Biometrika (2015), **94**, 2, pp. 1–8 © 2015 Biometrika Trust Printed in Great Britain

Supplementary material for 'change point estimation: another look at multiple testing problems'

BY HONGYUAN CAO

Department of Statistics, University of Missouri-Columbia, Columbia, Missouri 65211, U.S.A. caohong@missouri.edu

AND WEI BIAO WU

Department of Statistics, University of Chicago, Chicago, Illinois 60637, U.S.A. wbwu@uchicago.edu

SUMMARY

This Supplementary Material includes the proofs of Theorems 1–2, testing and estimation of change-points under dependence, and simulation studies.

1. PROOF OF THEOREM 1

Let $S_i = \sum_{j=1}^{i} 12^{1/2} (p_j - 1/2)$. The summands $12^{1/2} (p_j - 1/2)$ are independent identically distributed with mean 0 and variance 1. We shall apply the strong invariance principle result (Komlós et al., 1975, 1976): There exists a richer probability space on which we can define a Brownian motion $B(\cdot)$ such that

$$\max_{i \le m} |S_i - B(i)| = o(\log m)$$

almost surely. Hence the increment process $S_i - S_{i-k}$ satisfies the Gaussian approximation

$$\max_{k \le i \le m} \left| k^{-1/2} (S_i - S_{i-k}) - k^{-1/2} \{ B(i) - B(i-k) \} \right| = o_p(k^{-1/2} \log m).$$
(S1)

By Corollary A1 of Bickel & Rosenblatt (1973)

$$(2\log g_m)^{1/2} \max_{0 \le u \le m-k} |B(u+1) - B(u)| - A_{g_m} \to E$$
(S2)

in distribution. By the scaling property of Brownian motion, the two incremental processes $[\{B(u+k) - B(u)\}k^{-1/2}, u \ge 0]$ and $[\{B(u+1) - B(u)\}, u \ge 0]$ have the same distribution. Hence

$$(2\log g_m)^{1/2} \max_{0 \le u \le m-k} \left| k^{-1/2} \{ B(u+k) - B(u) \} \right| - A_{g_m} \to E$$
(S3)

in distribution. By (S1) and (S3), we have (7) in view of the discretization approximation $\max_{0 \le u \le m} |B(u) - B(\lfloor u \rfloor)| = O_p\{(\log m)^{1/2}\}$. To see the latter, by the Bonferroni inequality

$$\Pr\left\{\max_{0 \le u \le m} |B(u) - B(\lfloor u \rfloor)| \ge 4(\log m)^{1/2}\right\} \le m\Pr\left\{\max_{0 \le u < 1} |B(u)| \ge 4(\log m)^{1/2}\right\}$$
$$\le 4m\Pr\{B(1) \ge 2(\log m)^{1/2}\} \to 0$$

as $m \to \infty$. Here we have applied the reflection principle of Brownian motion. Hence the proof of (7) is completed.

2. Proof of Theorem 2

Let $Q_i = k^{-1} \sum_{j=i-k}^{i-1} p_j$ and $G_i = \sum_{j=1}^{i} \{p_j - E(p_j)\}$. Let A be the event $\{\max_{1+k \leq i \leq m} |Q_i - E(Q_i)| \leq \gamma\}$. By the triangle inequality and Freedman (1975)'s martingale inequality, let $t = k\gamma/2$, since $E(G_i^2) \leq i/12$, we have

$$\operatorname{pr}\left\{\max_{1+k\leq i\leq 2k} |Q_i - E(Q_i)| \geq \gamma\right\} \leq \operatorname{pr}\left(\max_{i\leq 2k} |G_i| \geq t\right) + \operatorname{pr}\left(\max_{i\leq k} |G_i| \geq t\right) \\ \leq 4 \exp\{-(t^2/2)/(t/3 + 2k/12)\} \\ < 4e^{-3k\gamma^2/(4+4\gamma)}.$$

Hence we have

 $pr(A) \ge 1 - 4k^{-1}me^{-3k\gamma^2/(4+4\gamma)}.$ (S4)

In the rest of the proof we shall restrict ourselves to the event A. Recall that the null hypotheses correspond to the indices $S_0 \cup S_2 \cup \cdots$ and the alternative hypotheses correspond to the indices $S_1 \cup S_3 \cup \cdots$. By (6) and condition (C1), we have $k = o(\tau_1)$. Under event A, if $i = \tau_0 + k, \ldots, \tau_1 - k$, we have $E(Q_i) = 1/2$. Hence $\{\tau_0 + k, \ldots, \tau_1 - k\} \subset W_0$. Similarly, under event A, $\{\tau_2 + k, \ldots, \tau_3 - k\} \subset W_0$, etc.

