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Longitudinal data arise frequently in many scientific inquiries. To capture the dynamic relationship between
longitudinal covariates and response, varying coefficient models have been proposed with point-wise infer-
ence procedures. This paper considers the challenging problem of asymptotically accurate simultaneous
inference of varying coefficient models for sparse and irregularly observed longitudinal data via the local
linear kernel method. The error and covariate processes are modeled as very general classes of non-Gaussian
and non-stationary processes and are allowed to be statistically dependent. Simultaneous confidence bands
(SCBs) with asymptotically correct coverage probabilities are constructed to assess the overall pattern and
magnitude of the dynamic association between the response and covariates. A simulation based method
is proposed to overcome the problem of slow convergence of the asymptotic results. Simulation studies
demonstrate that the proposed inference procedure performs well in realistic settings and is favored over
the existing point-wise and Bonferroni methods. A longitudinal dataset from the Chicago Health and Aging
Project is used to illustrate our methodology.

Keywords: local polynomial estimation; maximum deviation; nonparametric regression; simultaneous
confidence band; sparse longitudinal data

1. Introduction

Sparse and irregularly spaced longitudinal data frequently occur in biomedicine, epidemiology,
psychiatry, education, and other fields of natural and social sciences. The sparsity refers to the
availability of only a few observations per subject and the irregularity means that measurement
times vary across subjects. In regression analysis of such data, oftentimes scientists and prac-
titioners are interested in investigating the overall pattern and magnitude of the association be-
tween the response and predictors across the whole period of observation time with accurate
statistical guidance. For example, given a response process Y(t) of time t and p vector pro-
cesses of covariates X(t) = {X(1)(t), . . . ,X(p)(t)}T , consider the following varying coefficient
model [13]

Y(t) = X(t)T β(t) + ε(t), (1.1)

where β(t) = {β1(t), . . . , βp(t)}T is a p vector of smooth functions of t and ε(t) is a mean zero
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error process satisfying E{X(t)ε(t)} = 0 for all t . In many applications, one is interested in ex-
amining the overall shape of β(t) or testing whether certain parametric functions are adequate in
describing the overall trend of the regression relationship over time. In such cases, it is desirable
to perform accurate simultaneous statistical inference of β(t) as a function of time. To illustrate
the use of such inference, we consider a longitudinal study from the Chicago Health and Aging
Project [2]. The dataset contains 2846 persons initially free of Alzheimer’s disease but who are
at risk of developing it. Their demographics are recorded at baseline, and they are longitudinally
followed for clinical evaluation of Alzheimer’s disease. We are interested in investigating how
global cognition is dynamically associated with covariates as a person ages. In our analyses,
we use a composite measure of global cognition constructed with a battery of 18 tests [26] and
investigate its time-varying association with three covariates, gender, race (white and African
American) and years in education using model (1.1). Four panels in Figure 4 illustrate the fitted
β(t). It can be seen that the gender effect is slightly fluctuating around 0 with age. But is this
fluctuation statistically significant? On the other hand, after observing the fitted race effect, the
practitioner may ask whether it can be represented by a downward linear function or whether the
downward trend is statistically significantly accelerated as age increases. For an asymptotically
accurate and visually friendly answer to such questions, it is desirable to construct simultaneous
confidence bands (SCBs) for the regression functions. Specifically, for a pre-specified confidence
level 1−α and a given p-dimensional smooth function a(t), we aim to find smooth random func-
tions L(t) and U(t), such that

P
{
L(t) ≤ a(t)T β(t) ≤ U(t),∀t ∈ [a, b]}→ 1 − α

as number of subjects n → ∞ for a pre-specified closed interval [a, b].
On the other hand, however, the construction of smooth SCBs for nonparametric regression

analysis of sparse longitudinal data is known to be a difficult problem. The major difficulty lies
in the irregularity of the observation points and the dependence among observations from the
same subject. As a result, one has to perform uniform investigation into a dependent empirical
process where stochastic variations must be controlled in both time and the response and covari-
ate processes. This is drastically different from and significantly more difficult than the dense
longitudinal data case where observation times are abundant for each subject and nonparametric
regression estimators are typically stochastic equi-continuous. Recently, some progresses have
been made toward this problem. For instance, Ma, Yang and Carroll [20] constructed SCBs for
the mean functions via piece-wise constant spline fitting. Gu et al. [12] constructed piece-wise
constant SCBs for B-spline nonparametric regression of sparse longitudinal data. As pointed
out in [34], the piece-wise constant spline method suffers from consisting of discontinuous step
functions. Meanwhile, Zheng, Yang and Härdle [34] established smooth SCBs for the mean func-
tions of sparse longitudinal data. The theory and methodology in [34] seem to be tailored to the
mean inference problem and it seems to be difficult to generalize to the regression settings where
both the covariates and the errors are stochastic. To our knowledge, the aforementioned problem
of smooth SCBs construction for nonparametric regression analysis of sparse longitudinal data
remains open at the moment.

In this paper, we shall construct smooth and asymptotically accurate SCBs for the regression
functions in model (1.1) via establishing an asymptotic theory for the maximum deviations of the
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local polynomial estimates of a(t)T β(t). We show that, for a very general class of non-Gaussian
and non-stationary error and covariate processes, the appropriately centered and normalized max-
imum deviation of a(t)T β̂(t) converges to a Gumbel distribution. In particular, our theory allows
a mixture of both time-variant and time-invariant covariates. This is flexible and realistic as in
practice longitudinal studies often include time-invariant covariates such as gender and race and
time-variant covariates such as heart rate and blood pressure. Additionally, we permit X(t) and
ε(t) to be statistically dependent in (1.1) which allows the error process to be heteroscedastic
with respect to the covariates. Furthermore, we allow the number of observations for each sub-
ject to diverge to infinity with a sufficiently slow rate depending on the smoothing bandwidth (see
assumption (A1)). This significantly generalizes most of the previous settings in sparse longitu-
dinal studies where the number of observations per subject is assumed to be bounded or random
with certain bounded moments.

Our theoretical investigation depends heavily on a highly non-trivial chaining argument for
dependent and double indexed empirical processes which transfers the problem of maximum
deviation on a continuous time interval to a corresponding problem on a dense discrete grid.
We then utilize a deep Gaussian approximation result established in [32] to further connect the
current problem with that of maximum deviations of Gaussian random vectors. The Gaussian ap-
proximation results also directly suggest a finite sample simulation based bootstrapping method
which improves coverage accuracy in practical implementations. Finally, the above mentioned
theoretical results are of general interest and can be used for a wide class of simultaneous infer-
ence problems for sparse longitudinal data.

