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SUMMARY

We consider large scale multiple testing for data that have locally clustered signals. With this struc-
ture, we apply techniques from changepoint analysis and propose a boundary detection algorithm so that
the clustering information can be utilized. Consequently the precision of the multiple testing procedure is
substantially improved. We study tests with independent as well as dependent p-values. Monte Carlo sim-
ulations suggest that the methods perform well with realistic sample sizes and show improved detection
ability compared with competing methods. Our procedure is applied to a genome-wide association dataset
of blood lipids.

Some key words: Changepoint detection; Multiple hypothesis testing; p-value aggregation.

1. INTRODUCTION

In many applied areas, one wants to perform multiple tests for detecting clustered signals. Suppose we
test H0i : pi ∼ U(0, 1) vs H1i : pi �∼ U(0, 1), where pi is the p-value of the i th test performed at location
i(i = 1, . . . , m), and U(0, 1) denotes the standard uniform(0,1) distribution. Our global null hypothesis is

p1, . . . , pm ∼ U(0, 1). (1)

We first study the case of independent p-values and then consider the dependent case. Let θi = 0 if H0i

is true and θi = 1 if H0i is false. In the latter case, we say that a signal is present at location i . For data
that have clustered signals, we expect that a location and its adjacent neighbours have similar values of θi .
Multiple testing with clustered signals has not been extensively studied in the literature. Clarkes & Hall
(2009) studied the clustering effect due to dependence from stochastic processes. Siegmund et al. (2011b)
proposed a scan statistic and treated each cluster as a testing unit. Sun et al. (2015) explored the spatial
testing problem in a decision theoretical framework. Zhang et al. (2011) employed a p-value smoothing
approach and showed that their approach had higher power than methods based on individual p-values.

In this paper, we develop a multiple testing procedure for data with clustered signals. Specifically,
our global alternative hypothesis is formulated as follows: there exist changepoints 1 < τ1 < · · · < τl < m
such that

p1, . . . , pτ1−1 ∼ U(0, 1), pτ1 , . . . , pτ2−1 �∼ U(0, 1),

pτ2 , . . . , pτ3−1 ∼ U(0, 1), pτ3 , . . . , pτ4−1 �∼ U(0, 1), . . . . (2)
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Let τ0 = 1 and τl+1 = m. Decompose {1, . . . , m} = ∪l
i=0Si , where Si = {τi , . . . , τi+1 − 1} (i = 0, . . . ,

l − 1), and Sl = {τl, . . . , m}. We shall call τ1, . . . , τl changepoints in the testing sense. They partition
{1, . . . , m} into alternating blocks of signal and noise segments. In our setting, the distributions of
pτ1 , . . . , pτ2−1, pτ3 , . . . , pτ4−1, . . . , in the alternative hypothesis blocks S1,S3, . . . , can be different.

Example 1. Let the test statistics Ti follow N (μi , 1) (i = 1, . . . , m). We test H0i : μi = 0 against
H1i : μi |= 0. The p-values pi equal 2{1 − �(|Ti |)}, where �(·) is the standard normal cumulative dis-
tribution function. Under H0i , pi ∼ U(0, 1). Under H1i , the cumulative distribution function of pi is
Fi (x) = �{−�−1(1 − x/2) − μi } + �{−�−1(1 − x/2) + μi } > x . Equation (2) is equivalent to μ1 =
· · · = μτ1−1 = 0, μτ1 , . . . , μτ2−1 |= 0, μτ2 = · · · = μτ3−1 = 0, μτ3 , . . . , μτ4−1 |= 0, . . . .

