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Abstract

Motivation: Next generation sequencing technologies have enabled the study of the human micro-

biome through direct sequencing of microbial DNA, resulting in an enormous amount of microbiome

sequencing data. One unique characteristic of microbiome data is the phylogenetic tree that relates

all the bacterial species. Closely related bacterial species have a tendency to exhibit a similar relation-

ship with the environment or disease. Thus, incorporating the phylogenetic tree information can po-

tentially improve the detection power for microbiome-wide association studies, where hundreds or

thousands of tests are conducted simultaneously to identify bacterial species associated with a

phenotype of interest. Despite much progress in multiple testing procedures such as false discovery

rate (FDR) control, methods that take into account the phylogenetic tree are largely limited.

Results: We propose a new FDR control procedure that incorporates the prior structure information

and apply it to microbiome data. The proposed procedure is based on a hierarchical model, where

a structure-based prior distribution is designed to utilize the phylogenetic tree. By borrowing infor-

mation from neighboring bacterial species, we are able to improve the statistical power of detect-

ing associated bacterial species while controlling the FDR at desired levels. When the phylogenetic

tree is mis-specified or non-informative, our procedure achieves a similar power as traditional pro-

cedures that do not take into account the tree structure. We demonstrate the performance of our

method through extensive simulations and real microbiome datasets. We identified far more

alcohol-drinking associated bacterial species than traditional methods.

Availability and implementation: R package StructFDR is available from CRAN.

Contact: chen.jun2@mayo.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The human microbiome is now known to be intricately linked to

overall human health. Specific changes in microbiome composition

have been associated with many human diseases such as obesity, in-

flammatory bowel disease and various cancers through the direct

sequencing of microbial DNA (Gilbert et al., 2016). One popular

sequencing strategy targets the 16S rRNA gene, which carries

evolutionary information, to profile the taxonomic content of the

microbiome (Kuczynski et al., 2012). In this approach, the

sequenced 16S tags are first clustered into small units, called oper-

ational taxonomic units (OTU), based on sequence divergence. At

97% similarity level, these OTUs are assumed to correspond to bio-

logical species, though the exact correspondence may not always

hold. The representative sequences of OTUs can then be used to
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infer a phylogenetic tree, which provides important prior knowledge

about how these OTUs are related evolutionarily. Environmental

and disease conditions have a tendency to affect bacterial clades,

a group of closely related biological species, at different phylogen-

etic depth (Martiny et al., 2015). Thus, the phylogenetic tree can be

potentially used to increase the efficiency and power of microbiome

data analysis by borrowing the states of neighboring OTUs. Indeed,

many tree-based statistical methods have been demonstrated to be

superior to those non-tree-based counterparts (Chen et al., 2012,

2013; Purdom, 2011; Silverman et al., 2017).

A common goal in sequencing-based microbiome analysis is the

identification of OTUs or taxa associated with a phenotype of inter-

est (e.g. body mass index, smoking status, disease subtypes) (Gilbert

et al., 2016). Consequently, hundreds or thousands of tests are con-

ducted simultaneously. False discovery rate (FDR) control

(Benjamini and Hochberg, 1995) is one of the most commonly used

approaches for multiple comparison adjustment in microbiome-

wide association studies. By definition, FDR is the expected propor-

tion of falsely rejected null hypotheses among all of the rejected null

hypotheses. There is a vast literature on FDR control and its applica-

tions in various fields, such as microarray analysis, astronomical

surveys and brain imaging, among others (Efron et al., 2001; Tusher

et al., 2001; Dudoit et al., 2002; Schwartzman et al., 2008).

The predominant framework in FDR control is via individual

analysis—testing each hypothesis separately and declaring statistical

significance if the P-value is less than a certain threshold (Benjamini

and Hochberg, 1995) or the test statistic falls into the rejection re-

gion (Cao and Kosorok, 2011). Although this approach works well

for phenotypes that depend on strong effects from a few variants

(genotypes/OTUs), it is less suitable for complex phenotypes that are

influenced by weak effects from many different variants. In fact, it

has now been recognized that a majority of biological phenotypes

manifest from a complex interaction among different variants.

Thus, FDR control without considering the underlying biological

structure can lead to very low statistical power. For microbiome

data, the biological structure is encoded in the phylogenetic tree,

and closely related OTUs are expected to respond to the environ-

mental perturbations in similar manners. When an OTU is associ-

ated with a disease, it is likely that the neighboring OTUs are also

disease associated.

Multiple testing under dependence is a challenging problem.