Extensive investigation on the estimation and inference for varying coefficient models based
on a number of different smoothing methods and sampling schemes has been carried out in the
literature. It is impossible to have a complete reference here and we only list some representative
works. For sparse longitudinal data, Hoover et al. [14] suggested kernel-type local polynomial
estimator, whose theoretical properties and inference procedures were rigorously studied by Wu,
Chiang and Hoover [28]. Chiang, Rice and Wu [5] studied smoothing spline estimation, Huang,
Wu and Zhou [15] used basis approximations approach, Fan and Zhang [10] adopted a two-
stage estimation strategy, Cao, Zeng and Fine [4] developed a counting process approach on the
observation time and Yao, Müller and Wang [31] developed functional analytical approaches.
For independent samples, in an influential paper, Bickel and Rosenblatt [1] pioneered the maxi-
mum deviations of density function estimates. This was followed by Johnston [16], Eubank and
Speckman [8], Xia [30] and Fan and Zhang [11] for cross-sectional data. Wu and Zhao [29],
Zhao and Wu [33], Zhou and Wu [35] and Liu and Wu [19] investigated the simultaneous infer-
ence problem for time series data. Wang and Yang[25], Degras [6] and Cao, Yang and Todem
[3] performed simultaneous inference of the mean function of univariate dense functional data
where observations within subject approach infinity sufficiently fast as number of subjects in-
creases. In this paper, we are interested in constructing smooth and asymptotically correct SCBs
for a(t)T β(t) based on sparse and irregularly observed longitudinal data.

The rest of the paper is organized as follows. In Section 2, we discuss estimation for model
(1.1) using the local linear kernel method and provide the corresponding theoretical findings.
In Section 3, we propose a simulation based implementation method to overcome the problem
of slow convergence of the theoretical results and an automatic bandwidth selection procedure.
Section 4 reports some simulation studies and applies our method to a longitudinal dataset from
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the Chicago Health and Aging Project. Concluding remarks are given in Section 5. Proofs of
results from Section 2 are relegated in the Appendix.

2. Theory and methods

Suppose that a random sample from model (1.1) consists of n subjects. The j th measurement
of {t, Y (t),X(t)} for the ith subject is {tij , Yij ,Xij }, where 1 ≤ i ≤ n,1 ≤ j ≤ mi,mi is the
number of measurements for the ith subject, tij is the measurement time, Yij is the measurement
of the response process Yi(t) at tij and Xij is the observation of Xi(t) at tij . The total number of
observations across all subjects is N =∑n

i=1 mi . We consider the local linear estimator [9]:

{
β̂(t), β̂ ′(t)

}= arg min
β0,β1∈Rp

[
n∑

i=1

mi∑
j=1

{
Yij − XT

ijβ0 − XT
ijβ1(tij − t)

}2
KhN

(tij − t)

]
,

where K(·) is an even kernel function with support [−A,A],K(·) ≥ 0,
∫ A

−A
K(t) dt = 1 and

Kh(t) = K(t/h). The bandwidth hN → 0 and nhN → ∞. Define

Sn,l(t) = (nhN)−1
n∑

i=1

mi∑
j=1

XijX
T
ij

{
(tij − t)/hN

}l
KhN

(tij − t)

and

Rn,l(t) = (nhN)−1
n∑

i=1

mi∑
j=1

XijYij

{
(tij − t)/hN

}l
KhN

(tij − t).

Let η̂hN
(t) = {β̂T (t), hN(β̂ ′(t))T }T . Then

η̂hN
(t) =

(
Sn,0(t) ST

n,1(t)

Sn,1(t) Sn,2(t)

)−1(
Rn,0(t)

Rn,1(t)

)
=: S−1

n (t)Rn(t). (2.1)

Let γi(t), i = 1,2, . . . , n be i.i.d. centered non-stationary stochastic processes. Before we es-
tablish the simultaneous asymptotic theory for β̂(t), we shall first propose the following impor-
tant theorem on the maximum deviation of kernel estimates of {γi(t)} sampled at sparse and
irregular time points. We need the following assumptions:

(A1) max1≤i≤n mi ≤ C min{(nhN)δ/2, h−δ
N } for some 0 < δ < 1.

(A2) The design time tij ,1 ≤ i ≤ n,1 ≤ j ≤ mi are i.i.d. random variables with density func-
tion f (t) and are independent of {γi(t)}, i = 1,2, . . . , n. The density function f (t) > 0
for t ∈ [l, u], where l < u are pre-determined constants.

(A3) There exist 0 < δ2 ≤ δ1 < 1 such that n−δ1 = O(hN) and hN = O(n−δ2).
(A4) K(x) is differentiable over (−A,A). The right [resp., left] derivative K ′(−A) [resp.,

K ′(A)] exists, and sup|x|≤A K ′(x) < ∞. The Lebesgue measure of the set {x ∈
[−A,A] : K(x) = 0} is zero.
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(A5) σ 2(t) := var{γi(t)} and f (t) are positive, bounded Lipschitz continuous functions.
(A6) suptE|γ1(t)|q < ∞ for some q > 2/(1 − δ1).

Theorem 1. Under conditions (A1)–(A6), let

Mn(t) = 1√
λKNhNσ 2(hN t)f (hN t)

n∑
i=1

mi∑
j=1

γi(tij )K

(
tij

hN

− t

)
, (2.2)

where λK = ∫∞
−∞ K2(t) dt . We have, as n → ∞, for every z ∈ R,

P
[(

2 log h̄−1)1/2
{

sup
l≤t≤u

∣∣Mn(t/hN)
∣∣− dn ≤ z

}]
→ e−2e−z

, (2.3)

where h̄ = hN/(u − l),

dn = (
2 log h̄−1)1/2 + 1

(2 log h̄−1)1/2

{
log

K1√
π

+ 1

2
log log h̄−1

}

if K1 := {K2(−A) + K2(A)}/(2λK) > 0; otherwise

dn = (
2 log h̄−1)1/2 + 1

(2 log h̄−1)1/2
log

K
1/2
2

21/2π

with K2 = ∫ A

−A
{K ′(t)}2 dt/(2λK).

A few comments on the regularity conditions are in order. Condition (A1) posits a certain level
of sparsity for each subject. This assumption is significantly weaker than most of the sparsity
conditions imposed in the literature of longitudinal data analysis where mi is required to be non-
stochastic and bounded or random with bounded moments. Condition (A2) stipulates that the
observation time is random across subjects. This is critical for our proposed method to work.
Similar assumptions have been made in longitudinal data analysis literature [34]. Condition (A3)
specifies the allowable range of the bandwidths. Condition (A4) states some mild restrictions on
the kernel function. Condition (A5) places requirements on the variance of the error term and
the measurement time density function, which would typically be satisfied in practice. Condition
(A6) ensures that γi(t) has finite moment greater than two across the time domain, which is fairly
mild.

Theorem 1, which is established in the Appendix, is a general and important result leading to
the theory of normalized maximum deviation of local polynomial estimators of sparse longitudi-
nal data. Note that γi(t) can be a wide class of non-Gaussian and non-stationary processes and
we do not post any restrictions on the temporal dependence structure of those processes. Further-
more, note that the normalized asymptotic limits in the theorem are the same for all choices of
γi(t). Hence, one can use Theorem 1 to construct critical values of the SCBs based on a Monte
Carlo method with such simple choices as γi(tij ) ∼ N(0,1),1 ≤ i ≤ n,1 ≤ j ≤ mi,σ

2(t) = 1
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and f (t) = 1,∀t ∈ [l, u]. A Monte Carlo based method for implementation is illustrated in detail
in Section 3.

