
Supplementary Material for “Testing and estimation for

clustered signals”

Section S1 provides proofs for some results in Sections 2 and 3, while Section S2 presents

some additional simulation studies and real data analysis.

S1 Proofs of Main Results

S1.1 Preliminary Lemmas

We shall first provide Lemma S1.1, a probability inequality. The constant in . of Lemma

S1.1 only depends on υ. Lemma S1.1(i) follows from [S9] and it implies (ii), which is a version

of Nagaev’s inequality [S6]. Recall Condition 2.3 for sub-Gaussian random variables. Lemma

S1.1(iii) follows from Ottaviani’s inequality for maximal partial sums and the concentration

inequality for sums of sub-Gaussian variables. Lemma S1.1(S4) follows from Ottaviani’s in-

equality and the Hanson-Wright inequality (cf. [S8]).

Lemma S1.1. Let X1, . . . , Xn be independent random variables with E(Xi) = 0, E(X2
i ) =

σ2
i < ∞; let Sj =

∑j
i=1Xi. (i) ([S9]) There exists i.i.d. N(0, 1) random variables ηi with

Gj =
∑j

i=1 σiηi such that for all t > 0,

P ( max
1≤i≤n

|Si −Gi| ≥ t) .
n∑
i=1

Mυ(Xi/t), (S1)
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where Mυ(·), υ > 2, is the truncated moment defined in (2.18). (ii) Let bj = E(S2
j ) =∑j

i=1 σ
2
i . Then for all t > 0,

P ( max
1≤i≤n

|Si| ≥ t) .
n∑
i=1

Mυ(Xi/t) + exp(−t2/(3bn)). (S2)

(iii) Assume that Xi are σ2
i -sub-Gaussian. Then for all t > 0,

P ( max
1≤i≤n

|Si| ≥ 2t) ≤ 4 exp(−t2/(2bn)), (S3)

and there exists absolute constants c1, c2, c3 > 0 such that

P ( max
1≤i≤n

|
i∑

j=1

(X2
j − σ2

j )| ≥ t) ≤ c1[exp(−c2t2/bn) + exp(−c3t/max
j≤n

σj)]. (S4)

S1.2 Proof of Theorem 2.2

Let S�j = {i ∈ Z : τj + k ≤ i ≤ τj+1 − 1− k} and B�j = {i ∈ Z : τj − k ≤ i < τj + k}. Hence

S� = S�1 ∪ S�3 ∪ . . . is the interior signal set, N � = S�0 ∪ S�2 ∪ . . . is the interior non-signal

set and B� = B�1 ∪ B�2 ∪ . . . is the boundary set. Under Condition 2.2, we can decompose

{1, . . . , p} = S� ∪N � ∪ B�. Let event

A1 = {max
k≤i≤p

|Li − ELi| ≥ γ} = {max
k≤i≤p

|Si − Si−k| ≥ kγ},

where Si =
∑i

h=1 Zh. To prove Theorem 2.2(ii), we shall use Lemma S1.1(ii), while proof of

Theorem 2.2(i) requires Lemma S1.1(iii). Since the two cases can be dealt with similarly, we

only show the arguments for the former. By Lemma S1.1(ii), we have

P (max
1≤i≤k

|Si| ≥ kγ) . kMυ(Z1/(kγ)) + e−c3kγ
2/σ2

, (S5)
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where c3 and the constant in . only depend on θ. By (S5) and the Bonferroni inequality,

P (A1) ≤ P (max
k≤i≤p

|Si − Sbi/kck| ≥
kγ

2
) + P (max

k≤i≤p
|Si − Sdi/kek| ≥

kγ

2
)

. pMυ(Z1/(kγ)) + pk−1e−c4kγ
2/σ2

, (S6)

where c4 = c3/4. Under event Ac1, by Condition 2.2 and since d > 2γ, we have Qi = 0 if

i ∈ N � and Qi = 2 if i ∈ S�. Similarly as (S6), we have

P ( max
k≤i≤3k

|Si − Si−k| ≥ kδ) . kMυ(Z1/(kδ)) + e−c4kδ
2/σ2

=: $. (S7)

Hence for event A2 = {maxi∈B� |Li − ELi| ≥ δ}, we similarly have

P (A2) . l$. (S8)