Although it has been shown that the Benjamini and Hochberg pro-

cedure remains valid under various dependence structure, such as

positive dependence (Benjamini and Yekutieli, 2001; Wu, 2008),

extensive evidence shows that there will be a substantial power

loss without considering the actual dependence (Owen, 2005;

Efron, 2007; Conneely and Boehnke, 2007). To incorporate the

dependence structure, Sun and Cai (2009) proposed a hidden

Markov Model, Leek and Storey (2008) and Friguet et al. (2009)

used a factor model approach and Fan et al. (2012) integrated

principal component analysis and a factor model. These methods

require strong assumptions and are not applicable to microbiome

data. Recently, there have been multiple testing methods that le-

verage prior biological knowledge to increase the power of FDR

control (Yekutieli, 2008; Kang et al., 2009; Hu et al., 2012;

Ignatiadis et al., 2016). For microbiome data, Sankaran and

Holmes (2014) proposed to apply the group Benjamini-Hochberg

(GBH) procedure of Hu et al. (2012) and the hierarchical false dis-

covery rate (HFDR) controlling procedure of Yekutieli (2008) to

utilize the hierarchical tree structure. In GBH, the proportion of

alternative hypothesis within each group is estimated and overall

P-values of that group are re-weighted incorporating the

proportion of alternative hypothesis within the group to improve

power. HFDR arranges families of related hypotheses along a tree

and restricting attention to particular subtrees that are more likely

to contain alternative hypotheses. GBH requires the specification

of the groups while HFDR uses the tree topology. Both of them are

not able to fully exploit the tree structure information, which con-

tains both the topology and branch lengths.

In this paper, we aim to boost the statistical power of

microbiome-wide multiple testing by proposing a new method that

leverages the relationships among different OTUs through the

phylogenetic tree. Our method combines an empirical Bayes ap-

proach to incorporate prior correlation structure (Wei and Li,

2007; Li et al., 2010) and a permutation approach for FDR control

(Xie et al., 2005). It has several unique distinctive features. First, a

working hierarchical model that incorporates prior biological

knowledge allows us to borrow information across different tests.

Second, an algorithm based on permutation is used to control

FDR. Permutation retains the dependence among test statistics and

has the flexibility to adjust to the unknown null distribution of the

test statistics, even when the working model is mis-specified.

Third, our procedure has substantial power gain when the phylo-

genetic tree accurately describes the dependence structure and

achieves a similar power as traditional procedures when the phylo-

genetic tree is mis-specified or non-informative. Simulation studies

and real data applications show that our procedure has favorable

performances compared with conventional approaches.

2 Materials and methods

2.1 Background and notation
Consider a typical microbiome dataset with m OTUs from n individ-

ual samples, and further suppose that a phenotype of interest is re-

corded for each sample. Such data can be represented in an m�n

matrix, with rows corresponding to individual OTUs and columns

corresponding to individual samples. The total number of samples n

is usually in the order of tens or hundreds, and the number of OTUs

is in the order of hundreds or thousands. In addition, a phylogenetic

tree relates all the OTUs, which can be represented as an m�m dis-

tance matrix D, containing the pairwise patristic distances between

OTUs (the sum of the lengths of the branches that link two OTUs in

the tree). Note that the m�m distance matrix is independent of the

observations in the m�n data matrix.

Suppose that we are interested in the association between the

phenotype and OTUs. This can be casted into a multiple testing

problem—the simultaneous tests of the null hypothesis Hj of no as-

sociation between the OTU j and the phenotype:

H0j : the jth OTU is not associated with the phenotype ; j ¼ 1; . . . m

to see which OTUs are correlated with the phenotype.

A by far classic approach for this problem is the FDR control

procedure pioneered by Benjamini and Hochberg (Benjamini and

Hochberg, 1995). The algorithm works as follows. Let Pð1Þ � Pð2Þ
� � � � � PðmÞ be the ordered observed P-values of m hypotheses.

Define k ¼ maxfi : PðiÞ� ia=mg and reject H0ð1Þ; . . . H0ðkÞ; where a is a

pre-specified error rate. If no such k exists, reject no hypothesis.

This approach is shown to be valid under independence or positive

dependence among the P-values. Fan et al. (2012) imposed a factor

model on the observed data to model the dependence structure and

utilized the principal component analysis of the variance covariance

matrix. Instead of directly modeling the dependence, we develop a

hierarchical modeling strategy to leverage prior structure
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information by an empirical Bayesian approach. We work with the

z-value, which can be conveniently transformed from the P-value by

zj ¼ U�1ð1� PjÞ; j ¼ 1; . . . ;m; (1)

where U denotes the cumulative distribution function of the stand-

ard normal random variable. If Pj < � or Pj > 1� �, where � is a

very small number (e.g. 10�15), we set Pj ¼ � or 1� �. To accommo-

date the direction of the effect, z-value can be obtained by

zj ¼ U�1ð1� Pj=2Þ or U�1ðPj=2Þ; (2)

depending on the sign of the effect. For microbiome-based applica-

tions, we focus on the transformation (2). P-values can be obtained

through various test statistics or regression models.

