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Abstract

This supplementary material provides details on the proofs of Theorem 1, Theorem

2 and Corollary 1, 2 and 3.

1 Proofs of Lemmas

1.1 Proof of Lemma 1

Lemma 1 Under conditions of Theorem 1, we have B, (5,T) = 0,(1), where

Bt = 12> [ (X K= Rl (R < w)[(3 - ) (R
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Proof. We can write B, (f,t) as

B.(8,t) = n_l/o n~t ;/o /0 {Kpn, (u—r)I(ry <u)dN*(r)Kp, (u—19)I(ry < u)dN*(ry)}

(3 4
((8 = 60)" Zi(r1) Zi(ra)" (8 = Bo) = (8= )" 2 mnog{;’&((? u)>}

(5= o] S+ o S et

This can be expanded further:

B.(B,t) = nl/o n! Z/OOO /000 Kp, (u—11)Kp, (u—19)I(ry <u)l(re < u)dN*(ri)dN*(rs)
(B = Bo)" Zi(r1) Zi(ra)" (B — Bo)Yi(u)e™ Z) \o(u)du
- n_l/ n! Z/ / K, (u—11)Kp, (uw—19)I(ry <u)l(ry < u)dN*(r1)dN*(rs)

S8, u)
S (Bo, w)

- nl/ n! Z/ / K, (u—1)Kp, (uw—19)I(ry <u)l(ry < u)dN*(r1)dN*(rs)

(B~ 6o)" Z; (h)log{ FYi(w)e 4 N () du

T S (B, ) B Zi(w)
(B — Bo)” Zi(ry)log{ S04 )}Y(u) 0 2 N\ (u)du
+ nt /0 n! Z/o /o Ky, (u—11)Kp, (u—1r9)I(ry < u)l(ry < u)dN*(r)dN(rs)
o Séo)(ﬂa u) ®2v B8 Zi(u)
[log{ 50 (Bo. 1) HYi(u)e Ao(u)du
= [+ IT+1IT+1V.

Assume that for ¢t # r, pr(dN*(t) = 1 | N*(r) — N*(r—) = 1) = g(t,r)dt, where g(t,r) is

continuous for ¢ # r and g(t+, t+) exists. After taking expectation, we obtain



n

n_1/0 n! Z [/ Ky, (u—1)Ky, (u— T/)](T < u)](rl < u)E{dN*(T)dN*(T,)}

-
=1

nlfo n! Z L K, (u— 1)Ky, (u—7)I(r <u)I(r <u)glr,r YE{dN*(r')}dr
B{(8 = )" 226 (5 - Ve |+ [ K, (= rPH < WX (s

nt /Ot </TKhn(u —r)I(r < u))\*(u)E{(ﬁ — 50)TZ(1“)Z(U)T(5 _ 50)Y(u)ef30TZ(“)}

{g(r,u+) + g(r,u—)}/4dr + o(1) + hn_l{ /000 K(2)*X*(u)dz + 0(1)}

(8= 60"t D2 B Zilw — hn2) Ziw — h2) Vi (w)e S 20018 = Bo)] ) Ao () du

i=1

Using change of variables, we have

E{I}

1 /0 (8 = 60)7 5 (B0, w)(8 — o) Ho(urt, ut) + glut, u—) + glu—, u+)

g(u—,u—)}/8+o(1) + 2hn_1{/000 K (2)%dz + o(1)H{(B — Bo) s (Bo, u) (B — Bo)
O(hn)}} No(w)du

O{(nh,)~'}.

Similar order can be obtained for II, III and IV and we omit the details here. Therefore,

B,.(B, T) converges in probability to 0.



1.2 Proof of Lemma 2

Lemma 2 Under assumptions of Theorem 1,
(nhn)l/QUn(/BO) — N{07 2(50)}7

s (Bg,u)®?
where 3(6o)) = [~ K(2)%dz ] { (Bo, u) — %})\O(u)du

Proof. We can decompose (nh,)"/2U,(8,) into two parts:

<nhn>1/2Un<ﬁo>=h3/2n-1/22 | [ Knta =it < 0an:012:0) - 2Ga,wlan

+ Py / / Ko, (w—=)I(r < w)dN; (r){ Zi(r) = Z(Bo, ) }i(w)e™ 0\ (u)du

=1

= 1(Bo,7)+ II(By, 1),

where

dM;(u) = dN;(u) — Yi(u)e? %\ (v)du.