Let a(t) be a pre-specified p dimensional vector function. We are interested in constructing a
SCB for the function a(t)T β(t). For example, a(t) = 1p,k , where 1p,k denotes the p dimensional
vector with the kth entry 1 and all other entries 0. In this case a(t)T β(t) is the kth component
function of β(t). We first list a few more regularity conditions:

(A7) Both β(t) and a(t) are twice continuously differentiable on [l, u].
(A8) Let �p(t) = E[{X(1)

i (t), . . . ,X
(p)
i (t)}T {X(1)

i (t), . . . ,X
(p)
i (t)}] and �p(t) =

Cov[{εi(t)X
(1)
i (t), . . . , εi(t)X

(p)
i (t)}]. Assume that both �p(t) and �p(t) are uniformly

positive definite and Lipschitz continuous on [l, u].
Define

n = sup
t∈[l,u]

√
NhNf (t)

a(t)T �−1
p (t)�p(t)�−1

p (t)a(t)λK

∣∣∣∣a(t)T β̂(t) − a(t)T β(t)

− h2
N

2

[
a(t)T

{
β(t)

}′′] ∫ A

−A

x2K(x)dx

∣∣∣∣.
Theorem 2. Suppose (A1)–(A5) hold with γi(t) therein replaced by εi(t). Assume E|εi(t)|q <

∞ for some q > 4/(1 − δ1) and the design points {tij } are independent of {εi(t),Xi(t)}ni=1.
Assume that (A7) and (A8) hold. Furthermore, supt E‖Xi(t)‖q < ∞ for some q > 4/(1 − δ1)

and

Nh7
N = o

(
1/

√
logh−1

N

)
. (2.4)

Then we have, as n → ∞, for every z ∈ R

P
{(

2 log h̄−1)1/2
(n − dn) ≤ z

}→ e−2e−z

. (2.5)

Theorem 2 establishes the asymptotic maximum deviation of aT (t)β̂(t) on [l, u]. In particu-
lar, if one chooses an undersmoothing bandwidth hN � N−1/5 and reduces bias of the kernel
estimation to the second order, then the theorem implies that one can construct an asymptotic
100(1 − α)% SCB for a(t)T β̂(t) as

a(t)T β̂(t) ± l1

√
a(t)T �−1

p (t)�p(t)�−1
p (t)a(t)λK

NhNf (t)
, l ≤ t ≤ u, (2.6)

where l1 = zα

(2 log h̄−1)1/2 + dn and zα = − log log{(1 − α)−1/2}.
In point-wise inference of time-varying coefficient models for sparse longitudinal data, it is

well known that the asymptotic behavior of localized nonparametric estimators does not de-
pend on the temporal dependence structure of the covariate and error processes [14]. Theorem 2
extends the aforementioned results and establishes that the latter property holds true for simul-
taneous nonparametric regression analysis of sparse longitudinal data. This is a nice property in
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exploratory analyses for longitudinal data since generally it is difficult to accurately estimate the
covariance structure of the error and covariate processes.

3. Practical implementation

Due to the slow rate of convergence of the Gumbel distribution, in practice, the SCB in (2.6)
may not have good finite-sample performances. To circumvent this problem, we shall adopt a
simulation assisted bootstrapping approach. We use a special case under Theorem 1. Specifically,
Let Tij be i.i.d. U [0,1] random variables and ηij be i.i.d. standard normal distribution, and Tij

and ηij are independent, 1 ≤ i ≤ n,1 ≤ j ≤ mi . Denote

�n = sup
l≤t≤u

∣∣∣∣
∑n

i=1
∑mi

j=1 ηijK(
Tij −t

hN
)√

λKNhN

∣∣∣∣.
By Theorem 1 and Theorem 2, with proper centering and scaling, �n and n have the same
asymptotic Gumbel distribution. So the cutoff value γ1−α , the (1 − α)th quantile of n, can be
estimated by the sample (1 − α)th quantile of �n based on a large number of replications. Thus,
the SCB for a(t)T β(t) can be constructed as

a(t)T β̂(t) ± γ1−α

√
a(t)T �−1

p (t)�p(t)�−1
p (t)a(t)λK

NhNf (t)
(3.1)

if the bandwidth is selected to satisfy (A3) and hN � N−1/5. The rationale behind this approach
is that the simulated distribution of �n is likely to be closer to n than the Gumbel distribution
in moderate samples.

To implement (3.1) in practice, we need to estimate f (t), �p(t) and �p(t). The estimate of
f (t) can be achieved through a kernel density estimation as

f̂ (t) = 1

NbN

n∑
i=1

mi∑
j=1

K

(
tij − t

bN

)
, (3.2)

The following proposition establishes the uniform consistency of f̂ (t).

Proposition 1. Under conditions (A1)–(A5) with hN therein replaced by bN , we have

sup
l≤t≤u

∣∣∣∣∣ 1

NbN

n∑
i=1

mi∑
j=1

K

(
tij − t

bN

)
− f (t)

∣∣∣∣∣= OP

(√
log 1/bN

NbN

+ bN

)
(3.3)

and

sup
l≤t≤u

∣∣∣∣∣ 1

NbN

n∑
i=1

mi∑
j=1

K1

(
tij − t

bN

)∣∣∣∣∣= OP

(√
log 1/bN

NbN

+ bN

)
, (3.4)

where K1(x) = xK(x).
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For the covariance functions �p(t) and �p(t), they can be estimated via the local kernel
method as

�̂p(t) = 1

NcN

n∑
i=1

mi∑
j=1

XijX
T
ijK

(
tij − t

cN

)
(3.5)

and

�̂p(t) = 1

NdN

n∑
i=1

mi∑
j=1

[
ε̂i (tij )Xij

][
ε̂i (tij )Xij

]T
K

(
tij − t

dN

)
, (3.6)

where ε̂i (tij ) = Yij − XT
ij β̂(tij ) are the residuals of the regression. Following similar arguments

as those in the proofs of Theorems 1, 2 and Proposition 1, it can be shown that both �̂p(t)

and �̂p(t) are uniformly consistent on [l, u]. As kernel estimation is local and we are dealing
with sparse longitudinal data, the dependence caused by data coming from the same subject in
a local neighborhood is asymptotically negligible. Thus the bandwidths bN , cN and dN used in
f̂ (t), �̂p(t) and �̂p(t) can be chosen based on classic bandwidth selectors of kernel density and
kernel nonparametric estimations for independent data [22].

We now discuss the choice of the bandwidth hN in (2.1). Theorem 1 specifies the theoretical
range of allowable bandwidths. However, an automatic bandwidth selection procedure is of prac-
tical interest and is usually needed to provide a preliminary idea of a suitable bandwidth that is
suggested by data. We adopt the leave-one-subject-out cross-validation procedure for bandwidth
selection suggested by Rice and Silverman [21]:

CV(hN) = 1

N

n∑
i=1

mi∑
j=1

{
Yij − Ŷ (−i)(tij )

}2
, (3.7)

where Ŷ (−i)(tij ) is the local linear estimator of Y(tij ) computed with all measurements of the
ith subject deleted. A cross-validation bandwidth hCV is then obtained by minimizing CV(hN)

with respect to hN ; that is, hCV = infhN∈H CV(hN), where H is the allowable range of hN

specified by (A3) and (2.4). This cross-validation idea can be easily extended to other smoothing
estimators, such as smoothing splines. As a heuristic justification for the above cross-validation
method, we adopt the arguments in [15]. Define the average squared error for the local linear
estimators

ASE(h) = 1

N

n∑
i=1

mi∑
j=1

[
XT

ij

(
β̂(tij ) − β(tij )

)]2
.