2.2 Phylogeny-induced prior correlation
To facilitate the incorporation of the phylogenetic tree into FDR

control, we define a tree-based correlation structure based on the

distance matrix D: Following the trait evolution model (Martin and

Hansen, 1997), the correlation of the traits between OTU i and

OTU j, Cij, can be modeled using an exponential function

Cij ¼ exp ð�2qDijÞ; i; j ¼ 1; . . . ;m;

where the parameter q 2 ð0;1Þ characterizes the evolutionary rate. If

q¼0, Cij ¼ 1 for 8i; j, meaning that all the traits are the same and there

is maximal phylogenetic relationship. On the other extreme, if q!1;
Cij ¼ 0 for 8i 6¼ j, meaning that all the traits are not related and they

can evolve independently. Statistically, q can also be interpreted as a

parameter governing the grouping effect. If q¼0, all the OTUs are

grouped together, and if q!1, all the OTUs are independent. Thus

by tuning the parameter q, we can achieve different phylogenetic reso-

lution, which has a similar effect of grouping the OTUs at different

phylogenetic depth or taxonomic ranks. From an informational per-

spective, q determines the scale of the neighborhood for information

borrowing, with a larger q indicating a smaller neighborhood so that

OTUs of more close proximity contribute the information. We denote

Cq as the phylogeny-induced correlation matrix of m OTUs.

2.3 Hierarchical model
With z ¼ ðz1; . . . ; zmÞT and Cq, we can define a hierarchical model.

We assume that, conditional on the mean, z follows a multivariate

normal distribution

zjl �MVN ðl;r2IÞ; (3)

where I is the m�m identity matrix, r2 is the unknown variance

and the vector l is of main interest, where we want to draw poster-

ior inference. We further assume that l follows a prior multivariate

normal distribution

l �MVN ðc1; s2CqÞ; (4)

where 1 is a vector of 1s and c; s2 and q are hyperparameters. The

hierarchical modeling allows the incorporation of prior correlation

structure and the benefit of using conjugate prior is that a closed

form posterior can be obtained.

We obtain the marginal distribution of z by the formula as follows:

z �MVN ðc1; s2Cq þ r2IÞ: (5)

Therefore, the prior structure induces dependence among the z-val-

ues. We use an empirical Bayesian approach to estimate hyperpar-

amters from available data.

To be noted, the proposed hierarchical model does not assume

mixture components as more commonly used in FDR literature (Xie

et al., 2011) and neither does it model the data correlation ðzjlÞ.
Therefore it is a working model per se. The purpose of this simple

hierarchical model is to derive an efficient moderated test statistic as

described in the next section.

2.4 Prior-structure moderated test statistic
Given the true values of the hyperparameters q0; c0; r2

0 and s2
0; the

posterior density function of l can be obtained from the Bayesian

formula

f ðljzÞ ¼ f ðzjlÞf ðlÞ
f ðzÞ

/ exp f�1

2
ðl� l�ÞTK�1ðl� l�Þg;

where

K ¼ ðr�2
0 Iþ s�2

0 C�1
q0
Þ�1

and

l� ¼ Kðr�2
0 zþ s�2

0 C�1
q0

c01Þ

¼ ðIþ kC�1
q0
Þ�1ðkC�1

q0
c01þ zÞ; k ¼ r2

0=s
2
0:

(6)

Statistical inference is based on l� (the posterior mean of ljz).

Based on the posterior distribution, l� is the estimator that min-

imizes the mean squared error. We use l� as the prior-structure

moderated test statistic for permutation-based significance

assessment.

There are some interesting observations from the moderated stat-

istic. Fix q0; if k! 0; the shrinkage estimator l� ! z: In this case,

either the prior l is not informative with a large variance s2 or the

variability of the conditional distribution of zjl is extremely small.

Consequently, z-values are our best estimate. On the other hand, if

k!1; the shrinkage estimator l� ! c01: In this case, prior struc-

ture shrinks the posterior estimator to a common stable value c0: It

indicates that the prior structure provides overwhelming informa-

tion. Thus, the parameter k balances information from the data and

the prior correlation structure. The parameter q0 has a similar effect.

Through the combination of q0 and k, various degrees of moder-

ation can be achieved. Thus, the resulting l� provides prior-

structure adjusted ranking of the importance of different OTUs.

We employ an empirical Bayesian idea to obtain the estimates of

hyperparameters from available data. In fact, the parameter estima-

tion under model (5) has been well studied in the statistics literature

(Draper and Smith, 1998). In our implementation, we used MLE to

estimate the hyperparameters as implemented in the R function gls.

The values of the estimates indicate the informativeness of the

phylogenetic tree, with large bq or small bk suggests limited use of the

tree. After obtaining the estimates bc; bq; bk, we plug them into l� to

obtain bl� ¼ ðIþ bkC�1bq Þ�1ðbkC�1bq bc1þ zÞ:

2.5 Permutation-based FDR control algorithm
In this section, we use permutation to develop an FDR control pro-

cedure based on bl�: The advantage of using permutation is that it

adjusts to the unknown null distribution of the test statistic, and is

robust against different types of dependence, such as the correlations

in the data ðzjlÞ, even when the working models (3) and (4) are mis-

specified. As mentioned earlier, the posterior mean estimate bl� pro-

vides a new ranking of the importance of different OTUs. Our goal
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is to find a threshold such that the FDR is controlled at a desired

level. When the hierarchical model is used, the distribution of the

statistics for OTUs under the null will be affected by OTUs under

the alternative due to information pooling. To derive the correct

null distribution through permutation, the signals need to be pre-

served in the permutation. We thus confine our permutation to the

OTUs with P-values larger than the median. When calculating the

moderated statistics under the permutation, we use P-values from

all OTUs including those with P-values less than the median.

