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SUMMARY

This Supplementary Material provides simulation studies on grouped hypothesis testing and
marginal false discovery rate analysis, a revisit to Example 1 and details on the proofs of Theorem
1, Theorem 2 and Theorem 3.

1. SIMULATION STUDIES

1·1. Grouped hypothesis testing
In many large-scale studies, the data are collected from various sources and the test statis-

tics may exhibit different characteristics. For example, in a brain imaging study considered by
Schwartzman et al. (2008) for comparing dyslexic versus normal children, it was found that the
z-values from the front and back halves of the brain centered at different means: the estimated
null distributions of z-values for the front and back halves of the brain are N(0.06, 1.092) and
N(−0.29, 1.012), respectively. In the adequate yearly progress study of California high schools
by Rogosa (2003) for comparing academic performance of socioeconomically advantaged ver-
sus disadvantaged students, the z-value distributions vary significantly according to school sizes.
The problem can be formulated as testing groups of hypotheses. It was argued by Efron (2008)
that it can be problematic to combine all tests together without taking into account the grouping
information. The issue was further studied by Ferkingstad et al. (2008), Cai & Sun (2009), Hu
et al. (2010) and Peña et al. (2011), among others. We tackle the problem from a different angle,
with the specific goal to show that the monotone likelihood ratio condition can be violated when
grouping information is ignored. Consider the following example.

Suppose m1 = 2000 hypotheses come from Group 1 and m2 = 1000 hypotheses come from
Group 2. Let m = m1 +m2 = 3000. The test statistics in the first group Z1, . . . , Z2000 fol-
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low a two-component normal mixture model F 1(t) = 0.9N(1, 0.52) + 0.1N(−2, 0.52), and the
test statistics in the second group Z2001, . . . , Z3000 follow distribution F 2(t) = 0.8N(0, 1) +
0.2N(2, 1). In both cases, the first component in the mixture is the null distribution and the
second component is the non-null distribution. Our simulation setting is motivated by a brain
imaging study considered in Schwartzman et al. (2008), where the null distributions of the two
groups have different means and variances. The non-null proportions and alternative distributions
are also set to be different across groups. It is easy to check that the monotone likelihood ratio
condition holds separately in both groups. However, we will show that the monotone likelihood
ratio condition may fail if we combine the two groups into a single group without adjustment.
Specifically, consider the following two multiple testing strategies.

The first strategy, referred to as the pooled analysis, is to ignore the grouping information
and pool all tests together. Under this framework, the hypotheses will be ranked according to
absolute deviation from the sample median of Z1, . . . , Z3000. In the simulation, we plot the false
discovery rate levels as functions of the critical values. The results are summarized in the left
panel of Figure 1. We can see that the false discovery rate level decreases first and then increases
with the critical values, indicating that the monotone likelihood ratio condition is violated.

The second strategy, suggested by Efron (2008) and referred to as the separate analysis, is
to utilize the grouping information and analyze the data separately. For example, let µ̃k be the
sample median of the test statistics in group k, k = 1, 2. We can compute group-specific p-values
Pi = 2Φ(−|Xi − µ̃1|/0.5) if Xi comes from group 1 and Pi = 2Φ(−|Xi − µ̃2|) if Xi comes
from group 2. Then we rank the hypotheses according to their group-specific p-values. In the
simulation, we vary the critical values and plot the false discovery rate levels on the right panel
of Figure 1. We can see that the false discovery rate level is now monotonically decreasing in the
critical values when we test different groups separately.
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Fig. 1. Left panel represents pooled analysis and right panel
represents separate analysis

Our numerical results show that even when the monotone likelihood ratio condition holds
in separate groups, the condition can be violated in a pooled analysis. Unfortunately, a pooled
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analysis is often what is done in practice. The issue can be resolved if a separate analysis is
conducted.