Then hCV should minimize ASE(h) asymptotically. Indeed, note that

CV(h) = 1

N

n∑
i=1

mi∑
j=1

ε2
i (tij ) − 2

N

n∑
i=1

mi∑
j=1

[
εi(tij )X

T
ij

](
β̂−i (tij ) − β(tij )

)

+ 1

N

n∑
i=1

mi∑
j=1

[
XT

ij

(
β̂−i (tij ) − β(tij )

)]2
.

(3.8)
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Since β̂−i (tij )−β(tij ) is independent of εi(tij )X
T
ij and the latter has 0 mean, it can be shown that

the second term in (3.8) is stochastically dominated by the third. Note that the first term in (3.8) is
independent of h and the third term is approximately equal to ASE(h) for large samples. Hence,
intuitively the bandwidth h which minimizes CV(h) should minimize ASE(h) asymptotically.

4. Simulation studies

We investigate the finite sample performance of our proposed methodology through Monte Carlo
simulations. We first consider model (1.1) with one covariate:

Y(t) = β0(t) + β1(t)X(t) + ε(t), (4.1)

where β0(t) = 5(t − 0.6)2, β1(t) = 0.5 + 0.4 sin{2π(t − 0.5)},0.5 cos{2π(t − 0.3)},4(t − 0.4)2

or 4(t − 0.5)3 and we are interested in constructing SCBs for β1(t). We generate 1000 datasets,
each consisting of n = 200 or 400 subjects. Each subject has 4 observations and the observation
times are generated from the uniform distribution U(0,1). For the ith subject, the covariate pro-
cess Xi(t) is generated from a mean zero Gaussian process with variance exp(t) and correlation
exp(−|tij − tik|/4) for observations taking place at tij and tik . The error process ε(t) = ζX(t),
where ζ is a standard normal random variable, independent of X(t). This induces the cross de-
pendence between the covariate process and the error process. The results for other choices of
the model parameters are very similar and thus omitted.

We use 191 equally spaced grid points in [0.025,0.975] for the calculation of coverage
probabilities. We use the simulation-assisted approach described in Section 3 to find critical
values γ1−α at significance levels α = 0.1 and 0.05. These are the 90 and 95 percentile of

sup0.025≤t≤0.975|
∑n

i=1
∑mi

j=1 ηij K(
Tij −t

hN
)√

λkhN

∑n
j=1 mj

|, where mi = 4, Tij are i.i.d. with density f (t) = 1 and

ηij are i.i.d. standard normal random variables, 1 ≤ i ≤ n,1 ≤ j ≤ mi . For each simulated data,
local linear kernel estimator β̂1(t) based on (2.1) is computed using the Epanechnikov kernel,
which is K(x) = 0.75(1 −x2)+. As a consequence, λK = 0.6. Results based on other commonly
used kernels, such as the Gaussian kernel and the uniform kernel, are similar and thus omitted. To
select a data-adaptive bandwidth, we follow the leave-one-subject-out cross validation approach
described in Section 3 in the range (0.06,0.09). Specifically, one subject is reserved as a test
subject and the other subjects are used to calculate β̂1(t) at time points that the test subject is
observed. Do this for all subjects and the bandwidth which minimizes the mean squared error is
the one used in the inference stage and the estimation of �p(t) and �p(t) in (3.1).

We summarize the average ASE based on 1000 replications in Table 1. Furthermore, we plot
the ASE based on one realization for the four different forms of β1(t) in Figure 1. The bandwidth
that has the smallest ASE is selected in the construction of SCB.

Figure 2 shows a typical plot of β1(t), β̂1(t) and its 95% SCB for n = 200,400 and β1(t) =
0.5 cos{2π(t − 0.3)},4(t − 0.4)2. Table 2 summarizes the uniform coverage probabilities over
1000 simulations. We observe that as the sample size increases, the coverage probabilities based
on our approach are close to the nominal ones, point-wise confidence interval is not valid for
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Table 1. Average ASE based on 1000 simulations

n sin cos quad cubic

200 1.049 1.052 1.045 1.035
400 1.025 1.026 1.019 1.019

Note: “sin” represents β1(t) = 0.5 + 0.4sin{2π(t − 0.5)}, “cos” represents β1(t) = 0.5 cos{2π(t − 0.3)}, “quad” repre-

sents β1 = 4(t − 0.4)2 and “cubic” represents β1(t) = 4(t − 0.5)3.

simultaneous inference and the Bonferroni method is overly conservative with larger coverage
probabilities.

We next study (1.1) with two covariates. The model is

Y(t) = β0(t) + β1(t)X
(1)(t) + β2(t)X

(2)(t) + ε(t).

We set β0(t) = √
t, β1(t) = 0.4(t − 0.6)2 and β2(t) = 0.5 cos{2π(t − 0.5)}. For the ith subject,

the covariate process X
(1)
i (t) (resp. X

(2)
i (t)) follows a mean zero Gaussian process with variance

exp(t) (resp. 2t ) and correlation exp(−|tij − tik|/4) (resp. 2−|tij −tik |/4) for observations taking
place at tij and tik . Furthermore, X(1)(t) is independent of X(2)(t). The error process ε(t) =
ξX(1)(t), where ξ is a standard normal random variable, independent of X(1)(t) and X(2)(t).
The rest of the simulation set up is the same as in one covariate case.

We are interested in constructing SCBs for β1(t), β2(t), β1(t)+β2(t) and β1(t)−β2(t) which
corresponds to ai(t)

T β(t), i = 1,2,3,4 with a1(t) = (0,1,0), a2(t) = (0,0,1), a3(t) = (0,1,1)

and a4(t) = (0,1,−1). The same simulation-assisted critical value method and leave-one-

Table 2. Results of 1000 simulations with one covariate

90% 95%

n Function cp (ours) cp (pointwise) cp (bonferroni) cp (ours) cp (pointwise) cp (bonferroni)

200 1 89.5 7.7 99.6 95.6 28.0 99.8
400 1 93.3 8.4 99.9 98.1 28.3 100
200 2 89.1 7.2 99.8 96.2 27.5 99.8
400 2 90.5 9.0 99.8 96.7 28.1 100
200 3 85.8 10.7 99.4 93.9 31.5 99.7
400 3 89.0 13.3 99.7 95.3 34.9 99.7
200 4 87.9 11.0 99.0 92.9 32.3 99.4
400 4 90.0 11.1 99.3 96.2 33.0 99.9

Note: “function” represents the functional format of β1(t), where 1 represents β1(t) = 0.5 + 0.4 sin{2π(t − 0.5)}, 2

represents β1(t) = 0.5 cos{2π(t − 0.3)}, 3 represents β1(t) = 4(t − 0.4)2 and 4 represents β1(t) = 4(t − 0.5)3; “cp
(ours)” represents the coverage probability based on our approach; “cp (pointiwse)” represents the coverage probability
based on point wise inference and “cp (bonferroni)” represents the coverage probability based on Bonferroni method.
All numbers are presented in percentage forms.
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Figure 1. ASE as a function of bandwidth. Different functional forms of β1(t) in (a), (b), (c) and (d).

subject-out cross validation approach are used as in one covariate case. Specifically, the 1 − α

SCB of β1(t) + β2(t) is of the form

β̂1(t) + β̂2(t) ± γ1−α

√
a3(t)T �̂−1

3 (t)�̂3(t)�̂
−1
3 (t)a3(t)λK/

{
NhNf̂ (t)

}
. (4.2)

The 1 −α SCBs of β1(t), β2(t) and β1(t)−β2(t) can be obtained similarly. We also calculate
the coverage probabilities of the point-wise and Bonferroni confidence intervals.
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Figure 2. Typical plots of β1(t), β̂1(t) and its 95% SCB. Top panel: n = 200, β1(t) = 0.5 cos{2π(t − 0.3)}
and 4(t − 0.4)2; bottom panel: n = 400, β1(t) = 0.5 cos{2π(t − 0.3)} and 4(t − 0.4)2.