Specifically, we use the following algorithm

1. Sort the jbl�j in an increasing order and denote d1 ¼ jbl�ð1Þj;d2 ¼ jbl�ð2Þj; . . . ;dm ¼ jbl�ðmÞj; where j � j means absolute value function.

2. Create two sets containing the indices of the OTUs with the ori-

ginal P-values � and > the median P-values, respectively.

Denote the two sets as A1 and A0.

3. Confine the permutation to OTUs in A0. Permute B times (e.g.

B ¼ 20) to recalculate P-values and z-values for these OTUs. For

OTUs in A1, P-values and z-values remain as original. For the

bth permuted dataset, compute bl�b ¼ fbl�b;1; . . . ; bl�b;mg based on

(6) for all OTUs from A1 and A0. For a given t 2 fd1; . . . ;dmg;
we can calculate the number of positives (P) as

PðtÞ ¼ #fi : jbl�i j > tg (7)

and estimate the number of false positive (FP) based on OTUs from

A0 as

cFPðtÞ ¼ 2

B

XB

b¼1

#fi 2 A0 : jbl�b;ij > tg: (8)

Consequently, FDR is estimated as

dFDRðtÞ ¼
cFPðtÞ

PðtÞ _ 1
: (9)

4. For a pre-specified error rate a; the threshold k is defined as

k ¼ maxifdFDRðdiÞ � a and dFDRðdiþ1Þ > ag: (10)

Reject all H0;ðjÞforj � k; where H0;ðjÞ; j ¼ 1; . . . ; k denote the

hypotheses corresponding to the order statistics l�ð1Þ; . . . ; l�ðkÞ:
Let p0 be the proportion of true null hypotheses among m

hypotheses tests. The proposed algorithm is conservative due to the

overestimation of FP. A more accurate estimate of FP would be

2p0

B

XB

b¼1

#fi 2 A0 : jbl�b;ij > tg:

Since p0 is unknown and is usually close to 1, we set p0 ¼ 1 in FP es-

timation. Various methods were developed to estimate p0 to im-

prove power, which is certainly warranted but beyond the scope of

current paper (Storey and Tibshirani, 2003; Xie et al., 2005). Our

algorithm essentially is a ranking and thresholding approach.

However, the ranking of bl� leverages prior structure information

contained in the phylogenetic tree and the proposed method has sub-

stantial power gain as demonstrated in our simulation studies. As

we use permutation, our approach is robust to the mis-specification

of the working models (3) and (4). We did not explicitly state the

permutation scheme since it is problem-dependent. For a simple

two-sample comparison, we can shuffle the group labels. For a more

complicated design with covariates, we may use a residual permuta-

tion approach. Also note that the permutation approach is heuristic

and the FDR control is validated by simulations.

2.6 Computation and implementation
We implement our method in the R package ‘StructFDR’. The main

function ‘TreeFDR’ requires the OTU counts, the phylogenetic tree,

the testing function, which produces the association P-values and

the signs of the effect, and a permutation function, which permutes

the data in a user-defined way. We also provide a more generic func-

tion ‘structFDR’, which accepts a distance matrix among features in-

stead of a tree, to perform structure-based FDR control for other

genomic data as long as a distance metric is defined between fea-

tures. The computation time depends on the efficiency of the testing

function and the number of permutations. Estimation of the hyper-

parameters is much faster compared to the actual statistical tests. If

Wilcoxon rank-sum tests are used, computation usually takes sev-

eral minutes on a desktop for a typical dataset of �100 samples and

�1;000 OTUs (B¼100). The R package includes a vignette demon-

strating the use of the method.

3 Results

3.1 Simulation studies
We conduct comprehensive simulation studies to demonstrate the

superior performance of our method over traditional methods that

do not incorporate the phylogenetic tree structure. We consider the

case-control design, examine five different scenarios, three of which

have informative phylogeny and two of which have non-informative

phylogeny. For all the scenarios, we simulate m¼400 OTUs and

each sample group has 50 observations. Without loss of generality,

the first 50 samples are from the control. All results are obtained

based on 200 replications.

Specifically, we use R package rcoal to generate a random co-

alescent tree in each replication to achieve various clustering pat-

terns of the 400 OTUs. R package pam is used to partition the

generated tree into clusters. We next generate the OTU counts. First,

we simulate the sequencing depth (total counts) of the samples by a

negative binomial distribution with mean 10 000 and size 25.