Given a sequence of ordered data, a changepoint is a position at which the structure of the sequence
changes. The goal of changepoint analysis is to estimate the locations of changepoints and to provide
an assessment of accuracy. There is a huge literature on changepoint detection, and applications in high-
throughput genomics have led to recent developments. For example, Olshen et al. (2004) proposed a cir-
cular binary segmentation approach, Tibshirani & Wang (2007) used the fused lasso with a smoothing
constraint on regression coefficients, Lai et al. (2008) developed a hidden Markov model approach, and
a Bayesian approach is studied in Lai & Xing (2011). Detection of common and rare variants based on
single and multiple sequences can be found in Zhang et al. (2010), Siegmund et al. (2011a) and Jeng et al.
(2013). Niu & Zhang (2012) developed a screening and ranking algorithm for changepoint detection with
applications in copy number variation; its properties were studied by Hao et al. (2013).

In this paper, we use a changepoint estimation approach for detection of clustered signals as in (2).
Unlike in Niu & Zhang (2012), where a changepoint is the position where the distribution changes, we
assume that the p-value distributions within an alternative hypothesis segment can be different. Unlike in
Siegmund et al. (2011b), where a cluster is treated as one testing unit, our testing unit is each individual
hypothesis, and we use the cluster structure to better delineate the boundary between null and alternative
hypotheses. Unlike in Zhang et al. (2011), where smoothed p-values were used in a two-group mixture
model, we use smoothed p-values to construct a test statistic. In this way, a cluster of hypotheses with low
signal levels may appear significant if the cluster is assessed as a whole, whereas it might be completely
missed by methods that evaluate each hypothesis individually. By aggregating p-values, our method
becomes more sensitive to signals of low magnitude. Additionally, if sporadic small p-values appear
within a null hypothesis segment, we can avoid such false positives from occurring by averaging over the
neighbouring p-values. Furthermore, we make use of the fact that the p-values under the null hypothesis
have mean 1/2.

2. TESTING AND ESTIMATION PROCEDURES

2·1. Connection with changepoint analysis

In the simplest classical changepoint problem, one assumes that there is only one changepoint and the
alternative hypothesis is p1, . . . , pτ−1 ∼F , pτ , . . . , pm ∼ G for some τ, where F and G are two different
distributions. In the framework of multiple testing, we let F = U(0, 1) and assume that G is stochastically
smaller than U(0, 1) in the sense that pr(pτ � u) > u for all u ∈ (0, 1). Then one can apply a cumsum test
statistic of type

max
i�m

∣∣∣∣∣∣
i∑

j=1

p j − i p̄m

∣∣∣∣∣∣ = 1

m
max
i�m

∣∣∣∣∣∣(m − i)
i∑

j=1

p j − i
n∑

j=1+i

p j

∣∣∣∣∣∣ , (3)

where p̄m = ∑m
j=1 p j/m. We can also estimate τ by the maximizer i for (3).

In our problem of estimating changepoints τi in (2), the approach based on (3) is not directly applicable.
In (3), the pi are identically distributed as F for i � τ, and, for i > τ, the pi are also identically distributed
as G. In (2), however, the distributions of pτ1 , . . . , pτ2−1 under alternative hypotheses can be different.
For example, there could exist τ ′ ∈ (τ1, τ2 − 1) such that pτ1 , . . . , pτ ′−1 ∼ G1 and pτ ′ , . . . , pτ2−1 ∼ G2 with
G1 |=G2. In this paper we are not interested in estimating such τ ′, the changepoint within alternative hypoth-
esis segments. Additionally, due to the possibility of multiple changepoints, a test statistic of type (3) is not
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directly applicable. Instead, we shall adopt a localized version. As a simple solution, one could consider
the differences of local average of p j over j = i + 1, . . . , i + km and over j = i − km + 1, . . . , i :

di = 1

km

⎛
⎝ km∑

j=1

pi+ j −
km−1∑
j=0

pi− j

⎞
⎠ , (4)

where km → ∞ is a sequence of sliding window lengths for which km/m → 0. In the sequel we write k
for km for notational simplicity. Properties of the local discrepancy measure di and the global discrepancy
maxk�i�m−k |di | have been widely studied; see for example Huskova & Slaby (2001), Zhao & Wu (2007),
Niu & Zhang (2012) and a 2013 Karlsruhe Institute of Technology PhD thesis by M. Birte. In this paper
we shall customize the local discrepancy measure di to multiple testing problems under a different setting.
In a typical multiple testing problem, a majority of the pi follow U(0, 1), which has mean 1/2. Instead
of (4), one can consider at location i the left and right differences