Let m = b2kδ/dc. If τ1 − k ≤ i ≤ τ1 −m − 1, then E(Ri − Rτ1) ≤ k−1(i − τ1)d < −2δ. By

(S7), we have P (maxk≤i≤3k |Ri − ERi| ≥ δ) . $ and

P

[
max

τ1−k≤i≤τ1−m−1
Ri > Rτ1

]
. $. (S9)

Let g = τ1 +m. If g + 1 ≤ i ≤ τ1 + k, then (i− τ1)d > 2kδ and ELi > 2δ. Again by (S7),

P

[
min

g+1≤i≤τ1+k
Li ≤ δ

]
. $. (S10)

On event A = Ac1 ∩ Ac2, we have τ̂1 ∈ B�1. Thus by (S9) and (S10),

P (A ∩ {|τ̂1 − τ1| > m}) . $. (S11)
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Similar inequalities hold for τ̂j − τj, 2 ≤ j ≤ l. By (S6) and (S8), (2.20) follows from (S11)

via the Bonferroni inequality.

S1.3 Proof of Theorem 2.3

We should prove Theorem 2.3 in the main paper together with the following Theorem S1.1

which concerns polynomial-tailed Zj.

Theorem S1.1. Let γ† = (k−1 log p)1/2+k−1p2/θ and δ† = (k−1 log p)1/2+k−1(lk)2/θ. Assume

θ > 4, Conditions 2.1, 2.4, and γ† = o(d2). Let γ = c1γ
† and δ = c2δ

†, where c1 and c2 are

sufficiently large constants. Then there exists a constant c > 0 independent of k and p such

that

P

[
l̂ = l,max

j≤l
|τ̂j − τj| ≤

ckδ

d2

]
→ 1. (S12)

Proof of Theorem S1.1. The argument is similar to the one of Theorem 2.2. Recall the

latter proof for S�, B� and N �. Let ζj = Z2
j − σ2 and Hj =

∑j
i=1 ζi. Let υ > θ/2 and recall

(2.15) for κ. Similarly as (S5),

P (max
1≤i≤k

|Hi| ≥ kγ) . kMυ(ζ1/(kγ)) + e−c3kγ
2/κ2 , (S13)

which by the Bonferroni inequality imply that there exists a constant c1 > 0 such that

P (A1)→ 0, where A1 =

{
max
i∈N �
|L†i | ∨ |R

†
i | ≥ c1γ

†
}
. (S14)
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Hence under Ac1, we have Q†i = 0 if i ∈ N �. Now let i ∈ S�. Then for j with i ≤ j ≤ i+k−1,

|µj| ≥ d. By Lemma S1.1(ii), let t =
∑i+k−1

j=i µ2
j ,

P (
i+k−1∑
j=i

(µ2
j + 4µjZj) < 0) .

i+k−1∑
j=i

Mυ(µjZj/t) + exp(−c4t). (S15)

By Conditions 2.3, since i ∈ S� and γ† = o(d2), t ≥ kd2 → ∞. For i ≤ j ≤ i + k − 1, since

2t ≥ t+ µ2
j ≥ 2t1/2|µj|, we have $ := mini≤j≤i+k−1 t/|µj| ≥ t1/2. h := supy≥$ y

θMυ(Z1/y)→

0. Hence
i+k−1∑
j=i

Mυ(µjZj/t) ≤
i+k−1∑
j=i

|µj|θh
tθ
≤ h

tθ/2
≤ h

(kd2)θ/2
. (S16)

By (S15) and the Bonferroni inequality, since γ = o(d2), we have

P (min
i∈S�

i+k−1∑
j=i

(µ2
j + 4µjZj) < 0) ≤ p[

h

(kd2)θ/2
+ exp(−c4kd2)]→ 0 (S17)

by the definition of γ†. Again by γ = o(d2), X2
i −σ2 = µ2

i /2 + (µ2
i /2 + 2µiZi) +Z2

i −σ2, (S13)

and (S17), we have

P (A2)→ 1, where A2 =

{
min
i∈S�

Li − σ2 > γ

}
. (S18)

Under A2, if i ∈ S�, we have Q†i = 2. Let A = Ac1 ∩ A2.