If $i = \tau_1 + k, \ldots, \tau_2 - k$, we have $E(Q_i) \leq \rho$. By our conditions, $\rho + \gamma < 1/2$. Then under $A, |Q_i - 1/2| > \gamma$, which implies $\{\tau_1 + k, \ldots, \tau_2 - k\} \subset W_2$. The latter interval can be slightly extended. Let $K = \lfloor 2k\gamma/(1/2 - \rho) \rfloor$. If $\tau_1 + K \leq i \leq \tau_1 + k$, under A, we also have $|Q_i - 1/2| > \gamma$ since $|Q_i - E(Q_i)| \leq \gamma$ and $1/2 - E(Q_i) > 2\gamma$. The latter follows from

$$kE(Q_i) = \sum_{j=\tau_1}^{i} E(p_j) + \sum_{j=i-k+1}^{\tau_1-1} E(p_j) \le (i-\tau_1+1)\rho + (\tau_1-1-i+k)/2$$

$$\le 2^{-1}k - (K+1)(\rho - 1/2) < (1/2 - 2\gamma)k.$$
(S5)

Similarly, if $i = \tau_2 - k, ..., \tau_2 - K - 1$, under A we also have $|R_i - 1/2| > \gamma$. Hence under A, $\{\tau_1 + K, ..., \tau_2 - K - 1\} \subset W_2$. Similarly, $\{\tau_3 + k, ..., \tau_4 - k - 1\} \subset W_2$, etc.

Under A, we have $\{\tau_h - k + K + 1, \dots, \tau_h - 1\} \subset W_1$ for all odd indices h. Let h = 1 and $i = \tau_1 - k + K + 1, \dots, \tau_1 - 1$. Similar to (S5),

$$\sum_{j=i}^{i+k-1} E(p_j) = \sum_{j=i}^{\tau_1-1} E(p_j) + \sum_{j=\tau_1}^{i+k-1} E(p_j) \le (\tau_1 - i)/2 + (k - \tau_1 + i)\rho,$$

which implies that $|k^{-1}\sum_{j=i}^{i+k-1} E(p_j) - 1/2| > 2\gamma$. Hence $R_i > \gamma$. By the same token, for even indices, we have $\{\tau_g, \ldots, \tau_g + k - K - 1\} \subset W_1$ for all even indices g.

For the connected component \mathcal{M}_1 of W_1 whose length is larger than k/2, under A, we have

$$\{\tau_1 - k + K + 1, \dots, \tau_1 - 1\} \subset \mathcal{M}_1 \subset \{\tau_1 - k + 1, \dots, \tau_1 + K - 1\}.$$
 (S6)

94 Clearly $L_j < \gamma$ for $j \in \mathcal{M}_1$. We now consider the maximizer $\hat{\tau}_1 = \operatorname{argmax}_{j \in \mathcal{M}_1} R_j 1(R_j > \gamma)$. 95 If $j = \tau_1 - k + 1, \dots, \tau_1 - K - 1$, under A, we have $R_j < R_{\tau_1}$. To see the latter, let $F_i = \sum_{i=i}^{i+k-1} E(p_i)$. We have $E(F_j) - E(F_{\tau_1}) \ge (\tau_1 - j)(1/2 - \rho) \ge (K+1)(1/2 - \rho)$. Under

Miscellanea

H. CAO AND W.B. WU

145 20,000 and m = 100,000. The number of change-points is set to be 5. The z-value at each 146 locus follows normal distribution with mean exhibit in Table 1 and variance 1. We change the 147 signal strength at the first 2.5% loci of m tests. The p-values are calculated based on the standard 148

Table	1. Signal	and	noise	configura	tion
	0				

Segment (% among m)	2.5	2.5	30	2.5	30	2.5	30
Signal strength (mean level)	μ	-1.5	0	1	0	-1.5 and 1 alternating	0

normal distribution. 1,000 datasets are generated to do the experiment. A realization from one experiment is presented in Figure S1, showing the true state and W based on our algorithm with $k = \lfloor \{\log(m)\}^2 \rfloor$ and $k = \lfloor m^{1/2} \rfloor$, where m = 20,000 and the signal strength for the first 2.5% of m tests is $\mu = 1.8$.