Second, a Dirichlet distribution, where the parameter values were

estimated from a real throat microbiome dataset (Chen et al., 2012)

(included in the ‘StructFDR’ package), is used to generate 100�400

composition matrix. Third, a multinomial distribution is used to

generate count data based on the sequencing depth and 100�400

composition matrix. For the case samples, we multiply the counts

with a fold change vector f expðb1Þ; . . . ; expðb400Þg.
We consider scenarios with informative phylogeny and non-in-

formative phylogeny. With informative phylogeny, we study three

scenarios, each with associated clusters of balanced sizes accounting

for approximately 10–20% of OTUs. Let A1; A2 and AR contain

the indices of the OTUs from the associated clusters (C1 and C2 in

Fig. 1) and the rest clusters. Scenario one (S1) considers the perfect

case where signals within each of the two clusters have the same

sign and strength (bi2A1
¼ 4; bi2A2

¼ �4 and bi2AR
¼ 0). Scenario

two (S2) considers the case where signals in each cluster have the

same sign but varied strength (bi2A1
�iid Nð4; 2Þ; bi2A2

�iid Nð�4;2Þ;
and bi2AR

¼ 0). Information still can be borrowed from neighboring

OTUs. Scenario three (S3) is similar to S1 but 10 small clusters (out

of 100) are associated with the outcome. We next study two scen-

arios, where the phylogeny is non-informative. Scenario four (S4)

corresponds to the case where signals can be positive or negative

within each cluster and thus canceled out

(bi2A1
�iid Nð0; 2Þ; bi2A2

�iid Nð0; 2Þ and bi2AR
¼ 0). This scenario is

contradictory to our assumption that closely related OTUs have

similar effects. Scenario five (S5) corresponds to the case where 40
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associated OTUs are randomly distributed on the tree with different

signs and varied strength (bi �
iid

Nð0;4Þ). Clearly, in this scenario, the

tree does not provide any useful information as how the associated

signals are correlated. S4 and S5 are used to study the robustness

of the proposed method. These five scenarios are illustrated in

Figure 1.

The Wilcoxon rank sum test is used to conduct differential abun-

dance tests and obtain the P-values. The P-values are then trans-

formed to get the z-values through

zj ¼
U�1ð1� pj=2Þ If �Xcase;j � �X control;j

U�1ðpj=2Þ If �Xcase;j > �X control;j

(

where �Xcontrol;j and �Xcase;j are mean abundances for control and case

samples, respectively.

We compare the performance of our method with the procedures

proposed in Benjamini and Hochberg (1995) (BH), Storey and

Tibshirani (2003) (ST), Hu et al. (2012) (GBH) and Yekutieli

(2008)(HFDR). The ST procedure fixes a threshold value t, esti-

mates the FDR and chooses t so that the estimated FDR is no larger

than a: In ST procedure, the proportion of null hypothesis is esti-

mated through a conservative estimator bp0ðkÞ ¼ #fpi > k; i ¼ 1; . . . ;

mg=mð1� kÞ; where k is a tuning parameter. R package q-value is

used to obtain results based on the ST procedure. Since GBH de-

pends on the group specification, we create different numbers of

groups/clusters (10, 20, 40 and 100, denoted as GBH-10, GBH-20,

GBH-40 and GBH-100) using pam based on the matrix of pairwise

distances between OTUs. For HFDR, we choose an alpha level that

controls the upper bound of the FDR at the tree tips (Yekutieli,

2008; Sankaran and Holmes, 2014). GBH and HFDR are performed

using the R package structSSI (Sankaran and Holmes, 2014). Actual

FDR and power are used to measure the performance of different

procedures at the nominal FDR level 0:01; 0:05 and 0.1. The power

is defined as the expectation of the ratio of correctly rejected

hypotheses and total alternative hypotheses. Specifically, actual

FDR and power are estimated based on the average over 200

replications.

The results are summarized in Tables 1 and 2. Table 1, we can

see that our procedure is conservative and FDR is controlled under

the pre-specified level for most scenarios. BH procedure is conserva-

tive and ST procedure has actual FDRs closer to the nominal ones

than BH procedure as the proportion of null hypothesis has been

incorporated in ST procedure. From Table 2, we can see that our

procedure has substantial power gain when phylogeny is informative

at all pre-specified FDR levels. When phylogeny is non-informative

(S4 and S5), our procedure has similar power as BH and ST proced-

ure, indicating the robustness of our method. For GBH, the perform-

ance depends on the number of pre-specified groups and GBH-100

does not control the FDR properly (Supplementary Table S1). When

the signals form large clusters (S1–S2), GBH is more powerful than

BH and ST and slightly less powerful than or similar to our proced-

ure. When the signals form small clusters (S3), GBH becomes much

less powerful than our procedure. S4 favors GBH procedure since

the signals have a group structure. As the signals are more scattered

(S5), GBH breaks down: it fails to control the FDR and is less

powerful than BH, ST and TreeFDR. In contrast, HFDR has very

conservative FDR control when the signals are clustered (S1–S4),

but is slightly anti-conservative in S5, when the signals are randomly

distributed. Regarding the statistical power, it is generally less

powerful than GBH and TreeFDR, especially for S5.