The results in Table 3 demonstrate that our method continues to provide coverage probabilities
close to the nominal ones in the two predictor case. On the other hand, point-wise confidence
intervals cannot provide correct simultaneous coverage percentages and the Bonferroni approach
is too conservative, with too wide confidence bands.

5. Real example

We shall analyze a longitudinal dataset from the Chicago Health and Aging Project [2]. This is
a longitudinal population study of common chronic health problems of older persons, especially
of risk factors for Alzheimer’s disease, in a biracial neighborhood of the south side of Chicago
from 1993 through 2006. The dataset contains 2846 persons initially free of Alzheimer’s disease
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Table 3. Results of 1000 simulations with two covariates

90% 95%

n Function cp (ours) cp (pointwise) cp (bonferroni) cp (ours) cp (pointwise) cp (bonferroni)

200 1 87.3 23.7 99.2 94.0 25.4 99.2
400 1 88.4 29.6 99.7 95.4 31.4 99.7
200 2 88.1 6.7 98.8 93.1 6.7 98.8
400 2 90.1 10.2 99.2 93.1 10.2 99.2
200 3 86.2 5.4 99.1 93.2 17.5 99.3
400 3 88.6 7.6 99.9 93.8 23.0 99.9
200 4 88.3 6.0 99.8 93.7 18.7 99.9
400 4 88.6 8.5 99.3 94.0 24.1 99.6

Note: “function” represents the functional format of ai (t)
T β(t), i = 1,2,3,4, where 1 represents β1(t) = 0.4(t − 0.6)2,

2 represents β2(t) = 0.5 cos{2π(t − 0.5)}, 3 represents β1(t) + β2(t) = 0.4(t − 0.6)2 + 0.5 cos{2π(t − 0.5)} and 4
represents β1(t) − β2(t) = 0.4(t − 0.6)2 − 0.5 cos{2π(t − 0.5)}; the rest have the same meaning as in Table 1.

but who are at risk of developing it. Their demographics are recorded at baseline and they are
longitudinally followed for clinical evaluation of Alzheimer’s disease. Under missing at random
assumption [18], 2821 persons were used for analysis. Their ages range from 60 to 100 and are
rescaled to the interval [0,1]. The left panel in Figure 3 shows the histogram of their ages. It can
be seen that they are dense in the interval [0,1] with relative few observations at the beginning
and end of the time interval.

Figure 3. Age distribution and ASE as a function of age in Chicago Health and Aging Project.
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We are interested in a composite measure of global cognition (Cognition) constructed with a
battery of 18 tests [26]. We use gender, race and education years as covariates and study their
time-varying associations with longitudinally measured global cognition. The covariate educa-
tion years is positive and skewed. We first do a log transformation to this covariate per customary.

Consider the following model

Cognition(t) = β0(t) + β1(t)Gender + β2(t)Race + β3(t) log(Education) + e(t). (5.1)

The cross validation procedure selects age bandwidth 62.93 with corresponding ASE 0.517 as
shown in the right panel of Figure 3. Figure 4 shows the 95% SCBs for the regression coefficient
functions. We also fitted a constant and a linear function to the regression coefficients to check
their adequacy in explaining the dynamic associations.

As we can see from Figure 4, all the SCBs tend to become wider at the beginning and end
of the time interval. This is due to the fact that there are relatively fewer observations at those
periods of time. The SCB for gender fully contains the horizontal line y = 0. This implies that

Figure 4. SCB with local linear kernel estimate, fitted constant and linear trends for model (5.1).
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there is no evidence against the claim that β1(t) = 0 in model (5.1). In other words, the effect of
gender is not statistically significant in this study. Similarly, the effect of education and intercept
term should be modeled as constants. From Figure 4, we observe that the SCB for race does not
contain a straight line or a constant line. This implies that there does exist a statistically significant
nonlinearly time-varying effect of race on global cognition. In summary, our analysis with the
methodology proposed in this paper suggests that the data can be fitted with the following model

Cognition(t) = a0 + a1(t)Race + a2 log(Education) + e(t). (5.2)

Such results are consistent with those in the literature. It has been shown that education attain-
ment is a significant predictor of global cognition [27]. Studies have shown racial disparities
among older adults in cognitive decline [23].

6. Concluding remarks

We have developed smooth SCBs for regression coefficient functions in varying coefficient mod-
els with sparse and irregularly spaced longitudinal data. We use the local linear estimator and
the methodology proposed in this paper can be easily adapted for other nonparametric estimators
such as the local polynomial estimators. In constructing the local linear estimator, each subject
could have different weight proportional to mi , the number of observations for this subject. We
expect similar results to hold in this case.

Sparsity in this paper means that the observations for each subject are sparse in time. Note
that at the same time our asymptotic results allow mi to diverge to infinity at a sufficiently slow
rate (see condition (A1)). On the other hand, however, it is well known that if mi diverges to
infinity sufficiently fast, then we are in the dense longitudinal data domain and the local linear
kernel estimates β̂(t) will be tight and hence their asymptotic behavior will be totally different
from that established in this paper. Therefore it remains an interesting question to establish the
divergence rate at which the asymptotic distribution changes from one to another. Extensions
to other nonparametric regression models, such as single index models and additive models are
possible and of great interest for future research.

In this paper, we require that the observation times tij are independent of the covariates and
errors, which is a frequently made assumption in longitudinal data analysis [7]. However, it is
well known that if such an assumption is violated, then the local linear estimators may be biased.
In this situation, it is necessary to model the joint distribution between the observation times and
the covariates and errors. There have been some discussions on informative observation times in
the literature; see, for instance, [24] for a conditional approach and [17] for a joint approach. We
shall leave the problem of simultaneous inference for sparse longitudinal data with informative
observation times to a future research.
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Appendix: Proofs of theorems

For briefness, we denote hN by h throughout the proofs. Before stating the proof for the main
results, we first prove a lemma on the covariance structure of {Mn(t)}. Let

r(s) = 1 −
∫
R
(K(x) − K(x + s))2 dx

2λK

.

By Theorems B1 and B2 in [1], we have

r(s) = 1 − C0|s|α + o
(|s|α) as s → 0,

where (α,C0) = (1,K1) if K1 > 0 and (α,C0) = (2,K2) if K1 = 0.

Lemma 1. Under (A1)–(A6), we have

EMn(t)Mn(s) = r(t − s) + O
(
h max

1≤i≤n
mi

)

uniformly in s, t ∈ R.