Let m = bckδ/d2c. For τ1 − k ≤ i ≤ τ1 −m, we have

k(R†i −R†τ1) =

τ1∑
f=i+1

(X2
f −X2

k+f ) = Qi − πi − Ui, (S19)

where Qi =
∑τ1

f=i+1(Z
2
f −Z2

k+f ), Ui =
∑τ1

f=i+1(µ
2
k+f/2 + 2µk+fZk+f ) and πi =

∑τ1
f=i+1 µ

2
k+f/2.
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By (S13), there exists a constant c5 > 0 such that

P

[
max

τ1−k≤i≤τ1−1
|Qi| ≥ kδ

]
. kMυ(ζ1/(kδ)) + e−c3kδ

2/κ2 = o(l−1) (S20)

by letting δ = c2δ
†, where c2 > 0 is a sufficiently large constant. To see the second relation in

(S20), we use the fact that yθ/2Mυ(ζ1/y)→ 0 as y →∞. We shall now deal with the term Ui.

Similarly as (S15), let ti =
∑τ1

f=i+1 µ
2
k+f , τ1 − k ≤ i ≤ τ1 −m. Then mini+1≤f≤τ1 ti/|µk+f | ≥

t
1/2
i ≥ m1/2d. Let h1 := supy≥m1/2d y

θMυ(Z1/y)→ 0. Similarly as (S17),

P ( min
τ1−k≤i≤τ1−m

Ui < 0) ≤
τ1−m∑
i=τ1−k

[
h1

((τ1 − i)d2)θ/2
+ exp(−c4(τ1 − i)d2)]

.
h1

mθ/2−1dθ
+ exp(−c4md2) = o(l−1). (S21)

The last relation in (S21) is due to the fact that l = o(γ†(kδ†)θ/2−1) and γ† = o(d2). By (S19),

(S20) and (S21), we obtain

P [ max
τ1−k≤i≤τ1−m−1

k(R†i −R†τ1) ≥ 0] = o(l−1). (S22)

For L†i with τ1 +m+ 1 ≤ i ≤ τ1 + k, we similarly have

P [ min
τ1+m+1≤i≤τ1+k

Li ≤ δ] = o(l−1). (S23)

By (S22) and (S23), P (A ∩ {|τ̂1 − τ1| ≤ m}) = o(l−1). The latter inequality also holds for

τ̂f − τf with 2 ≤ f ≤ l. Hence (S12) follows from (S14) and (S18).

Proof of Theorem 2.3 in the main paper. Theorem 2.3 assumes sub-Gaussian Zj. We

can use the arguments in the proof of Theorem S1.1, with the following modifications: by

Lemma S1.1(iii), the term kMυ(ζ1/(kγ)) in (S13) can be replaced by exp(−c4kγ); the term

Mυ(µjZj/t) in (S15) vanishes; the term kMυ(ζ1/(kδ)) in (S20) can be replaced by exp(−c5kδ),
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and the polynomial term h1/(m
θ/2−1dθ) in (S21) vanishes. Then Theorem 2.3 follows from

the arguments in the proof of Theorem S1.1.

S1.4 Proof of Theorem 2.4

Let p′ = p−m+ 1 and define the empirical distribution function

Ĝ(v) =
1

p′

p′∑
i=1

1σ̂2
i≤v. (S24)

Then Ĝ(σ̂2
(k)) = k/p′. LetG(v) = EĜ(v). Since σ̂2

i arem-dependent, we have cov(1σ̂2
i≤v, 1σ̂2

j≤v) =

0 if |j − i| ≥ m. Hence we have

Ĝ(v)−G(v)→ 0 in probability (S25)

in view of m/p′ → 0 and

E[Ĝ(v)−G(v)]2 =
1

p′2

p′∑
i,j=1

cov(1σ̂2
i≤v, 1σ̂2

j≤v) ≤
2m

p′
. (S26)

Let Wi =
∑i

j=1(Z
2
j − σ2), y = mγp and υ > θ/2. By Lemma S1.1(ii),

P (max
i≤m
|Wi| ≥ y) . mMυ(

Z2
1 − σ2

y
) + exp(−C3mγ

2
p) = o(

m

p
), (S27)

where constant C3 only depends on θ and κ. The second relation in (S27) holds in view of

(2.22) and y →∞. Let V1 = m−1
∑m

i=1 Z
2
i . Note that, if i < τ1 −m or τl ≤ i < τl+1 −m for

even l, σ̂2
i and V1 have the same distribution. Hence, by Assumption 1, for sufficiently large

p, we have G(σ2 + γp) > 1/2, which implies

P (σ̂2
(k/2) ≤ σ2 + γp)→ 1. (S28)
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Therefore, to prove (2.23), by (S25), it remained to show that