We perform additional simulations to study the robustness of

our method to clade-inconsistent associations. We more densely

sample the continuum of clade-consistent versus -inconsistent asso-

ciations by simulating randomly associated OTUs (clade-inconsist-

ent associations) on the basis of S1. Details of the simulations are

included in the Supplementary file and the results are summarized in

Supplementary Tables S3 and S4. The basic observation is that our

method is robust to clade-inconsistent signals to a large degree and

is generally more powerful than the other procedures compared

while controlling the FDR.

It is important to point out that the higher power of our proced-

ure is not at the price of a higher FDR level; this is illustrated by

ROC curves in Figure 2. The true positive rate is calculated as the

average proportions of correctly identified OTUs and the false posi-

tive rate is calculated as the average proportions of falsely identified

OTUs. We vary the significant threshold and calculate correspond-

ing true positive rates and false positive rates. We can see that our

procedure significantly outperforms BH and ST procedure for scen-

ario 1–3, and has comparable performance with BH and ST proced-

ure for scenario 4 and 5. To summarize, when the phylogenetic tree

is informative, our procedure dominates BH and ST procedure, and

when the tree is not informative, our procedure is comparable to BH

and ST procedure.

3.2 Real data application
We demonstrate our method using a real microbiome dataset from a

study of long-term dietary effects on the human gut microbiome

Fig. 1. Simulation configuration, where red circles represent positive values

and blue circles represent negative values
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Table 1. The actual FDR at the nominal FDR level 0.01, 0.05, and 0.10

Scenario Methods Level 0.01 Level 0.05 Level 0.10

1 TreeFDR 0.002 (0.008) 0.016 (0.045) 0.034 (0.065)

BH 0.007 (0.037) 0.030 (0.053) 0.068 (0.095)

ST 0.007 (0.037) 0.035 (0.058) 0.077 (0.100)

GBH-20 0.003 (0.017) 0.009 (0.023) 0.029 (0.084)

HFDR 0 (0) 0.000 (0.004) 0.001 (0.007)

2 TreeFDR 0.007 (0.071) 0.026 (0.114) 0.054 (0.143)

BH 0.005 (0.015) 0.035 (0.105) 0.074 (0.132)

ST 0.010 (0.072) 0.040 (0.106) 0.084 (0.147)

GBH-20 0.011 (0.100) 0.028 (0.129) 0.046 (0.136)

HFDR 0 (0) 0 (0) 0.000 (0.006)

3 TreeFDR 0.006 (0.017) 0.030 (0.042) 0.065 (0.061)

BH 0.005 (0.017) 0.035 (0.045) 0.079 (0.062)

ST 0.005 (0.017) 0.041 (0.049) 0.087 (0.066)

GBH-20 0.017 (0.030) 0.069 (0.074) 0.133 (0.099)

HFDR 0.000 (0.005) 0.004 (0.018) 0.008 (0.023)

4 TreeFDR 0.004 (0.019) 0.039 (0.092) 0.071(0.141)

BH 0.004 (0.027) 0.031 (0.089) 0.070 (0.140)

ST 0.005 (0.021) 0.034 (0.090) 0.075 (0.141)

GBH-20 0.008 (0.072) 0.044 (0.166) 0.087 (0.222)

HFDR 0 (0) 0.001 (0.012) 0.001 (0.010)

5 TreeFDR 0.011 (0.031) 0.043 (0.056) 0.095 (0.076)

BH 0.006 (0.022) 0.036 (0.050) 0.085 (0.075)

ST 0.007 (0.023) 0.041 (0.055) 0.091 (0.074)

GBH-20 0.018 (0.045) 0.082 (0.101) 0.183 (0.139)

HFDR 0.018 (0.059) 0.074 (0.095) 0.118 (0.111)

Note: GBH-20 is the GBH procedure based on 20 pre-specified groups. Results are averaged over 200 replications and standard deviation (sd) are given in the

parentheses.

Table 2. The power at the nominal FDR level 0.01, 0.05, and 0.10

Scenario Methods Level 0.01 Level 0.05 Level 0.10

1 TreeFDR 0.454 (0.343) 0.533 (0.362) 0.586 (0.356)

BH 0.353 (0.316) 0.388 (0.323) 0.411 (0.326)

ST 0.356 (0.316) 0.392 (0.325) 0.415 (0.328)

GBH-20 0.434 (0.339) 0.510 (0.341) 0.544 (0.341)

HFDR 0.381 (0.310) 0.452 (0.308) 0.506 (0.298)

2 TreeFDR 0.372 (0.325) 0.471 (0.351) 0.533 (0.358)

BH 0.318 (0.296) 0.358 (0.305) 0.380 (0.310)

ST 0.320 (0.297) 0.360 (0.306) 0.384 (0.311)

GBH-20 0.403 (0.324) 0.478 (0.339) 0.509 (0.341)

HFDR 0.353 (0.287) 0.421 (0.292) 0.468 (0.292)

3 TreeFDR 0.485 (0.177) 0.536 (0.179) 0.574 (0.177)

BH 0.391 (0.177) 0.430 (0.180) 0.454 (0.179)

ST 0.394 (0.178) 0.434 (0.181) 0.459 (0.178)