Proof. Define

G∗
n(t) =

n∑
i=1

mi∑
j=1

γi(tij )K

(
tij

h
− t

)
.

Note that

EG∗
n(t)G

∗
n(s) =

n∑
i=1

E

[
mi∑

j=1

γi(tij )K

(
tij

h
− t

) mi∑
j=1

γi(tij )K

(
tij

h
− s

)]
.

For j �= l, we have

E

[
γi(tij )γi(til)K

(
tij

h
− t

)
K

(
til

h
− s

)]

=
∫ ∞

−∞

∫ ∞

−∞
E
[
γi(u)γi(v)

]
K

(
u

h
− t

)
K

(
v

h
− s

)
f (u)f (v) dudv

≤ sup
t

E
[
γ 2

1 (t)
]{∫ ∞

−∞
K

(
u

h
− t

)
f (u)du

}{∫ ∞

−∞
K

(
u

h
− s

)
f (u)du

}

= O
(
h2),

(A.1)



Simultaneous confidence band for sparse longitudinal regression 3029

where O(1) does not depend on s and t . For j = l, we have

E

[
γ 2
i (tij )K

(
tij

h
− t

)
K

(
tij

h
− s

)]

=
∫ ∞

−∞
σ 2(v)K

(
v

h
− t

)
K

(
v

h
− s

)
f (v) dv

= h

∫ ∞

−∞
K(s − t + v)K(v)σ 2(hv + hs)f (hv + hs) dv

= h

√
σ 2(ht)σ 2(hs)f (ht)f (hs)

∫ ∞

−∞
K(s − t + v)K(v)dv + O

(
h2),

where the last inequality follows from∣∣σ 2(hv + hs) −
√

σ 2(ht)σ 2(hs)
∣∣= O(h)

and ∣∣f (hv + hs) −√
f (ht)f (hs)

∣∣= O(h)

uniformly for |s − t | ≤ 2A and |v| ≤ 2A. The above two inequalities can be derived from the
Lipschitz continuity of σ 2(t) and f (t) and the fact that they are positive and bounded away from
zero. The proof is complete. �

A.1. Proof of Theorem 1

Without loss of generality, we assume that A = 1 in K(·), u = 1 and l = 0. Let

γ̃i (tij ) = γi(tij )I
{∣∣γi(tij )

∣∣≤ (
max

1≤i≤n
mi

)−1√
nh/(logn)8

}
, γ̂i(tij ) = γ̃i (tij ) − Eγ̃i (tij ),

Ĝn(t) =
n∑

i=1

mi∑
j=1

γ̂i (tij )K

(
tij

h
− t

)
, Ğn(t) =

n∑
i=1

mi∑
j=1

[
γ (tij ) − γ̂i (tij )

]
K

(
tij

h
− t

)
,

M̂n(t) = Ĝn(t)√
λKNhσ 2(ht)f (ht)

, M̆n(t) = Ğn(t)√
λKNhσ 2(ht)f (ht)

.

Lemma 2. Under the conditions of Theorem 1, we have

sup
0≤t≤1

∣∣M̆n(t/h)
∣∣= oP

(
1/

√
logh−1

)
.

Proof. By (A4) and (A5), we have

P
(

max
1≤i≤n

max
1≤j≤mi

mi

∣∣γ (tij )
∣∣≥ √

nh/(logn)2
)

≤ Cn
(

max
1≤i≤n

mi

)q

(nh)−q/2(logn)2q = o(1).
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Also, ∑n
i=1

∑mi

j=1 |Eγ̃i (tij )|√
Nh

≤ Cn
(

max
1≤i≤n

mi

)q−1
(nh)−q/2(logn)2q−2 = o(1).

This yields that, for any δ > 0,

P
(

sup
0≤t≤1

∣∣M̆n(t/h)
∣∣≥ δ/

√
logh−1

)
= o(1).

This completes the proof of Lemma 2. �

By Lemma 2, it suffices to prove Theorem 1 holds by replacing Mn(t/h) with M̂n(t/h). To
this end, we split the interval [0, h−1] into big and small intervals W1,V1, . . . ,WN,VN , where
Wi = [ai, ai + w], Vi = [ai + w,ai+1], ai = (i − 1)(w + v). We will let w be fixed and v go to
zero. Define M+ = max1≤i≤N supt∈Wi

M̂n(t), M−1 = min1≤i≤N inft∈Wi
M̂n(t). Let

R1 = P
(

max
1≤k≤N

sup
t∈Vk

M̂n(t) ≥ x
)
, R2 = P

(
min

1≤k≤N
inf
t∈Vk

M̂n(t) ≤ −x
)
.

Then we have∣∣∣P( max
0≤t≤h−1

∣∣M̂n(t)
∣∣≥ x

)
− P

({
M+ ≥ x

}∪ {M− ≤ −x
})∣∣∣≤ R1 + R2.

By Lemma 3 below, we have limv→0 lim supn→∞[R1 + R2] = 0. It suffices to deal with the
probability P({M+ ≥ x} ∪ {M− ≤ −x}). Let

�+
k = max

1≤j≤χ
M̂n

(
ak + jax−2/α

)
, �−

k = min
1≤j≤χ

M̂n

(
ak + jax−2/α

)
,

where χ = [wx2/α/a], a > 0. By some elementary calculations,

∣∣∣P({M+ ≥ x
}∪ {M− ≤ −x

})− P
({

max
1≤k≤N

�+
k ≥ x

}
∪
{

min
1≤k≤N

�−
k ≤ −x

})∣∣∣
≤

N∑
k=1

∣∣∣P( sup
t∈Wi

M̂n(t) ≥ x
)

− P
(
�+

k ≥ x
)∣∣∣+ N∑

k=1

∣∣∣P( inf
t∈Wi

M̂n(t) ≤ −x
)

− P
(
�−

k ≤ −x
)∣∣∣

=: R3 + R4.

We now show that lima→0 lim supn→∞[R3 + R4] = 0. Define φ(x) = e−x2/2/(x
√

2π) and
x = dn + z/(2 logh−1)1/2. We also define Hα(a) and Hα as the Pickands constants (see The-
orem A1 and Lemmas A1 and A3 in [1]). By these results, we see that H1 = 1, H2 = 1/

√
π and

lima→0 Hα(a)/a = Hα .
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Lemma 3. Suppose the conditions in Theorem 1 hold. Let t > 0 such that inf{s−α(1 − r(s)) :
0 ≤ s ≤ t} > 0. We have

P

([tx2/α/a]⋃
j=1

{
M̂n

(
v + jax−2/α

)≥ x
})= x2/αφ(x)

Hα(a)

a
C

1/α

0 t + o
(
x2/αφ(x)

)

uniformly over 0 ≤ v ≤ h−1. Also,

P

( ⋃
0≤s≤t

{
M̂n(v + s) ≥ x

})= x2/αφ(x)HαC
1/α

0 t + o
(
x2/αφ(x)

)

uniformly over 0 ≤ v ≤ h−1.