159 Theorem 2 only requires that $k/m \to 0$ and $\log(m)/k \to 0$ as $m \to \infty$. We choose the window size $k = \lfloor m^{1/2} \rfloor$ and $\lfloor \{ \log(m) \}^2 \rfloor$. We obtain 10⁴ independent realizations of $A_m = 12^{-1} \max_{k+1 \le i \le m} L_i$, based on *m* independent $\mathcal{U}(0, 1)$ random variables. The critical value $\gamma_{m,\alpha}$ 160 161 is estimated by the empirical 95% quantile of these 10⁴ realizations of A_m . We choose $\alpha = 0.05$. 162 163 This direct simulation-based approach performs better than the cutoff value given in (8). We im-164 plement our testing procedure following the change-point detection algorithm and evaluate its 165 performance by the false discovery rate, the false non-discovery rate and the missed discovery 166 rate. The false non-discovery rate is defined as the expected value of the ratio of falsely accepted 167 hypotheses and total accepted hypotheses; and the missed discovery rate is defined as the ex-168 pected value of the ratio of falsely accepted hypotheses and total alternative hypotheses. The 169 false non-discovery and missed discovery rates can be used to describe the power of a multiple 170 testing procedure, similar to the type II error rate in a single hypothesis testing setup.

We compare our methods with the smoothing method proposed by Zhang et al. (2011) and Benjamini & Hochberg (1995)'s procedure. At the realized false discovery rate level based on our procedure, we implement the smoothing method proposed by Zhang et al. (2011). Specifically, let $\hat{G}^*(t) = \{2 \sum_{i=1}^m I(p_i^* > 0.5) + \sum_{i=1}^m I(p_i^* = 0.5)\}^{-1} \sum_{i=1}^m I\{p_i^* \ge 1 - t\}$ if $0 \le t \le 0.5$ and $\hat{G}^*(t) = 1 - \{2 \sum_{i=1}^m I(p_i^* > 0.5) + \sum_{i=1}^m I(p_i^* = 0.5)\}^{-1} \sum_{i=1}^m I\{p_i^* \ge t\}$ if $0.5 < t \le 1$, where p_i^* is the median of the p-values in the k^* th neighbourhood of *i*th hypothesis. Following Zhang et al. (2011), the estimated false discovery rate is

$$\widehat{\text{FDR}}(t) = \left[\{ R^*(t) \lor 1 \} \{ 1 - \hat{G}^*(t) \} \right]^{-1} W^*(\lambda) \hat{G}^*(t),$$

181 where $W^*(\lambda) = \sum_{i=1}^m I\{p_i^* > \lambda\}$ and λ is a tuning parameter. At false discovery rate level α , 182 threshold \hat{t} is chosen as the largest t such that $\widehat{FDR}(\hat{t}) \le \alpha$. As in Zhang et al. (2011), we set 183 the tuning parameter $\lambda = 0.1$ and the size of neighborhood k^* the same as our sliding window 184 length k.

The results are summarized in Table 2. It suggests that, when the signal is moderate to large, 185 186 our procedure performs similarly across a spectrum of bandwidths for a large number of tests. The false discovery rate and missed discovery rate are pretty small and get smaller with increased 187 188 signal strength. With similar false discovery rates, our procedure performs uniformly better than 189 Zhang et al. (2011)'s procedure and Benjamini & Hochberg (1995)'s procedure in terms of false 190 non-discovery rate and missed discovery rate. Zhang et al. (2011)'s procedure takes into account 191 the clustering structure and has improved performance with increased signal strength. In contrast, 192 Benjamini & Hochberg (1995)'s procedure does not change much.