Note that

II(fo7) = W2 V2 / S S Ky 0 - Byl I(Ry < 0){Zi(Ry) — Z(50,0))

i=1 j=1

Y;i(u){e® %) — e ZiRi Y \o (u)du

Define F'(u,s) = E [{Z(u— ) —Z(Bo, u)}Y (u){efo Z(w) —fs Z(u=s)1| - After taking expectation



together with Taylor expansion we have

E{II(By,7)} = 1/2h1/2/ / K(z {Zu—h 2) — Z(Bo, u)}Y (u)

{0 2() _ g5 Zu=tn2)Y 12\ (u)du
OF (u, s)
Os
= O(n'?n¥*) =0(1) by (A5).

= nY2hY2F(u,0) +

leohnz + 0(hn)}

Therefore 11(fy, ) converges to 0 in probability.

We now derive the asymptotic normality of the term I(5y, 7). By the martingale property,

we have

1(B0), (o) > (7) = —12 / / Ky, (1= r)I(r < w)dN; (r){Zi(r) — Z(Fo,w)}]

Y;(w)e’ %)\ (u)du.

Similar as in the derivation of E{B,(5,t)}, after taking expectation and change of variables,

we have

E{I(Bo,7)’} = E <I(b), ) > (7)

_ —12//[( A (u

(1) (1) 2
E[Zi(U)Zz( )" —27Z;(u )S (o) | Sn (Boyw) Y;(u)efo #

(ﬁoa ) 57(10)(/80771’)2

_ 2/000 K(Z)de/oT (5 (8o, u) —%} No(u)du + o(1).




Next, we verify that Lindeberg condition holds for I(fy,u). For Ve > 0, consider

2

/ Z hl/2 _I/QZKh u — Ry )I(Ry, < w){Zi(Rui) — Z(Bo,w)}

Yi(u)e Zl(“))\o(u)l{]hi/zn’lm Z K, (u — Ry) (R < w){Z(Ru) — Z(Bo, u)}] > e}du.
k=1
This can be decomposed into two parts.
/ Z [h2/2n Zz(h u— Ri)I (R < w){Z(Ru) ~ Z(Bo,w)}] 1(M, < a)
Yi(u)e S A0 g () 1{ [y Z K (= R (Ru < u){Zu(Bu) = Z(Bo,w)}| > e fdu

/ Z h1/2 ~1/2 ZKh" (w — Ryp)I(Ry, < w){Z(Ry,) — (507U)}}21(Ml > a)

Yi () 207 A () [{|h;/2n*1/2 Z K, (u — Ry)I(Ry, < w){Zi(Ru,) — Z(Bo,u)}| > e}du
k=1
= I+11.

By (A1),
I =0,(1) /OT 1O, (hY*n~Y2) > e)\g(u)du — 0 as n—oo and h, — 0.
Since pr(M; > a) — 0 as a — oo by (A2), we have
17 — 0.

This shows that (nh,)2U, (8o, -) converges weakly to a certain continuous Gaussian process.



Since this process evaluated at time ¢ = 7 has covariance matrix (), therefore, we have
(nhn)2U,(Bo, u) — N{0,%(50)}, (1.1)
co s(1) u
where X(5) = 2f0 2)%dz fo { (Bo,u) — W})\O( )du.

1.3 Proof of Lemma 3

Lemma 3 Under conditions of Theorem 2, we have

(1)
[ [ ot {m ey ;;}dm )dw)]

= (nhn)Y2A(Bo) (B — Bo) + Dn'/2h2/% 4 o{(nh,)Y?|8 — Bol}.