GBH-20 0.381 (0.184) 0.423 (0.187) 0.449 (0.187)

HFDR 0.342 (0.193) 0.399 (0.199) 0.436 (0.198)

4 TreeFDR 0.193 (0.222) 0.226 (0.245) 0.243 (0.255)

BH 0.198 (0.240) 0.229 (0.257) 0.245 (0.264)

ST 0.200 (0.241) 0.231 (0.258) 0.248 (0.265)

GBH-20 0.263 (0.277) 0.321 (0.300) 0.361(0.315)

HFDR 0.147 (0.185) 0.179 (0.203) 0.196 (0.208)

5 TreeFDR 0.286 (0.077) 0.322 (0.078) 0.345 (0.081)

BH 0.285 (0.077) 0.319 (0.077) 0.342 (0.081)

ST 0.286 (0.078) 0.322 (0.078) 0.345 (0.082)

GBH-20 0.182 (0.083) 0.203 (0.086) 0.217 (0.089)

HFDR 0.156 (0.067) 0.177 (0.068) 0.188 (0.070)

Note: GBH-20 is the GBH procedure based on 20 pre-specified groups. Results are averaged over 200 replications and standard deviation (sd) are given in the

parentheses.
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(Wu et al., 2011). The main scientific question of this study is to in-

vestigate the association of dietary and environmental variables with

the gut microbiota. The specific variable we investigate is the alco-

hol intake. It has previously been shown that alcohol has an import-

ant influence on the human microbiome (Engen et al., 2015; Chen

et al., 2016). In current analysis, we would like to identify OTUs

associated with alcohol consumption, which is obtained from food

frequency questionnaire and energy-adjusted (Willet et al., 1997).

The dataset includes 98 samples and non-singleton 6, 674 OTUs.

We exclude OTUs with occurrence frequency <0.1 and base our

analysis on the remaining 949 relatively common OTUs. The OTU

counts are normalized against library sizes before tests. To reduce

the influence of measurement errors, continuous measure of alcohol

consumption is converted to high intake and low intake, based on

the median. The Wilcoxon rank sum test, which is a non-parametric

test of the null hypothesis that the OTU abundance from high intake

alcohol and low intake alcohol groups are the same against the alter-

native hypothesis that they are different, is used to obtain P-values.

The phylogenetic tree is constructed based on the FastTree algo-

rithm (Price et al., 2010).

The results are summarized in Figures 3 and 4. Figure 3 plots the

number of identified OTUs with different FDR levels based on our

procedure, BH procedure and ST procedure. From the plot, we can

see that our procedure identifies far more OTUs than the other two

procedures at various FDR levels, which is consistent with the simu-

lation studies. As the FDR level increases, the difference becomes

even more striking due to the ability of our procedure to pick up

weak clustered signals. Our method identified 22 and 26 alcohol-

associated OTUs at an FDR of 5% and 10%, respectively. In con-

trast, BH and ST procedure only identified 2 and 3 OTUs at these

levels. Many OTUs identified by our procedure form clusters

(Fig. 4), indicating that the phylogenetic tree is informative in this

case. The identified OTUs belong to six clusters from the Phylum of

Bacteroidetes, Firmicutes and Proteobacteria. This implies that our

procedure is effective in allowing information borrowing among

neighboring OTUs, and the status of neighboring taxa is a very in-

formative prior. By considering the P-values of neighboring OTUs,

these OTUs with a marginally significant P-values will stand out

and show statistical significance due to signal pooling. Interestingly,

our procedure does not recover all the three OTUs identified by BH

and ST at an FDR of 10%. This is due to the fact that our approach

is powered to detect the clustered signals at some expense of ran-

domly scattered signals when the phylogeny is informative. The

associated taxonomies of the identified OTUs are also biologically

interesting. For example, several OTUs are from the family

Firmicutes; Lachnospiraceae and they have significantly increased

abundance in high-alcohol takers. The bacteria from

Lachnospiraceae family usually have alcohol dehydrogenase and

can metabolize alcohol. Leclercq et al. (2014) reported a significant

increase of Lachnospiraceae in alcohol-dependent groups.

Fig. 2. ROC curves for different scenarios. ROC curves are generated based

on the adjusted P-values. HFDR does not output adjusted P-values, thus is not

included in the ROC analysis

Fig. 3. Number of identified OTUs as a function of FDR level

Fig. 4. OTUs (�) identified by TreeFDR procedure at an FDR of 10%. Numbers

of OTUs in the clusters are indicated in parentheses
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Finally, we apply our method to another real dataset from a

study of the microbiota after ileal pouch-anal anastomosis (IPAA)

surgery for ulcerative colitis (UC) (Morgan et al., 2015). Our pro-

cedure identifies significantly more UC-associated OTUs than BH

and ST (See Supplementary file for details).