P (σ̂2
(1) ≥ σ2 − cγp) = P (min

i≤p′
σ̂2
i ≥ σ2 − cγp)→ 1 (S29)

holds for some constant c > 0. By (S27), and the Bonferroni inequality, since maxi≤m |
∑i+m−1

j=i Z2
j−

mσ2| ≤ 2 maxi≤2m |Wi|, we have

P (max
i≤p′
|m−1

i+m−1∑
j=i

Z2
j − σ2| ≥ cθγp)→ 0, (S30)

where the constant cθ only depends on θ. Since X2
i = µ2

i + 2µiZi + Z2
i , to prove (S29), it

remains to verify that

P (min
i≤p′

i+m−1∑
j=i

(µ2
j + γp + 2µjZj) < 0)→ 0. (S31)

As in (S15), (S16), (S17), let T =
∑i+m−1

j=i µjZj, %l =
∑i+m−1

j=i |µj|l, u =
∑i+m−1

j=i (µ2
j + γp) =

%2 + mγp. By Lemma S1.1(ii), there exists a positive constant C4, only depending on θ such

that

P (2T ≤ −u) ≤
i+m−1∑
j=i

Mυ(µjZj/u) + exp(−C3
u2

%2
), (S32)

where ϕ = minj u/|µj|. Since (µ2
j + mγp)/|µj| ≥ 2(mγp)

1/2, we have ϕ ≥ 2p1/q → ∞. Also

2uq ≥ %q2 + (mγp)
q ≥ %2q + (mγp)

q ≥ 2%qp and u2 ≥ 2%2p
2/q. So (u/µj)

θMυ(µjZj/u) → 0.

Hence by (S32) we obtain P (2T ≤ −u) = o(p−1) holds uniformly in i. Thus (S31) follows.

To deal with the sub-Gaussian case with Condition 2.3, instead of using (S27), the Nagaev

inequality Lemma S1.1(ii), we can apply the Bernstein inequality

P (max
i≤m
|Wi| ≥ y) . exp(−C2y) + exp(−C3y

2/m). (S33)
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With elementary calculations, we can similarly show that σ̂2
(k) = σ2 + OP (γp) with y = mγp

and the new γp = (m−1 log p)1/2. Details are omitted.

S1.4.1 Proof of Corollary 2.2

Corollary 2.2 can be proved by using the same arguments for Theorem 2.4. Let U1 =

m−1
∑m

i=1(Zi − Zi−1)4. Note that the differences Zi − Zi−1 are 1-dependent. We can have a

concentration inequality for P (|U1− ν| ≥ φp), by considering separately even and odd indices

i. Then we apply the following version of Bernstein’s inequality: if Yi are i.i.d. with mean

0, variance σ2 and E(exp(t|Yi|)) < ∞ for some t > 0, then P (maxj≤n |
∑j

i=1(Y
2
i − σ2)| ≥

u) ≤ c1 exp(−c2
√
u) + c1 exp(−c3u2/n) for some constants c1, c2, c3 > 0. Other arguments are

similar so we omit the details.

S1.5 Proof of Theorem 3.1

We shall first prove (3.6). For 1 ≤ g ≤ np, let g = n(a− 1) + i, where i = ig, a = ag ∈ N and

1 ≤ i ≤ n. Write Sg =
∑a−1

b=1

∑n
j=1 Yjb+

∑i
j=1 Yja. Let vg = var(Sg) = n(σ2

1 + . . .+σ2
a−1)+ iσ2

a.

Note that San − Sbn = n(µ̂b+1 + . . . + µ̂a). Since Yij are independent with mean 0, under

Condition 3.1, by Lemma S1.1(i) with υ = θ, we have

P

[
max
g≤np
|Sg − IB(vg)| ≥ c1u

]
≤

p∑
a=1

n∑
i=1

E|Yia
u
|θ ≤ npu−θKθ

θ ,

where the constant c1 only depends on θ. So (3.6) follows.