1/2E

Proof. After change of variables, we have

g(1)
/ /Kh (t—s) { (s) — i(o)ig t;}dN*(s)dN(t)]

= (nhy 1/2/ /K VE{Z(t — hy,2)Y (£)€%0 2N (t — h,2)dz

K = 1/2E

[ KOS+ o DB (TNt = ho2)a] ol

Denote G(t,s) = E{Z(t — s)Y (t)e% 7}, We then do Taylor expansions

K = (nhy)Y? / ' [E{Z(t)Y(t)eBOTZ(t)/\*(t)}],uo(t)dt

r 50
— () [ SRR O ON () a0 + (1) 2Dy + o),



where we used the fact that [*° K(z2)dz =1, [*_2K(z)dz =0 and

D= [ K@ [ 325 o) - T P (et + o013 - ).

We do a further Taylor expansion of K around y and obtain

, 1) 2

= (nha)"2A(Bo)(B — Bo) + D' 1y + of L+ (nha)'?|8 — Bol},

Yuo(t)dt(B — Bo) + Dn'?h/? + of1 + (nh,,)'?|B — Bo|}

where

D= [wEza [ [FEE e - 0 P,

and

A(Bo) = —/OT {5(2)(50,?5) - M}Mo(ﬂdt

S0 (. )
= — [ e[tz - S dyzn - Soedyry (et oo

It is a non-negative definite matrix. From (C5), A(fy) is non-singular.

1.4 Proof of Lemma 4

Lemma 4 Under conditions of Theorem 2,

var[/OT/h}l/thn(t —r){Z(r) — %}dN*(r)dN(t)]

= /K(Z)ZdZ /OT {5(2)(ﬁo,t) - %}uo(ﬂdt



Proof. This can be calculated as follows:

T ST(L1)<507t>
= var 1/2 —r r)— *(r
D = v [ KL G 0) - G AN N (]

_ Si (Bo, 1) 5 (8o, ta)
= o ff Kh"(tl_Tl)Kh"(t2_T2){Z(m_5(0)(60 G = em

Si (Bo 1) 2
™ ) 1 2 /2 -
AN*(r1)dN* (ro)dN (t1)dN () //h K, (t — ) {Z(r) o t)}dN()dN(t)]
— 1L

For II, we get

&(1) 2
I = / / K, (t—1){Z(r) 2@260 ;} N (r)dre® 2OV () o (t)dt

= / /K E{Z(t — h2)Y (t)eP0 ZOI N (t — hz)po(t)dt

S(I)(B07 )
— F
{Sff”(ﬁo,t)

=t [ 5600 = 50(00.0) + Oyl tnh) a0t + 0012
= o(hy).

Y (1) ZOIN (1 — b2 (1) ] dz>2




Next we decompose I into four parts.

It is

I

S (Bos 1)
S (Bo, 1)

(ﬁ()) t2)
SV(LO) (Bo, t2)

HZ(r2) =

hE / Kn(ty — 1) Kn(ts — 12){Z(ry) —
t1#£te JriFre

E{dN*(r1)dN*(r2)dN (1) AN (t)}

h,E Kty —r)Kp(te —r){Z(r) —
/#/ (ty — 1)Kty — r){Z(r)

E{dN*(r)dN (t,)dN (t:)}

hoE / Kn(t =) K(t = r2){Z(r1) —

T1#T2
E{dN*(r1)dN*(r)dN(t)}

&(1)
mE [ [ Et=r20) - ?&E?’2}@2E{dzv*<r>dzv<t>}

S"r(Ll) (/807 t2)
57(10) (607 t2)

S (B, t1)
57(10) (507 tl)

HZ(r) -

}

57(11) (607 t)
S (B, t)

57(11) (507 t)
S (B, t)

HZ(r2) =

}

L4 T+ I+ I,

easy to see that I} = O(hy,), Iy = O(h,,) and I3 = O(h,). Now we look at Iy :

T 5(1)
%Eét/%”ﬂdﬁzﬁ—hw%—?&?fﬂéaﬂp4m@mmY@£&mMﬁMt
n 05
S (Bo, )

At/K@VEPH#—m@z@—hmfyak%ﬂQV@—hm)—%ﬁw%i)

Z(t = hp2)Y (1) ZON (1 = hyz) + {S(l)ég §}®2Y( )R ZON(t = hn2) | dzpuo (t)dt

/K dz/ 507 t) — %}uoﬁ)dt + O(hy,) + O{(nh,) '}

Therefore, we have

(1) 2
(o) = /K dz/ ~(2) (Bo, t) — w()f—;;lj)j}pg(t)dt. (1.2)