4

179 180

Miscellanea

				, 0 1				
				m = 20000		m =	100000	
μ	k	FDR	FNR	MDR	$_{k}$	FDR	FNR	MDR
				Our procedure				
0.1	141	0.14	4.04	40.46	316	0.02	2.97	28.31
	98	0.08	4.60	45.47	132	0.02	3.25	30.64
0.8	141	0.12	2.75	27.25	316	0.02	0.59	5.52
	98	0.08	4.27	42.05	132	0.18	3.00	28.16
1.8	141	0.10	2.00	19.63	316	0.02	0.57	5.29
	98	0.06	2.39	23.09	132	0.01	0.69	6.33
				Zhang et al. (2011)'s procedure				
0.1	141	0.54	7.33	71.19	316	0.12	6.62	63.81
	98	0.53	7.87	76.91	132	0.14	8.14	79.73
0.8	141	0.49	7.28	70.67	316	0.12	6.55	63.08
	98	0.52	7.81	76.24	132	0.14	8.11	79.42
1.8	141	0.37	4.84	45.78	316	0.08	4.11	38.59
	98	0.29	5.64	53.88	132	0.07	5.98	57.28
				Benjamini & Hochberg (1995)'s procedure				
0.1		2.86	9.99	99.99		2.44	9.99	99.99
0.8		2.91	9.99	99.99		2.38	9.99	99.99
1.8		1.35	9.99	99.99		0.00	9.99	99.99

Table 2. False discovery rate, false non-discovery rate and missed discovery rate with 1,000 simulations for independent case

 Note: All numbers are multiplied by 100; " μ " is the mean of signal strength at first 2.5% loci of *m* tests, "*k*" is bandwidth, "FDR" is false discovery rate, "FNR" is false non-discovery rate and "MDR" is missed discovery rate.

4. TESTING AND ESTIMATION OF CHANGE-POINTS UNDER DEPENDENCE

In this section we shall generalize the results in Section 2 by allowing dependence in *p*-values. To generalize Theorem 1, we assume that the *p*-values (p_1, \ldots, p_m) form a stationary process

$$p_i = G(\xi_i), \quad \xi_i = (\dots, \varepsilon_{i-1}, \varepsilon_i, \varepsilon_{i+1}, \dots), \tag{S7}$$

where the ε_i are independent identically distributed random variables, and G is a measurable function such that $p_i \sim \mathcal{U}(0, 1)$ marginally for i = 1, ..., m. Note that (S7) defines a very general class of stationary processes. As in Wu (2005), we define the functional dependence measure of the sequence $(p_1, ..., p_m)$. Let $\varepsilon_i, \varepsilon'_j, i, j \in Z$, be independent identically distributed random variables. For q > 2, define the functional dependence measure:

$$\delta_{k,q} = \|G(\xi_i) - G(\xi_{i,\{i-k\}})\|_q,\tag{S8}$$

where $\xi_{i,\{k\}} = \{\dots, \varepsilon_{i-1,(k)}, \varepsilon_{i,(k)}, \varepsilon_{i+1,(k)}, \dots\}$, $\varepsilon_{j,(k)} = \varepsilon_j$ if $j \neq k$ and $\varepsilon_{j,(k)} = \varepsilon'_j$ if j = k. Then the sequence $(\delta_{k,q})_{k=-\infty}^{\infty}$ quantifies the dependence of $(p_{i+k})_{k=-\infty}^{\infty}$ on ε_i .

THEOREM S1. Assume the tail functional dependence measure

$$\Delta_{m,q} = \sum_{|k| \ge m} \delta_{k,q} = O(m^{-\theta}), \tag{S9}$$

where $\theta > \max\left[1, (q-2)\{q+2+(q^2+20q+4)^{-1}\}/(8q)\right]$, and

$$k_m^{-1/2} m^{1/q} (\log m)^{-1/2} + m^{-1} k_m \to 0$$

as $m \to \infty$. Then under (S7) with $p_i \sim \mathcal{U}(0, 1)$, (7) still holds with the constant 1/12 therein replaced by the long-run variance $\sigma^2 = \sum_{k \in \mathbb{Z}} \operatorname{cov}(p_0, p_k)$.

H. CAO AND W.B. WU

Theorem S1 can be similarly proved by using the argument of Theorem 1. The only difference is that, instead of using the Gaussian approximation result in Komlós et al. (1975, 1976), we apply Corollary 2.1 in Berkes et al. (2014).