Li =
∣∣∣∣∣∣
1

k

i−1∑
j=i−k

p j − 1

2

∣∣∣∣∣∣ , Ri =
∣∣∣∣∣∣
1

k

i+k−1∑
j=i

p j − 1

2

∣∣∣∣∣∣ . (5)

Clearly Li+k = Ri . If there are no changepoints, so all pi ∼ U(0, 1), we expect that max1+k�i�m Li is
small. An asymptotic Gumbel convergence result is presented in § 2·2. Large values of Li or Ri can suggest
that H0i might be false. Section 2·3 provides an algorithm for identifying null and alternative hypothesis
segments.

2·2. Testing the global null hypothesis

Theorem 1 provides the asymptotic distribution of a normalized version of �m ≡ max1+k�i�m Li under
the global null hypothesis (1).

THEOREM 1. Assume that p1, . . . , pm are independent identically distributed as U(0, 1) and

k−1(log m)3 + m−1k → 0, m → ∞. (6)

Let AT = 2 log T + 2−1 log log T + log(π−1/2) and �m = max1+k�i�m Li . Then

(1/12)−1/2{2k log(gm)}1/2�m − Agm → E (7)

in distribution, where gm = m/k − 1 and pr(E � x) = exp(−2e−x ), x ∈ R.

Theorem 1 provides a criterion for testing the global null hypothesis (1) for large m. We reject the global
null hypothesis at level α ∈ (0, 1) if

max
1+k�i�m

Li � (24k log gm)−1/2{Agm − log log(1 − α)−1/2}. (8)

Let γm,α be the (1 − α)th quantile of �m under the global null hypothesis that p1, . . . , pm are independent
identically distributed U(0, 1) random variables. Theorem 1 suggests that for very large m, γm,α can be
approximated by the right-hand side of (8). For relatively small m, such as in the order of tens of thousands,
one can approximate γm,α by sample quantiles of realizations of �m via extensive Monte Carlo simulations.

2·3. Locating null and alternative hypothesis clusters

If the global null hypothesis is rejected, we are interested in finding the changepoints. This can be
accomplished by using local discrepancy measure (5) through the following algorithm.

Algorithm 1. Estimating changepoints and locating null and alternative hypothesis segments.

Step 1. For a chosen window size k, calculate Li and Ri in (5).

Step 2. For a prespecified cut-off value γ > 0, let Qi = 1(Li > γ ) + 1(Ri > γ ).
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Step 3. Decompose {1, . . . , m} = W0 ∪ W1 ∪ W2, where i ∈ W0 if Qi = 0, i ∈ W1 if Qi = 1 and i ∈ W2

if Qi = 2.

Step 4. Let M1, . . . ,Ml̂ be connected components of W1 whose lengths are larger than k/2.

Step 5. For each Mi , let τ̂i = argmax j∈Mi
{max(L j , R j )} be estimates of τi .

The rationale for our procedure is as follows. Recall that S0 = {τ0, . . . , τ1 − 1}, S2 = {τ2, . . . ,

τ3 − 1}, . . ., correspond to null hypotheses, while the odd indexed sets S1 = {τ1, . . . , τ2 − 1}, . . ., are alter-
native hypotheses. For i ∈ [τ0 + k, τ1 − k] ⊂ S0, both Li and Ri are close to zero, so with high probability
[τ0 + k, τ1 − k] ⊂ W0. For an appropriate interior interval of S2, if both Li and Ri are larger than γ , then
that interior interval is a subset of W2. All the changepoints τ1, τ2, . . . are located in W1. One can estimate
the changepoints by analysing major connected components of W1, namely whose lengths are larger than
k/2, and maximizing R j over j with L j < γ , or vice versa. In other words, the changepoints occur when
Qi = 1. By using the mean of p-values under the global null hypothesis (1), we reduce the variance of the
estimate in (4). We require that the cluster lengths of null and alternative hypotheses are larger than the
sliding window length k.