1·2. Marginal false discovery rate analysis
We showed that under the normal mixture model, false discovery rate and marginal false dis-

covery rate are asymptotically equivalent if test statistics are independent. The situation is quite
different under dependence. In a simulation study with the same set up as in Example 2, we
vary the critical value t from 1.95 to 4 and calculate the false discovery rate and marginal false
discovery rate, respectively. The results are summarized in Figure 2.
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Fig. 2. Left panel is for weak correlation and right panel is
for strong correlation. Solid line represents FDR and dotted

line represents mFDR

From the plot, we can see that false discovery rate and marginal false discovery rate can be
very different especially when strong correlation exists. It seems to be clear that dependence has
a big impact on the variability of the number of rejections R, and large variability in R would
further result in big discrepancies between false discovery rate and marginal false discovery rate.
In addition, if the number of rejections R is small or the cut-off is large, the relative variability
would be further increased.

2. A REVISIT TO EXAMPLE 1
Now we apply Theorem 3 in heteroscedastic model (7). First estimate p using the method

in Jin & Cai (2007) and f using a kernel density estimator. The null density f0(x) is the stan-
dard normal. Let p̂ and f̂ denote the estimates and define L̂fdr(Xi) to be the plug-in statistic.
The false discovery rate is calculated for varying number of rejections. We choose m = 2, 000,
p = 0.1, µ = 2.5 and σ = 0.5, and then apply both p-value and local false discovery rate based
testing procedures for 2,000 simulated data sets; the results are summarized in Figure 3. The
false discovery rate of the p-value method first decreases and then increases in the p-value cut-
off. Therefore the monotone likelihood ratio condition is violated by Pi. Consequently, a smaller
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p-value cutoff may correspond to a higher false discovery rate. In contrast, the false discovery
rate of the local false discovery rate method increases monotonically in the local false discovery
rate cutoff. This is consistent with our theoretical prediction. It is clear that the confusing situa-
tion caused by p-value methods is avoided by using the local false discovery rate which yields
an increasing curve.
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Fig. 3. Solid line represents p-value method and dotted line
represents local false discovery rate method

3. PROOF OF THEOREMS

3·1. Proof of Theorem 1
Denote by Φ and φ the cdf and pdf of a standard normal deviate, respectively. Observe that

G1
P (t) = prHi=1(pi < t) = Φ

{
Φ−1(t) + µ

σ

}
,

and the conditional pdf of the p-value is

g1P (t) =
1

σ
φ

{
Φ−1(t) + µ

σ

}
/φ{Φ−1(t)}

=


(1/σ) exp

[
−1−σ2

2σ2

{
Φ−1(t) + µ

1−σ2

}2
+ µ2

2(1−σ2)

]
if σ < 1

(1/σ) exp

[
σ2−1
2σ2

{
Φ−1(t)− µ

σ2−1

}2
− µ2

2(σ2−1)

]
if σ > 1

exp
{
−Φ−1(t)µ− 1

2µ
2
}

if σ = 1

.

The critical region for inference is the interval t ∈ (0, η), where η is usually very small. In or-
der to guarantee that G1

P (t) is concave, g1P (t) should be decreasing in t. It is easy to see that
g1P (t) is a decreasing function for t ∈ (0, η) when σ ≥ 1. However, g1P (t) is increasing in t for
t < t0 = Φ

{
−µ/(1− σ2)

}
and decreasing in t for t ≥ t0 when σ < 1 (Φ−1(t) < Φ−1(η) <

Φ−1(1/2) = 0). Therefore (i) is straightforward. To see (ii), write

mFDR =
(1− p)t

(1− p)t+ pG1
p(t)

=
1

1 + p
1−p

G1
P (t)

t

.
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For t ∈ (0, t0), we have d
dt(G

1
P (t)/t) = (g1P (t)t−G1

P (t))/t2 = [g1P (t)− g1P (t∗)]/t > 0, where
0 < t∗ < t < t0 by the mean value theorem and using the fact that G1

p(0) = 0. So G1
P (t)/t is

an increasing function. Since h(x) = 1/(1 + ax) is a monotone decreasing function (for a > 0),
we have that marginal false discovery rate is decreasing in t when 0 < t < t0. So (6) fails in this
scenario. �

3·2. Proof of Theorem 2

For (i), it suffices to show that dmFDR(t)
dt ≥ 0, ∀0 < t < 1. Note that

mFDR =

∑m
i=1(1− pi)Gi0(t)∑m

i=1(1− pi)Gi0(t) + piGi1(t)
.