Example S1. Let $p_i = F(X_i)$, where $X_i = \sum_{j=0}^{\infty} a_j \varepsilon_{i-j}$ and F is the cumulative distribution function of X_i . A similar linear process model is considered in Clarkes & Hall (2009). Assume that the density f(x) = dF(x)/dx is bounded and ε_i has a finite ν th moment, $\nu > 0$. Then the functional dependence measure $\delta_{k,q} = O\left([E\{\min(1, |a_k||\varepsilon_0 - \varepsilon'_0|)^q\}]^{1/q}\right) = O\{|a_k|^{\min(1,\nu/q)}\}$. Hence, if $a_k = O(k^{-\beta}), \beta > 0$, then (S9) holds if $\beta > (1+\theta)/\min(1,\nu/q)$.

To establish a version of Theorem 2 for dependent p-values, we shall apply Rosenblatt (1952)'s transformation and let

$$p_i = G_i(\xi_i),\tag{S10}$$

where G_i are measurable functions such that $G_i \sim \mathcal{U}(0, 1)$ if H_i is a null hypothesis and otherwise if it is any alternative hypothesis. Note that (p_1, \ldots, p_m) can be a non-stationary sequence. Extending (S8), we define the uniform functional dependence measure

$$\delta_{k,q} = \sup_{i} \|G_i(\xi_i) - G_i\{\xi_{i,(i-k)}\}\|_q$$

Assume that there exists $0 < \zeta \leq 2$ such that

$$\overline{\lim_{q \to \infty}} q^{1/2 - 1/\zeta} \sum_{k \in \mathbb{Z}} \delta_{k,q} < \infty.$$
(S11)

If (p_1, \ldots, p_m) is ℓ -dependent, $\ell \ge 0$, in the sense that $G_i(\xi_i)$ only depends on $\varepsilon_{i-\ell}, \ldots, \varepsilon_i$, then $\delta_{k,q} = 0$ if $k \ge \ell$ and k < 0, and hence (S11) holds automatically with $\zeta = 2$. Under (S11), by the argument of Theorem 2 in Wu (2005), we have the following Hoeffding-type inequality for dependent random variables: there exist constants $C_1, C_2 > 0$, such that

$$\Pr\left\{\max_{1\le l\le j} |S_{i,l} - E(S_{i,l})| \ge j^{-1/2}u\right\} \le C_1 e^{-C_2 u^{\zeta}}$$
(S12)

for all $u > 0, i \ge 0$ and j > 1, where $S_{i,j} = \sum_{l=1+i}^{i+j} p_l$. Following the argument of Theorem 2, using inequality (S12), we obtain

THEOREM S2. Assume (S10), (C1)–(C2) and (S11). Let $\gamma \simeq (k_m^{-1} \log m)^{1/2}$ and assume $\gamma + \rho < 1/2$. Then

$$\Pr\left\{\hat{l} = l, \max_{i \le l} |\hat{\tau}_i - \tau_i| \le (1/2 - \rho)^{-1} 2k\gamma\right\} \ge 1 - C_3 k^{-1} m e^{-C_4 (k^{-1/2} \gamma)^{\zeta}},$$

as $m \to \infty$.

284 Under dependence, the convergence rate of our algorithm can be slower than under indepen-285 dence, as asserted by the bound given in Theorem S2. The primary impact of dependence on our 286 testing procedure is that instead of using the marginal variance of *p*-values that follow $\mathcal{U}(0, 1)$, 287 we need to use the long-run variance $\sigma^2 = \sum_{k \in \mathbb{Z}} \operatorname{cov}(p_0, p_k)$ to incorporate the dependence. In 288 addition, the rate of convergence is slower, as $0 < \zeta \leq 2$.