10



2 Proofs of Main Results

2.1 Proof of Theorem 1

Our main tool is the martingale central limit theorem (Theorem 5.3.5 in Fleming and Har-

rington (2005)). First we need the following proposition:

Proposition 1 Under (A1), (A2) and (A5), for any compact neighbourhood B of By, we have
limy 00 SUPg<i<r genl| S (B,1) — sW(B,1)[| =0 a.s. for k=0,1,2. (2.3)

Proof. This follows from Theorem 37 of Polland (1984) and the observation that S (8,1)
is Lipschitz continuous in g € B. [

To show the consistency of 3, first it follows from the definition of u1(B) that uy(5o) =0
Second, it follows from condition (A4) and the fact that v, () is semi-positive definite for any
B that By is the unique root to the equation u;(8) = 0. Finally we need to show that U, (5)

converges in probability to u;(f) uniformly in B. Consider the process

Fn(ﬁat) = l;(ﬁat)_l*(ﬁm)
=Y [ S K R S 006 A2 (RN )

k=1

- 'S Si (8, u)
-7 Z/ ZKhn(U — Rap) [(Ry < “)log{m)—’}dNi(u),
i=1 70 k=1

Sn (ﬁﬁ? U’)

and the process

-1 - tMZ (/6 U) A
n Ky, (v — Ry ) I (R, < u)lo Y; 0 Mo(u)du

11



Then for each 5, F,(5,-) — Gn(5,-) is a local square integrable martingale with

< Fn(ﬁa ) - Gn(ﬁ) ')a Fn(ﬁa ) - Gn(ﬁa ) >= Bn(ﬁa ')7

where

B.(B,t) = n—Qi/Ot(]\ii K, (u— Ri) (R < u)| (B — Bo)' Zi(Ry)
~ log{ nggj’,“))}})?w e 400 2o () du

From Lemma 1, we have B, (3, 7) converges in probability to 0.

Now we look at G, (3, 7). After taking expectation and change of variables, we have

E{G(3,7) Z/ /u/h” (2 > 0)\*(u — hy2)dz

S8, u)

((5 — Bo) E{Zi(u — hnz)Yi(u)eﬂgZi(u)} - F [log{ 50 (Bo, 1)

H Yl-(u)eﬁoTZ"(“)> Ao(w)du

It follows that for each 8 € B,

Gn(8,7) — /OT [(5 — B0) s (Bo, u) — log{%

}3(0)(50, u)} Xo(u)du in probability.

(2.4)
Thus by the inequality of Lenglart (Corollary 3.4.1 in Fleming and Harrington (2005)),
F,.(5,7) converges in probability to the same limit as G, (3, T) for each g € B.

Now by the boundedness condition we may evaluate the first and second derivatives of

this limiting function of § by taking partial derivatives inside the integral. These derivatives

12



equal to

{5600 = 500205, Pratuddu = (9

and

(60’ u) —sW(8.u ®25 %) (Bo, u) D
/0 Bu o)w’ u) (8,u) (3, u)? })\0( )d
- [ — = 05

The first derivative is zero at § = fy; the second is minus a positive semi-definite matrix;
and at 5 = [ is a minus positive definite matrix. Thus for each § € B, F,, (3, 7) converges in
probability to a concave function of 5 with a unique maximum at 5 = (3,. Since Bn maximizes
the random concave function F, (3, 7), by the fact that pointwise convergence in probability
of random concave functions implies uniform convergence on compact subspaces (Andersen

and Gill (1982)), it follows that £, — S, in probability.