The sequences {Li }, {Ri } and {Qi } can be computed within O(m) steps. Thus the computational com-
plexity of our algorithm scales linearly in m, so it can be executed very quickly, and it is quite attractive
for dealing with testing problems with very large m.

In Algorithm 1 we require γ < 1/2, since otherwise both Li < γ and Ri < γ hold trivially. We can
choose γ as γm,α with α = 0·05, which plays the role of controlling Type I errors. Theorem 2 is a consis-
tency result. It asserts that with probability approaching unity, the number of detected changepoints is the
same as the number of true ones, and the detected changepoints and the true ones are uniformly close. The
following technical conditions are needed. For x ∈ R let �x = max{k ∈ Z : k � x}.

Condition 1. The changepoints are τi = �ηi m(i = 1, . . . , l), where 0 < η1 < · · · < ηl < 1. In addition,
there exists a constant c > 0 such that ηi − ηi−1 � c(i = 1, . . . , l + 1), where τ0 = 0 and τl+1 = 1.

Condition 2. There exists a constant 0 < ρ < 1/2 such that, under H1 j , E(p j ) � ρ.

Condition 1 is the condition that the changepoints are well separated. We assume that the number of
changepoints is finite. Condition 2 makes it possible to distinguish alternative hypotheses from the null
hypotheses. For two positive sequences (am) and (bm), we say that am � bm if there exists a constant w > 0
such that, for all large m, wam � bm � am/w.

THEOREM 2. Assume Conditions 1 and 2 hold. Let γ � (k−1 log m)1/2 and assume that γ + ρ < 1/2.
Then

pr

{
l̂ = l, max

i�l
|τ̂i − τi | � 2kγ (1/2 − ρ)−1/2

}
� 1 − 4k−1me−3kγ 2/(4+4γ ). (9)

Theorem 2 asserts the uniform closeness of our estimated changepoints to the real ones. As an immedi-
ate consequence, we have uniform consistency of the detected changepoints. Let k = λ log m in (9), where
λ is a large constant, maxi�l |τ̂i − τi | = Op(log m). We do not assume that the p-value distributions are
the same within the alternative hypothesis segment. In the context of multiple changepoint detection via
the wild binary segmentation technique, using Theorem 3.1 in Fryzlewicz (2014), we can obtain the bound
Op(log m) under similar conditions.

Remark 1. A careful check of the proof indicates that Theorem 2 is still valid if Conditions 1 and
2 are relaxed in the following way: we can allow c = cm close to 0 and ρ = ρm close to 1/2 such that
k−1 log m = o(1/2 − ρm) and k = o(cmm).

Both our algorithm and theoretical results depend on the window size k. Our simulation studies in the
Supplementary Material show that the performance of Algorithm 1 is quite robust to the choice of k. For
large m it works reasonably well for a wide range of k that satisfies (log m)2 � k � m1/2. In practice, we
suggest the rule-of-thumb choice k = �(log m)2.
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With the clustering property of the alternative hypotheses, by aggregating p-values, our procedure is
better able to detect signals than procedures that evaluate p-values individually. Donoho & Jin (2004)
considered testing the mixture model under independence:

H0 : Xi ∼ N (0, 1) (i = 1, . . . , m),

H (m)
1 : Xi ∼ (1 − ε)N (0, 1) + εN (μ, 1) (i = 1, . . . , m).

Assume that, under H (m)
1 , a fraction ε = m−β , β ∈ (1/2, 1), of the data come from N (μ, 1) with μ |= 0.