Miscellanea

5. A SIMULATION STUDY ON HOW DEPENDENCE AFFECTS TESTING PERFORMANCE

To investigate the impact of dependence on the procedure, we simulate data with AR(1) error structure. Specifically, the measurement errors now follow

$$e_i = \rho e_{i-1} + \epsilon_i, \quad \epsilon_i \sim N(0, 1), \quad i = 1, \dots, m.$$
 (S13)

The rest of simulation setup is the same as in the independent case. *p*-values are calculated using the standard normal distribution after standardization. Specifically, $p = 2\{1 - \Phi(|Z|)\}$, where $\Phi(\cdot)$ is the standard normal cumulative distribution function and $Z = \mu + \sqrt{1 - \rho^2}e$, where μ is signal strength, and *e* is from (S13). To save space, we only show results based on our procedure and Zhang et al. (2011)'s procedure with correlation $\rho = 0.3$ and $\rho = 0.6$. As we can see from Table 3, the performances of both procedures deteriorate with dependent error term. The performances improve when sample size and signal strength increase.

 Table 3. False discovery rate, false non-discovery rate and missed discovery rate with 1,000 simulations for dependent case

					m = 20000		m	= 1000	00
ρ	μ	$_{k}$	FDR	FNR	MDR	k	FDR	FNR	MDR
					Our procedure				
0.3	0.1	141	0.17	4.33	43.50	316	0.03	3.01	28.75
		98	0.12	4.92	48.74	132	0.02	3.61	34.09
	0.8	141	0.14	3.21	31.96	316	0.02	0.76	7.06
		98	0.11	4.59	45.39	132	0.02	3.41	32.14
	1.8	141	0.12	2.29	22.52	316	0.02	0.61	5.69
		98	0.08	2.70	26.20	132	00.02	1.06	9.73
0.6	0.1	141	0.18	5.40	54.91	316	0.04	3.27	31.29
		98	0.11	5.84	58.39	132	0.04	3.27	31.29
	0.8	141	0.16	4.80	48.50	316	0.04	1.92	18.16
		98	0.10	5.67	56.59	132	0.02	4.79	45.84
	1.8	141	0.13	3.35	33.33	316	0.03	0.86	8.07
		98	0.07	3.59	35.08	132	0.01	2.37	22.08
					Zhang et al. (2011)'s procedure				
0.3	0.1	141	1.32	7.34	71.29	316	0.26	6.69	64.59
		98	1.29	7.95	77.70	132	0.38	8.25	80.96
	0.8	141	1.20	7.24	70.31	316	0.24	6.61	63.69
		98	1.27	7.83	76.48	132	0.37	8.19	80.31
	1.8	141	0.82	4.99	47.28	316	0.19	4.17	39.25
		98	0.72	5.85	55.99	132	0.19	6.24	59.90
0.6	0.1	141	8.57	7.70	74.94	316	2.77	7.14	69.15
		98	10.27	8.18	79.98	132	5.07	8.43	82.76
	0.8	141	7.92	7.49	72.77	316	2.61	6.96	67.26
		98	0.10	5.67	56.59	132	4.78	8.30	81.43
	1.8	141	5.21	5.62	53.47	316	1.67	4.88	46.12
		98	0.07	3.59	35.08	132	2.59	6.66	64.22
	ρ 0.3 0.6 0.3 0.6	$\begin{array}{c c} \rho & \mu \\ \hline 0.3 & 0.1 \\ 0.8 \\ 1.8 \\ 0.6 & 0.1 \\ 0.8 \\ 1.8 \\ 0.3 & 0.1 \\ 0.8 \\ 1.8 \\ 0.6 & 0.1 \\ 0.8 \\ 1.8 \\ 0.6 & 1.8 \\ 1.8 \\ 0.8 \\ 1.8 \\ 1.8 \\ 0.8 \\ 1.8 \\ 0.8 \\ 1.8 \\ 0.8 \\$	$\begin{array}{c cccc} \rho & \mu & k \\ \hline 0.3 & 0.1 & 141 \\ & 98 \\ & 0.8 & 141 \\ & 98 \\ & 1.8 & 141 \\ & 98 \\ 0.6 & 0.1 & 141 \\ & 98 \\ 0.6 & 0.1 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ 0.3 & 0.1 & 141 \\ & 98 \\ 0.8 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ 0.6 & 0.1 & 141 \\ & 98 \\ 0.8 & 141 \\ & 98 \\ 0.8 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ 1.8 & 141 \\ & 98 \\ \end{array}$	$\begin{array}{c cccc} \rho & \mu & k & \text{FDR} \\ \hline 0.3 & 0.1 & 141 & 0.17 \\ & 98 & 0.12 \\ & 0.8 & 141 & 0.14 \\ & 98 & 0.11 \\ & 1.8 & 141 & 0.12 \\ & 98 & 0.08 \\ \hline 0.6 & 0.1 & 141 & 0.18 \\ & 98 & 0.11 \\ & 0.8 & 141 & 0.16 \\ & 98 & 0.10 \\ & 1.8 & 141 & 0.13 \\ & 98 & 0.07 \\ \hline 0.3 & 0.1 & 141 & 1.32 \\ & 98 & 1.29 \\ & 0.8 & 141 & 1.20 \\ & 98 & 1.27 \\ & 1.8 & 141 & 0.82 \\ & 98 & 0.72 \\ \hline 0.6 & 0.1 & 141 & 8.57 \\ & 98 & 10.27 \\ & 0.8 & 141 & 7.92 \\ & 98 & 0.10 \\ & 1.8 & 141 & 5.21 \\ & 98 & 0.07 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note: All numbers are multiplied by 100; " μ " is the mean of signal strength at first 2.5% loci of *m* tests, "*k*" is bandwidth, "FDR" is false discovery rate, "FNR" is false non-discovery rate and "MDR" is missed discovery rate.