Next we show the asymptotic normality of Bn. By Taylor expansion of Un(Bn, T), we have

oU,L(B,T)

5 l5=p- (Bn — Bo), (2.5)

= Un(BnaT) = Un(ﬁOaT) +

where * lies in the segment between Bn and (. We have

oU,. (B, 1)

S b} ) U B, 7). (2.6

() /2B — o) = —{

Thus, we have two tasks here: first to establish the asymptotic normality of (nh,,)/2U, (B, 7)

and second to find the limiting distribution of 2 B 90 (B:7) |p=p~ for any * between 3 and fy. The

13



first part follows from Lemma 2. For the second part of the proof, note that

_9U, (5, )|ﬁ .

whn o (SP(Bu) S (B u)
/ f; st it < i) G - S b

and that
T (1) ®2
W(BO) = /0 {3(2) (ﬁo,u) - %})\0(1&)6&6
Define V,,(83,t) = <°>§6 5 — Z(3,t)%% and v(B,t) = —Zg Z(B3,t)®%. Hence
_OUL(B,7) )

IA

I~ Z [ [ Kna= 1 < a0V ) = o5 )N
S [ K= 06 £ 0aN (3 0) = ol )|

S0 [ [ B 01 < 0aN; )0 [N ) = V(e O wydul |

_|_

| /T{”_l > /OO K, (u—r)I(r < w)dN; (r)Yi(u)e 70 — 5O (5, u) }o(Bo, u)Ao(u)dul|
0 i—1 /0
= I+ II+IIT+1V (2.7)

y (A1) and Theorem III.1 in Andersen and Gill (1982), it follows that

SUpte[O,T},BeBHVn(B: t) —v(5,t)|| = 0 in probability. (2.8)
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Hence 5* — [y in probability. By Chebyshev’s inequality,

pr{/OT n! Z; /OOO Ky, (u—1r)I(r <u)dN}(r)dN;(u) > c}

< f()TS(O)(ﬁO>CU))\O<u)dU_>O (2.9)

as ¢ — 0o by (A2) and (A3). Therefore, I = 0,(1).

Again, (2.8), (2.9) together with the continuity of v(3,t) in 8, uniformly for ¢ implies that

IT is also asymptotically negligible.

For III, using Lenglart’s inequality as in Theorem I.1 in Andersen and Gill (1982) and

Chebyshev’s inequality. We have

pr{ /0 nl i /OOO K, (u— ) I(r < w)dN*(r)v(Bo, ) dM;(u) > 5}

IN

w2 o[t [ o S K 0= 00 < 0N Polh i@ A N >
0 i1 J0

< 06+ O{(nhan) ™'}

Thus, III disappears as n — oc.

Finally, IV = 0,(1) by (A2) and the uniform convergence of St (Bo,u) to s (By,u). O

2.2 Proof of Corollary 1

We next show the consistency of the variance estimate. It follows from the proof of Theorem

1 that

_OU(B,T)

BE l5=3, — W(Bo) in probability.

15



On the other hand, by law of large numbers, consistency of Bn for Sy and the continuous

mapping theorem

i : / / Ky, (=) I(r <u){Zi(r) = Z(By, u) }AN; (r)dN;(u) Ty E{%(60)}-
= (2.10)

Note that

®2

BAS) =0 B[ [ [ Kuulu =) < {Z(0) = 250, 0} ()N )

After change of variables, and by (A1),

S _ 1 82) (507 ) w.
BEG) = o [ KGR [ - g

Therefore,

(nh,)S 2 2(8)) as nhy, — .

The consistency of variance estimate follows.

2.3 Proof of Theorem 2

Our main tools are empirical processes (van der Vaart and Wellner (1996)).

The key idea is to establish the following relationship

sup (nh) U (B) — (nh) (U (Bo) — E{U(Bo)}] — (nhn) " A(Bo) (B — Bo)

|8—Bo| <M (nhp)=1/2
= DR + 0,41+ (nha)|8 ~ B}, (2.11)

where A(fy) is given in Theorem 2.

To obtain (2.11), first, using P, and P to denote the empirical measure and true probability

16



measure respectively, we obtain

(nha)Y2U,(8) = (nhy)Y?*(P, —P)

(1)
—7r n (B7t) * r
/ / K, (t {Z( ) — NnO)(B7t)}dN ( )dN(t)]

SPB
/ / Ko (t 1) {Z() Sno)(ﬁ,t)}dN (r)dN(t)]
— I+1I. (2.12)

+ ( 1/2E

For the second term on the right-hand side of (2.12), from Lemma 3, we have

IT = (nhy)"?A(Bo)(B = Bo) + Dn'/hy/* + of (nhn) 2|5 — fol}, (2.13)
where
D = / 2)dz / ' [E{Z(t)’Y(t)eﬁ(?Z(t)}A*’(t)+2—1E{Z(t)”Y(t)eB§Z<t>}A*(t) fio(t)dt
and

A(Bo) = —/OT {5(2)(50,?5) — W}uo(t)dt

5O(Bo, )
’ 50 5 N
- —/0 E[{Z(t) Egz:g}{Z( ) — %}Ty(t)eﬂo Z(t)],uo(t)dt.

