]

Andersen, P., and Liestol, K. (2003), “Attenuation Caused by Infrequently
Updated Covariates in Survival Analysis,” Biostatistics, 4, 633–649.
[1187,1188,1190,1191,1195]

Cai, Z., and Sun, Y. (2003), “Local Linear Estimation for Time-Dependent Co-
efficients in Cox’s Regression Models,” Scandinavian Journal of Statistics,
30, 93–111. [1188,1189,1196]

Churpek, M., Yuen, T., Park, S. Y., Hall, J. B., and Edelson, D. P. (2012), “Can
Vital Signs Predict Cardiac Arrest on the Wards? A Nested Case-Control
Study,” Chest, 141, 1170–1176. [1194]

Degruttola, V., and Tu, X. M. (1994), “Modelling Progression of CD-4 Lympho-
cyte Count and its Relation to Survival Time,” Biometrics, 50, 1003–1014.
[1187]

Dupuy, J.-F., Grama, I., and Mesbah, M. (2006), “Asymptotic Theory for the Cox
Model With Missing Time-Dependent Covariate,” The Annals of Statistics,
34, 903–924. [1188]

Faucett, C. L., and Thomas, D. C. (1996), “Simultaneously Modelling Censored
Survival Data and Repeatedly Measured Covariates: A Gibbs Sampling
Approach,” Statistics in Medicine, 15, 1663–1685. [1187]

Gill, R. D., van der Laan, M. J., and Robins, J. M. (1997), “Coarsening at Ran-
dom: Characterizations, Conjectures and Counterexamples,” in Proceedings
of the First Seattle Symposium in Biostatistics: Survival Analysis, eds. D. Y.
Lin and T. R. Fleming, New York: Springer, pp. 255–294. [1188]

Henderson, R., Diggle, P., and Dobson, A. (2000), “Joint Modelling of Lon-
gitudinal Measurements and Event Time Data,” Biostatistics, 4, 465–
480. [1187]

Hogan, J. W., and Laird, N. M. (1997), “Mixture Models for the Joint Distri-
bution of Repeated Measures and Event Times,” Statistics in Medicine, 16,
239–257. [1187]

Ibrahim, J. G., Chu, H., and Chen, L. M. (2010), “Basic Concepts and Methods
for Joint Models of Longitudinal and Survival Data,” Journal of Clinical
Oncology, 28, 2796–2801. [1187]

Kalbfleisch, J. D., and Prentice, R. L. (2002), The Statistical Analysis of Failure
Time Data, New York: Wiley. [1195]

Liu, L., Huang, X., and O’Quigley, J. (2008), “Analysis of Longitudinal Data in
the Presence of Informative Observational Times and a Dependent Terminal
Event, With Application to Medical Cost Data,” Biometrics, 64, 950–958.
[1196]

Rizopoulos, D. (2010), “JM: An R Package for the Joint Modelling of Longi-
tudinal and Time-to-Event Data,” Journal of Statistical Software, 35, 1–33.
[1193,1194]

——— (2012), Joint Models for Longitudinal and Time-to-Event Data: With
Applications in R, Boca Raton, FL: Chapman and Hall/CRC. [1188]

Sun, J., Park, D.-H., Sun, L., and Zhao, X. (2005), “Semiparametric Regres-
sion Analysis of Longitudinal Data With Informative Observation Times,”
Journal of the American Statistical Association, 100, 882–889. [1196]

Sun, L., Song, X., Zhou, J., and Liu, L. (2012)m “Joint Analysis of Longitu-
dinal Data With Informative Observation Times and a Dependent Terminal
Event,” Journal of the American Statistical Association, 107, 688–700.
[1196]

Therneau, T. M., and Grambsch, P. M. (2001), Modeling Survival Data: Ex-
tending the Cox Model, New York: Springer. [1195]

Tian, L., Zucker, D., and Wei, L. J. (2005), “On the Cox Model With Time-
Varying Regression Coefficients,” Journal of the American Statistical Asso-
ciation, 100, 172–183. [1188,1189,1196]

Tsiatis, A., and Davidian, M. (2001), “A Semiparametric Estimator for the
Proportional Hazards Model With Longitudinal Covariate Measured With
Error,” Biometrika, 88, 447–458. [1188]

——— (2004), “Joint Modelling of Longitudinal and Time-to-
Event Data: An Overview,” Statistica Sinica, 14, 809–834.
[1188,1189,1190,1195]

Tsiatis, A., Degruttola, V., and Wulfsohn, M. S. (1995), “Modelling the Relation-
ship of Survival to Longitudinal Data Measured With Error. Applications to
Survival and CD4 Counts in Patients With AIDS,” Journal of the American
Statistical Association, 90, 27–37. [1187]

Wulfsohn, M. S., and Tsiatis, A. A. (1997), “A Joint Model for Survival
and Longitudinal Data Measured With Error,” Biometrics, 53, 330–339.
[1187]

Xu, J., and Zeger, S. L. (2001), “Joint Analysis of Longitudinal Data Comprising
Repeated Measures and Times to Events,” Journal of Applied Statistics, 50,
375–387. [1187]

Yao, F. (2007), “Functional Principal Component Analysis for Longitudinal and
Survival Data,” Statistica Sinica, 17, 965–983. [1187]

Zeng, D., and Cai, J. (2005), “Asymptotic Results for Maximum Likelihood
Estimators in Joint Analysis of Repeated Measurements and Survival Time,”
Annals of Statistics, 33, 2132–2163. [1187]


	Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates
	INTRODUCTION
	HALF KERNEL ESTIMATION WITH BACKWARD LAGGED COVARIATES
	FULL KERNEL ESTIMATION WITH FORWARD&break; AND BACKWARD LAGGED COVARIATES
	SIMULATION STUDIES
	CARDIAC ARREST STUDY
	CONCLUDING REMARKS
	SUPPLEMENTARY MATERIALS