By Donoho & Jin (2004), signal strength μ = μm has to be at least c{log(m)}1/2 for some constant c in
order to be detected. If signals are clustered, for example, letting Xi ∼ N (μi , 1) with μi = μ if i � τ =
�m(1 − ε) and μi = 0 if i > τ . Choosing k � �(log m)2, we can reject H0 under the weaker condition
{log(m)/k}1/2 = o(μm).

2·4. Adjustments with dependent p-values

In (7) of Theorem 1, the quantity 1/12 is the variance of pi with independent U(0, 1) distribution. If
(p1, . . . , pm) is a stationary process, we define the long-run variance σ 2 = ∑

k∈Z cov(p0, pk). The primary
impact that dependence has on our testing procedure is that instead of using the marginal variance of
p-values that follow U(0, 1), we need to use the long-run variance σ 2 to account for the dependence. In
the Supplementary Material, we provide a framework of dependence and develop a related asymptotic
theory.

3. APPLICATION

We apply our procedure to a genome-wide association dataset featured in Teslovich et al. (2010), which
is freely available at http://www.sph.umich.edu/csg/abecasis/public/lipids2010/. We study the association
between single nucleotide polymorphisms on chromosome 8, and HDL cholesterol. There are m = 353 488
single nucleotide polymorphisms on chromosome 8, and we obtain p-values through marginal regression.
We aim to identify regions of single nucleotide polymorphisms that are statistically significantly associated
with HDL cholesterol. These identified single nucleotide polymorphisms can suggest follow-up studies
and intervention strategies.

An examination of the dataset through the autocorrelation function calculation shows that there is sub-
stantial serial dependence among the p-values. To account for dependence, we need to estimate the long-
run variance as indicated in § 2·4. We apply the batched mean estimate (Brockwell & Davis, 2009)

σ̂ 2(lm) = lm

m − lm + 1

m−lm+1∑
j=1

⎛
⎝l−1

m

j+lm−1∑
i= j

pi − p̄m

⎞
⎠

2

,

where p̄m = ∑m
i=1 pi/m, and lm is the window size satisfying lm → ∞ and lm/m → 0. We use lm = 28,

which is between m1/3 and m1/4 and obtain σ̂ 2 = 0·8736.

We use a simulation-assisted approach to compute the dependence-adjusted critical value γ ∗
m,0·05. For

simplicity we write γ ∗ for γ ∗
m,0·05. Our simulation shows that the results are robust when k ranges between

�{log(m)}2 and �m1/2; we use k = �{log(m)}2 = 163. Specifically, we obtain 104 independent realiza-
tions of Am = 12−1maxk+1�i�m Li based on m independent U(0, 1) random variables. We then compute
the empirical 95% quantile of these 104 realizations of Am . Next we multiply this 95% empirical quantile
by σ̂ to obtain the critical value γ ∗, which is 0·3422. For each single nucleotide polymorphism, we com-
pute Qi = 1(Li > γ ∗) + 1(Ri > γ ∗)(i = 1, . . . , m). Then we apply Algorithm 1 to look for max(Li , Ri )

within the connected components where Qi = 1 and to compute the changepoints.
Based on γ ∗, loci 42 845, 43 046, 83 839, 84 431, 2 82 143, 2 82 345, 2 97 063 and 2 97 226 are iden-

tified as changepoints. The alternative hypothesis blocks are {42 845, . . . , 43 045}, {83 839, . . . , 84 430},
{2 82 143, . . . , 2 82 344} and {2 97 063, . . . , 2 97 225}. The total number of rejections is 1158, which is
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Fig. 1. Identified gene sets. Top panel: z-values; bottom panel: p-values.

roughly 0·3% of the total number of tests. The last two clusters belong to the same gene set. Our result
agrees well with others in the literature: the closest genes to these regions are PPP1R3B (Teslovich et al.,
2010), INTS10 (Wilke , 2011) and TRPS1 (Teslovich et al., 2010). Figure 1 plots z-values and p-values
for regions around these estimated changepoints.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of Theorems 1–2, testing
and estimation of changepoints under dependence and simulation studies.
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