The matrix A(fy) is a non-negative definite and by assumption (C5) non-singular. For the

first term on the right-hand side of (2.12), we consider the class of functions

{hl/Q/ /Kh (t— 1) {2(r) - %}dm JAN() : 8~ o] < e}

n I

for a given constant €. Note that the functions in this class are Lipschitz continuous in 5 and

17



the Lipschitz constant is uniformly bounded by

M, /O ' / KKy, (t —r)dN*(r)dN(t),

which has finite second moment and M), is the upper bound of fEO; (g 2 {i;i gi }®2. Therefore,
this class is P-Donsker class by the Jain-Marcus theorem (van der Vaart and Wellner (1996)).
As the result, we obtain that the first term in the right-hand side of (2.12) for |5 — fy| <

M (nh,)~"? is equal to

(nhy)Y2(P, —P) + 0,(1)

—r (ﬁoa) *T
| [ { " (607)}”()%)

(nha)'72|U0(Bo) = E{T(Bo)}] + 0p(1): (2.14)

Combining (2.13) and (2.14), we obtain (2.11). Consequently,

(nhn) 2 A(Bo) (Bn — Bo) + Op(n?h%/%) + 0, {1 + (nh,)?| 5, — Bol}

(nhn)'?[Un(B0) — E{U(Bo)}]- (2.15)

On the other hand, from Lemma 4, we obtain

S (Bo 1)
= var V2Rt —r — *(r
0 = e[ [ [ =iz g v )

= /K(z)2d2/0 {5(2)(50,0 (1)(5 >) },uo(t)dt.

To prove the asymptotic normality, we verify that Lyapunov condition holds. Define

Mr



Similar to the calculation of ¥(5y),

S B (10 = Bul’) = nO{(uha)*n-h,2} = O{(nha) 2}

Thus,
(nha)"2[0n(B0) = E{T(50)}] = N{0, (50)}.

Combing with (2.15), we finish the proof of Theorem 2. [

2.4 Proof of Corollary 3

To begin with, we have

u/hn &(2) (1)
g £ [ a3 S

Using the similar argument to obtain equation (2.14), we show

{[ [ Koot navo E;E?z; - Ss(()ffﬁuj baN () : 16~ fol < )

is a P-Glivenko-Cantelli class. Therefore, sup|5_50|<6|%ﬁ(m|ﬁzﬂn - E{aU" ls=3,}| — 0in

<9Un

probability. Since Bn is consistent for [y, by continuous mapping theorem, 5 Ccon-

2s=s,
verges in probability to A(fy). Similarly, let i(ﬁ) =n2y", [fOT IS K, (u — r){Z;(r) —
- ®2 2 2

Z(ﬁ,u)}dNi*(T)dNi(u)] , then sups_g < |2(8) — E{X(B)}| — 0 in probability. On the

other hand,

®2

B} =B [ [ K= n{Zi0) - 26,0} (r)ii(w)]

19



After change of variables, and by (C4),

2 o0 T 5 o, U 2
BEO) = oo [ KGR [0 - S

Therefore,

(nhn)i 5 N(By) as nhy, — oco.

The consistency of variance estimate follows.

References

Andersen, P. and Gill, R. (1982), “Cox’s regression models for counting processes: a large-

sample study,” Ann. Statist, 10, 1100-1120.

Fleming, T. R. and Harrington, D. P. (2005), “Counting processes and survival analysis,”

Wiley series in probability and statistics.
Polland, D. (1984), “Convergence of stochastic processes,” Springer, New York.

van der Vaart, A. and Wellner, J. (1996), “Weak convergence and empirical processes,”

Springer, New York.

20