4 Discussion

We present a highly flexible, robust and computationally efficient

method to the general problem of identifying differential features in

the ‘large p, small n’ datasets with prior structure information that

are becoming ubiquitous in biological experimentation (and else-

where). Given that the parameter of the prior distribution can be

inferred from the data, posterior likelihoods for diverse patterns of

differential features can be inferred through an empirical Bayesian

analysis. We describe here methods to infer the parameters of the

prior distribution through maximum likelihood methods, but this is

not essential; any method for inferring these parameters from the

data might be applicable. Without incorporating the prior structural

information, weak signals that jointly affect the phenotype cannot

be picked up by prevailing methods of individual analysis. Cao and

Wu (2015) also incorporates clustering effects, but from a different

perspective.

The power of our approach depends on the assumption of ‘clus-

tered signals’. For microbiome data, association signals are often

observed to cluster on the phylogenetic tree. This is due to the fact

that environmental factors or disease conditions usually affect some

microbial traits, and the traits of interest can be shared within bac-

terial clades and therefore largely consistent with the phylogenetic

tree (Goberna and Verdu, 2016; Martiny et al., 2015). With the de-

velopment of high-resolution profiling method such as Metaphlan2

(Scholz et al., 2016), we are able to obtain taxonomic resolution be-

yond species level. With such high-resolution data, we expect to see

more clade-consistent associations.

Though the simulations demonstrated the robustness and power

of our method across a wide range of scenarios, there are still scen-

arios where our method is less powerful than the traditional BH

method. The power loss is most obvious when there are a large num-

ber of non-differential OTUs in a clade and the signal is strong. In

such situation, there is sufficient phylogeny signal for ‘information-

borrowing’, which leads to significantly inflated test statistic for

these non-differential OTUs within that clade. To control the FDR

at the desired level, power will be decreased accordingly. Additional

simulations (Supplementary Figs S1 and S2, Additional Simulation

2) reveals that our method is robust to non-differential OTUs up to

20–40% across different signal levels. Beyond that limit, our method

becomes less powerful than the BH procedure. To compensate the

power loss, BH procedure could be used adaptively in such scen-

arios. One heuristic rule selects the BH procedure when our method

identifies significantly less OTUs based on a Fisher’s exact test. This

approach controlled the FDR in the simulations and rescued the

power to some extent (Additional Simulation 2). To optimally com-

bine our method and other FDR methods to further increase the ro-

bustness of our approach warrants future investigation.

In simulation studies, when both positive and negative values ap-

pear in a cluster, their effects cancel each other out and we do not

have any power gain. This makes sense for microbiome applications

since we expect a similar effect for closely related species. However,

for other applications such as gene expression data, both negative

and positive correlations could be observed within the same net-

work. In such case, the significance level is most informative and we

are not concerned about the direction of effects. To accommodate

such situations, we can use (1) to obtain P-values and use bl� instead

of jbl�j as a test statistic. In addition, in (3), we may allow the vari-

ance to be heteroscedastic, that follows certain distributions and es-

timate the hyperparameters using an empirical Bayesian method.

This is beyond the scope of current paper and future research is

needed.

Our working model is designed to use the prior-induced correl-

ation and the within-data correlation is not modeled in our frame-

work. The data correlation has been shown to affect the

performance of many FDR procedures including the popular BH

procedure (Benjamini and Yekutieli, 2001). Here, we use

permutation-based approach to have proper FDR control under

data correlation since the permutation is assumed to preserve the

correlation structure. To investigate the potential consequence of

within-data correlation on our procedure, we performed additional

simulations (Supplementary Tables S5 and S6, Additional

Simulation 3), where the data were generated using multivariate

normal with an AR correlation structure. We then repeated the

simulations (S1-S5) and compared our procedure to BH and ST. We

found that our procedure not only has conservative FDR control

under data correlation but also has a much higher power than BH

and ST for phylogeny-informative scenarios.

Our method is quite flexible and users can specify the prior struc-

ture in terms of feature-to-feature distance matrix (e.g. sequence

similarity) instead of using a tree inferred from it. Besides the phylo-

genetic tree structure, StructFDR may also be applicable to micro-

bial species interaction networks (Faust and Raes, 2012). Beyond

the microbiome applications, our method can be applied to other

structure-rich genetic/genomic data. For example, genetic variants in

linkage disequilibrium tend to be correlated. Gene networks de-

scribe various functional relationships between different genes,

which can be positively or negatively correlated. DNA Methylation

data also have local clustering phenomenon. Incorporating such in-

formation during the modeling stage can be challenging and compu-

tationally intensive. Our approach allows a substantial reduction in

development time for information ‘borrowing’ analyses in ‘large p,

small n’ setting. This reduction in development time is essential if

statistical analysis methods are to keep pace with the rapid develop-

ment of new technologies and new applications of those technolo-

gies that generate large volumes of biological data. The modulated

statistic we propose in this paper efficiently incorporates the prior

structure information and a tuning parameter is used to balance in-

formation in the prior structure and available data. This essentially

produces a different ranking of features and FDR is used as a thresh-

olding rule. In fact, other error rates can be used as well, such as

k-familywise error rate or the tail probability of the false discovery

proportion (Cao and Kosorok, 2011).
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