Proof. We use the arguments in the proof of Lemma 4.6 in [19]. Let sj = j/(logn)6, 1 ≤ j < tn,
where tn = 1 + [(logn)6t], stn = t . Write [sj−1, sj ] =⋃qn

k=1[sj,k−1, sj,k], where sj,k − sj,k−1 =
(sj − sj−1)/qn and qn = [(sj − sj−1)n

2]. We have, for sj,k−1 ≤ s ≤ sj,k ,∣∣M̂n(v + s) − M̂n(v + sj,k−1)
∣∣

≤ C

max1≤i≤n mi(logn)8

n∑
i=1

mi∑
l=1

∣∣∣∣K
(

til

h
− v − s

)
− K

(
til

h
− v − sj,k−1

)∣∣∣∣
≤ C1n

−2/3 + C1
∑n

i=1
∑mi

l=1 I {| til
h

− v − sj,k−1 ± 1| ≤ C2n
−2}

max1≤i≤n mi(logn)8
.

Put Iil = I {| til
h

− v − sj,k−1 ± 1| ≤ C2n
−2}. Then EIil ≤ Chn−2. By Bernstein’s inequality,

P

(∣∣∣∣∣
n∑

i=1

mi∑
l=1

(Iil − EIil)

∣∣∣∣∣≥ max
1≤i≤n

mi(logn)2

)

≤ C1 exp
(−C2nh−1(logn)4)+ C1 exp

(−C2(logn)2).
Hence, we have

P
(

max
j,k

sup
sj,k−1≤s≤sj,k

∣∣M̂n(v + s) − M̂n(v + sj,k−1)
∣∣≥ (logn)−2

)
= O

(
n−M

)

for any M > 0. Note that we can show a similar inequality as that in Lemma 2 holds for M̂n(t),
and so by the property of r(s) we have

E
(
M̂n(v + s) − M̂n(v + sj,k−1)

)2 ≤ Cnh(logn)−6.

By Bernstein’s inequality again, we have

P
(

max
j,k

∣∣M̂n(v + sj,k−1) − M̂n(v + sj−1)
∣∣≥ (logn)−2

)
≤ C1tnn

2e−C2(logn)2
.
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Combining the above arguments, we can obtain that

P
(

max
j

sup
sj−1≤s≤sj

∣∣M̂n(v + s) − M̂n(v + sj−1)
∣∣≥ (logn)−2

)
= O

(
n−M

)
.

It suffices to prove Lemma 2 holds for the probability P(max1≤j≤tn |M̂n(v + sj )| ≥ x). The rest
of the proof is similar to that of Lemma 4.6 in [19] and hence is omitted. �

Let t = w in Lemma 3 with w being small enough. It follows that lima→0 lim supn→∞[R3 +
R4] = 0. To prove Theorem 1, it suffices to show the following lemma holds.

Lemma 4. Under the conditions of Theorem 1, for all z ∈ R, we have

lim
a→0

lim sup
v→0

lim sup
n→∞

∣∣∣P({ max
1≤k≤N

�+
k ≥ x

}
∪
{

min
1≤k≤N

�−
k ≤ −x

})
− (

1 − e−2e−z)∣∣∣= 0.

Proof. For d ≥ 1, set

B̂k,j = {
M̂n

(
ak + jax−2/α

)≥ x
}∪ {M̂n

(
ak + jax−2/α

)≤ −x
}
,

D̂
±
k,j = {

Ŷn

(
ak + jax−2/α

)≥ x ± (logn)−2d
}∪ {Ŷn

(
ak + jax−2/α

)≤ −x ∓ (logn)−2d
}
,

where Ŷn(·) is a centered Gaussian processes with covariance function satisfying

Cov
(
Ŷn(s1), Ŷn(s2)

)= Cov
(
M̂n(s1), M̂n(s2)

)
for s1 ≤ s2. Let Âk =⋃χ

j=1 B̂k,j and Ĉk =⋃χ

j=1 D̂k,j . Then

P
({

max
1≤k≤N

�+
k ≥ x

}
∪
{

min
1≤k≤N

�−
k ≤ −x

})
= P

(
N⋃

k=1

Âk

)
.

Using the Bonferronis inequality, we have for any l < [N/2],
2l∑

d=1

(−1)d−1
∑

1≤i1<···<id≤N

P

(
d⋂

j=1

Âij

)

≤ P

(
N⋃

k=1

Âk

)
≤

2l−1∑
d=1

(−1)d−1
∑

1≤i1<···<id≤N

P

(
d⋂

j=1

Âij

)
.

(A.2)

Write Ĉ
±
k =⋃χ

j=1 D̂
±
k,j and Ĉk =⋃χ

j=1 D̂
±
k,j . By Theorem 1.1 in [32], we can obtain that for

any M > 0,

P

(
d⋂

j=1

Ĉ
+
ij

)
− Cn−M ≤ P

(
d⋂

j=1

Âij

)
≤ P

(
d⋂

j=1

Ĉ
−
ij

)
+ Cn−M. (A.3)
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We now consider the probability P(
⋂d

j=1 Ĉ
±
ij
). Set Ẑk,j = Ŷn(ak + jax−2/α) and denote the

vector Ẑn = (Ẑik,j ,1 ≤ k ≤ d,1 ≤ j ≤ χ). Let �̂n = Cov(Ẑn). Then we have, for some γ > 0,

‖�̂n − �̃n‖ = O
(
χhγ

)
,

where �̃n is the covariance matrix of (Zik,j ,1 ≤ k ≤ d,1 ≤ j ≤ χ), Zk,j = Yn(ak + jax−2/α)

and Yn(·) is a centered Gaussian processes with covariance function r(·). Let Vk,j , k ≥ 1, j ≥ 1
be i.i.d. N(0,1) random variables and δn = hδ for some 0 < δ < γ/4. Define

D̂
±
k,j,δ = {

Ẑk,j + δnVk,j ≥ x ± 2(logn)−2d
}∪ {Ẑk,j + δnVk,j ≤ −x ∓ 2(logn)−2d

}
,

D±
k,j,δ = {

Zk,j + δnVk,j ≥ x ± 2(logn)−2d
}∪ {Zk,j + δnVk,j ≤ −x ∓ 2(logn)−2d

}
,

D±
k,j = {

Zk,j ≥ x ± 3(logn)−2d
}∪ {Zk,j ≤ −x ∓ 3(logn)−2d

}
,

Ĉ
±
k,δ =

χ⋃
j=1

D̂
±
k,j,δ, C±

k,δ =
χ⋃

j=1

D±
k,j,δ, C±

k =
χ⋃

j=1

D±
k,j .

By the tail probability of the normal distribution, we can show that for any M > 0,

P

(
d⋂

j=1

Ĉ
+
ij ,δ

)
− Cn−M ≤ P

(
d⋂

j=1

Ĉ
±
ij

)
≤ P

(
d⋂

j=1

Ĉ
−
ij ,δ

)
+ Cn−M. (A.4)

Let �̂δ
n and �̃δ

n be the covariance matrices of (Ẑik,j + δnVk,j ,1 ≤ k ≤ d,1 ≤ j ≤ χ) and (Zik,j +
δnVk,j ,1 ≤ k ≤ d,1 ≤ j ≤ χ), respectively. We have

∥∥�̂δ
n − �̃δ

n

∥∥= O
(
χhγ

)
for some γ > 0. Note that �̂δ

n and �̃δ
n are positive definitive and the smallest eigenvalues are

larger than δ2
n. So we have

∥∥(�̂δ
n

)−1 − (
�̃δ

n

)−1∥∥= O
(
χhγ δ4

n

)
.