All previous results are based on two-sided tests. We next look at one-sided tests with both positive and negative dependence. The setup is the same as in the dependent case and we use $k = \lfloor \{\log(m)\}^2 \rfloor$. It turns out that the type I error is not correct if we analyze dependent data under the independence assumption. For example, with m = 20,000 tests, if $\rho = 0.3$ and we treat as if the errors were independent, at significance level 0.05, the actual type I error is 0.8729; on the other hand, if $\rho = -0.3$ and we treat as if the errors were independent, at significance level 0.05, the actual type I error is 0.00001; both are far from the nominal level 0.05. Such examples illustrate that dependence must be accounted for in order to carry out correct inference.

	8	H. CAO AND W.B. WU
337		References
338	BERKES, L. LIU.	W. & WIL W. B. (2014). Komlós-Major-Tusnády approximation under dependence. Ann. Probab
339	42 , 794-817.	when we we we we are the stand of the stand
340	BENJAMINI, Y. &	HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to
341	BICKEL P & RO	. J. K. Stat. Soc. B 57, 289–300. SENBLATT M (1973) On some global measures of the deviations of density function estimates
342	Ann. Statist 1, 1	1071–1095.
343	BICKEL, P., BOLE	EY, N., BROWN, B., HUANG, H. & ZHANG, N. R. (2010). Non-parametric methods for genomic
344	Interence. Ann. CLARKES S & F	Appl. Stat. 6 , 1000–1097. TALL P (2009) Robustness of multiple testing procedures against dependence. Ann. Statist 37
345	332–358.	(2007). Robustiess of multiple testing procedures against dependence. This stansis er,
346	FREEDMAN, D. A	(1975). On tail probabilities for martingales. Ann. Probab. 3 , 100-118.
347	sample DE L <i>F</i>	OR, P. & TUSNADY, G. (1975). An approximation of partial sums of independent RV -s, and the Probab. Theory Relat. Fields 32 , 111-131.
348	Komlós, J., Maj	(OR, P. & TUSNÁDY, G. (1976). An approximation of partial sums of independent RV'-s, and the
349	sample DF. II.	Probab. Theory Relat. Fields 34 , 33-58.
350	WU, W, B, (2005)	Nonlinear system theory: Another look at dependence. <i>Proc. Natl. Acad. Sci.</i> 102 , 14150–14154.
351	ZHANG, C., FAN,	J. & YU, T. (2011). Multiple testing via FDR_L for large-scale imaging data. Ann. Statist. 39,
352	613–642.	W. P. (2007) Information of transfer in time series I. P. Stat. Sec. P. 60, 201, 410
353	Σ HAO, Σ . α w U,	w. B. (2007). Interence of trends in time series. J. K. Stat. Soc. K 09, 591-410.
354		
333		
330 257		
337 250		
330 350		
360		
361		
362		
363		
364		
365		
366		
367		
368		
369		
370		
371		
372		
373		
374		
313		
3/0 277		
270 270		
370		
380		
381		
382		
383		
384		
-		