We have
dmFDR(t)

dt

=
[
∑m

i=1(1− pi)gi0(t)][
∑m

i=1(1− pi)Gi0(t) + piGi1(t)]− [
∑m

i=1(1− pi)Gi0(t)][
∑m

i=1(1− pi)gi0(t) + pigi1(t)]

[
∑m

i=1(1− pi)Gi0(t) + piGi1(t)]2

=
[
∑m

i=1 piGi1(t)][
∑m

i=1(1− pi)gi0(t)]− [
∑m

i=1 pigi1(t)][
∑m

i=1(1− pi)Gi0(t)]
[
∑m

i=1(1− pi)Gi0(t) + piGi1(t)]2

=
[
∑m

i=1 pi
∫ t
0 gi1(x)dx][

∑m
i=1(1− pi)gi0(t)]− [

∑m
i=1 pigi1(t)][

∑m
i=1(1− pi)

∫ t
0 gi0(x)dx]

[
∑m

i=1(1− pi)Gi0(t) + piGi1(t)]2

=
[
∫ t
0

∑m

i=1
pigi1(x)∑m

i=1
(1−pi)gi0(x)

∑m
i=1(1− pi)gi0(x)]dx[

∑m
i=1(1− pi)gi0(t)]− [

∑m
i=1 pigi1(t)][

∑m
i=1(1− pi)

∫ t
0 gi0(x)dx]

[
∑m

i=1(1− pi)Gi0(t) + piGi1(t)]2

≥
[
∑m

i=1 pigi1(t)][
∑m

i=1

∫ t
0 (1− pi)gi0(x)dx]− [

∑m
i=1 pigi1(t)][

∑m
i=1(1− pi)

∫ t
0 gi0(x)dx]

[
∑m

i=1(1− pi)Gi0(t) + piGi1(t)]2
= 0.

This proves (i). (ii) can be similarly proved by noting that mFNR =∑m

i=1
pi(1−Gi1(t))∑m

i=1
[pi(1−Gi1(t))+(1−pi)(1−Gi0(t))]

, and we get (iii) by combining (i) and (ii). �

3·3. Proof of Theorem 3
Let λ be the penalty for a false positive versus a false negative. We first consider a

weighted classification problem with loss function L(~θ, ~δ) = m−1
∑

i{λ(1− θi)δi + θi(1−
δi)}. Let ~X = (X1, . . . , Xm) and ~s = (s1, . . . , sm). The posterior risk is E~θ| ~X,~s{Lλ(~θ, ~δ)} =
1
m

∑
iEθi| ~X,~s{λ(1− θi)δi + θi(1− δi)} = 1

m

∑m
i=1 λδiT

i
OR + (1− δi)(1− T iOR). Therefore

the classification risk is minimized by δi = I(λT iOR < 1− T iOR) = I(T iOR < (1 + λ)−1), for
i = 1, . . . ,m. Let Gi0(t), G1i(t), gi0(t) and gi1(t) be defined as before (with respect to ~TOR).
The goal is to show that (9) holds. For the weighted classification problem, take λ = 1/t.
Let t∗ > 0. Suppose ~δ(~TOR, t∗) = I(~TOR < t∗~1) is used for classification. The risk is R =
(mt)−1

∑
i(1− p(si))Gi0(t∗) +m−1

∑
i p(si)−m−1

∑
i p(si)Gi1(t

∗). The optimal cutoff t∗

that minimizes this risk satisfies ∑
i p(si)gi1(t

∗)∑
i(1− p(si))gi0(t∗)

=
1

t
.
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Meanwhile, note that the optimal cutoff t∗ is given by t∗ = 1/(1 + λ) = t/(1 + t). Hence∑
i p(si)gi1(t

∗)∑
i(1− p(si))gi0(t∗)

=
1− t∗

t∗
.

By definition 0 < t∗ < 1. Thus (1− t∗)/t∗ is decreasing in t∗ and the result follows. �.
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