By the density function of multivariate normal vector and some tedious calculations, we can
prove that

P

(
d⋂

j=1

Ĉ
±
ij ,δ

)
= (

1 + O
(
n−τ

))
P

(
d⋂

j=1

C±
ij ,δ

)
+ O

(
n−M

)
(A.5)

for some τ > 0 and any M > 0. Also, by the tail probability of the normal distribution,

P

(
d⋂

j=1

C+
ij

)
− O

(
n−M

)≤ P

(
d⋂

j=1

C±
ij ,δ

)
≤ P

(
d⋂

j=1

C−
ij

)
+ O

(
n−M

)
. (A.6)



3034 H. Cao, W. Liu and Z. Zhou

We now only need to consider P(
⋂d

j=1 C±
ij
). Define qj = ij+1 − ij , 1 ≤ j ≤ d − 1, and

I =
{

1 ≤ i1 < · · · < id ≤ N : min
1≤j≤d−1

qj ≤ [
2w−1 + 2

]}
.

As the proof of Lemma 4.10 in [19], we have

∑
(i1,...,id )∈I

P

(
d⋂

j=1

C±
ij

)
≤ Cbτ (A.7)

for some τ > 0. Note that r(t) = 0 for all t ≥ 2. Hence, for (i1, . . . , id ) /∈ I , C±
ij

, 1 ≤ i1 < · · · <
id ≤ N are independent. Also, Card(I) = O(b−d+1). So we have

( ∑
1≤i1<···<id≤N

−
∑
I

)
P

(
d⋂

j=1

C±
ij

)
=
( ∑

1≤i1<···<id≤N

−
∑
I

) d∏
j=1

P
(
C±

ij

)

= (
1 + o(1)

)Nd

d!
(

x2/αφ(x)
Hα(a)

a
C

1/α

0 w

)d

.

(A.8)

Submitting (A.3)–(A.8) into (A.2) and using some elementary calculations, we prove
Lemma 3. �

Let K̃k(x) = xkK(x) for integers k ≥ 0. Note that K̃k(x) satisfies (A6). We can define dn,k

and λ
K̃k

as in Section 2 by replacing K(x) with K̃k(x). Let

f̂k(t) = 1

Nh

n∑
i=1

mi∑
j=1

K̃k

(
tij − t

h

)
.

The above arguments in fact implies that

P

[(
2 logh−1)1/2

(
sup

0≤t≤1

∣∣∣∣
√

Nh

λ
K̃

f (t)

[
f̂k(t) − Ef̂k(t)

]∣∣∣∣− dn,k

)
≤ z}

]
→ e−2e−z

. (A.9)

Hence (3.4) holds by taking k = 0. It is easy to prove that

sup
0≤t≤1

∣∣∣∣E[f̂k(t)
]− f (t)

∫ A

−A

K̃k(x) dx − hf ′(t)
∫ A

−A

xK̃k(x) dx

∣∣∣∣≤ Ch2.

So by (A.9) we have

sup
0≤t≤1

∣∣∣∣f̂k(t) − f (t)

∫ A

−A

K̃k(x) dx − hf ′(t)
∫ A

−A

xK̃k(x) dx

∣∣∣∣= OP

(
h2 +

√
logh−1

Nh

)
. (A.10)
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A.2. Proof of Theorem 2

Write

n∑
i=1

Xi(tij )
T Xi(tij )

mi∑
j=1

K̃v

{
(tij − t)/h

}

=
n∑

i=1

[
Xi(tij )

T Xi(tij ) − E∗Xi(tij )
T Xi(tij )

] mi∑
j=1

K̃v

{
(tij − t)/h

}

+
n∑

i=1

[
E∗Xi(tij )

T Xi(tij )
] mi∑

j=1

K̃v

{
(tij − t)/h

}
,

where E∗(·) denotes the conditional expectation given {tij }. Denote Xi(t)
T Xi(t) −

E∗Xi(t)
T Xi(t) = (ri,kl(t))1≤k,l≤p and

Qn,kl(t) = 1√
Nh Var[r1,kl(t)]λKvf (t)

n∑
i=1

mi∑
j=1

ri,kl(tij )K̃v

{
(tij − t)/h

}
.

Following exactly the same proof of Theorem 1, we have

P
[(

2 logh−1)1/2
(

sup
0≤t≤1

∣∣Qn,kl(t)
∣∣− dn

)
≤ z

]
→ e−2e−z

.

Note that

1

Nh

n∑
i=1

[
E∗Xi(tij )

T Xi(tij )
] mi∑

j=1

K̃v

{
(tij − t)/h

}

= �(t)
1

Nh

n∑
i=1

mi∑
j=1

K̃v

{
(tij − t)/h

}+ O(1)h
1

Nh

n∑
i=1

mi∑
j=1

∣∣K̃v+1
{
(tij − t)/h

}∣∣.
This, together with (A.10), implies

sup
0≤t≤1

∥∥∥∥∥ 1

Nh

n∑
i=1

Xi(tij )
T Xi(tij )

mi∑
j=1

K̃v

{
(tij − t)/h

}− �p(t)f (t)

∫ A

−A

K̃v(x) dx

∥∥∥∥∥
= OP

(√
logh−1

Nh
+ h

)
.

(A.11)

Define e = (Ip×p,0p×p), where Ip×p is a p×p identity matrix and 0p×p is a p×p zero matrix.
We have

β̂(t) − β(t) = eS−1
n (t)Vn(t) + eS−1

n (t)Zn(t) + eS−1
n (t)Un(t), (A.12)
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where

Vn(t) =
(

Vn,1(t)

Vn,2(t)

)
, Zn(t) =

(
Zn,1(t)

Zn,2(t)

)
, Un(t) =

(
Un,1(t)

Un,2(t)

)
.

Here

Vn,l(t) = (nh)−1
n∑

i=1

mi∑
j=1

Xij εij K̃l−1
(
(tij − t)/h

)
,

Zn,l(t) = h2

2

[
1

nh

n∑
i=1

mi∑
j=1

XijX
T
ijβ

′′(t)K̃l+1
(
(tij − t)/h

)]
,

∥∥Un,l(t)
∥∥≤ Ch3 1

nh

n∑
i=1

mi∑
j=1

∥∥XijX
T
ij

∥∥∣∣K̃l+2
(
(tij − t)/h

)∣∣.
Define

Qn(t) = 1√
a(t)T �−1

p (t)�p(t)�−1
p (t)a(t)λ

K̃l
Nhf (t)

×
n∑

i=1

mi∑
j=1

a(t)T �−1
p (t)Xij εij K̃l

{
(tij − t)/h

}
.

By the same proof of Theorem 1 again, for any a(t) ∈ Rk+1,

P
[(

2 logh−1)1/2
(

sup
0≤t≤1

∣∣Qn(t)
∣∣− dn

)
≤ z

]
→ e−2e−z

. (A.13)

Note that

∥∥∥∥Sn(t) − f (t)diag

(
�p(t),�p(t)

∫ A

−A

x2K(x)dx

)∥∥∥∥= OP

(√
logh−1

Nh
+ h

)
.

The theorem is proved by (A.11), (A.12) and (A.13).
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