We now prove (3.7). Let the index set A = {(i, a) : 1 ≤ i ≤ n, 1 ≤ a ≤ p}. For

α = (i, a) ∈ A, let Xαj = ψαjYα, 0 ≤ j ≤ p− k, where ψαj = 1j+1≤a≤j+k(nvj)
−1/2. Let vector
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ψα = (ψα,0, . . . , ψα,p−k)
T and ψα∗ = max0≤j≤p−k ψαj. Observe that

max
0≤j≤p−k

R?
j = max

0≤j≤p−k

∑
α∈A

Yαψαj (S34)

and Yα, α ∈ A, are independent random variables. We now apply Theorem 2.1 in [S2]. To

this end, note that ψαj ≤ (nk)−1/2/σ∗ and ψαj = 0 if j ≥ a or a > j + k,

L := max
0≤j≤p−k

∑
α∈A

E|Yαψα|3 ≤ knK3
3((nk)1/2σ∗)

−3. (S35)

Using the inequality E(|Z|31|Z|≥A) ≤ A3−θE(|Z|θ) since θ > 3, we have

M(φ) :=
∑
α∈A

E|Yαψα∗|31|Yαψα∗|≥(4φ log(p−k+1))−1 ≤ pn(4φ log p)θ−3Kθ
θ

((nk)1/2σ∗)θ
=: M◦(φ). (S36)

Note that E(R2
j ) = 1 for all 0 ≤ j ≤ p− k. By Theorem 2.1 in [S2], there exists an absolute

constant c > 0 such that

ρ? ≤ cmin
`≥L

[(`2 log7 p)1/6 + `−1M((`2 log4 p)−1/6)]. (S37)

Choose ` = `◦ such that (`2 log7 p)1/6 = `−1M◦((`2 log4 p)−1/6). Then (3.7) follows from

elementary manipulations by considering two cases `◦ > L and `◦ ≤ L separately. In the

latter case, the right hand size of (S37) is minimized at ` = L.

S1.6 Proof of Proposition 3.1

We first consider the case θ > 4. Assume that µj = 0 for all j ≤ p. Let Ȳ·j = n−1
∑n

i=1 Yij,

Sj =

j∑
l=1

Wj, where Wj =
n∑
i=1

(Yij − Ȳ·j)2 − (n− 1)σ2
j .
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By Burkholder’s inequality, ‖Ȳ·j‖θ . n−1/2‖Yij‖θ and ‖
∑n

i=1 Y
2
ij − nσ2

j‖θ/2 . n1/2‖Yij‖2θ. By

Condition 3.1,

E(|Wj|θ/2) . nKθ
θ and E(|Wj|2) . nK4

4

Since Yij are independent, by Lemma S1.1(ii), for u > 0,

P (max
j≤k
|Sj| ≥ u) .

nkKθ
θ

uθ/2
+ exp(−c3

u2

nkK2
2

), (S38)

where c3 only depends on θ. Define the oscillation

Υ = Υ(k) = max
1≤j,h≤p: |j−h|≤k

|Sj − Sh|. (S39)

By the triangle inequality, we have

P (Υ ≥ u) ≤
bp/kc∑
g=0

P ( max
1≤j≤k

|Sj+gk − Sgk| ≥ u/3)

.
p

k

nkKθ
θ

uθ/2
+
p

k
exp(−c7

u2

nkK2
2

), (S40)

implying (3.11). If 2 < θ ≤ 4, instead of (S38), we have by the Markov and the Burkholder

inequalities that

P (max
j≤k
|Sj| ≥ u) ≤ E(maxj≤k |Sj|θ/2)

uθ/2
≤ c4

nkKθ
θ

uθ/2
. (S41)

By the argument in (S40), P (Υ ≥ u) . npKθ
θu
−θ/2. So (3.12) follows.
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S1.7 Proof of Theorem 3.2

Recall (S39) for Υ, (3.3) for Wj, and (3.14) for W ∗
j . Let E∗ be the conditional expectation

given Y = (Y1, . . . , Yn). Define coefficients fj,l = 0 if l ≤ j or l > j + k, and fj,l = 1 if

j < l ≤ j + k. Then W ∗
j =

∑p−k
l=0 fj,lσ̂lηl, and for all k ≤ j, j′ ≤ p− k, we have

|E∗(W ∗
jW

∗
j′)− E(WjWj′)| = |

p−k∑
l=0

fj,lfj′,l(σ̂
2
l − σ2

l )| ≤
Υ

n
. (S42)

By Condition 3.1, (S42) and the triangle inequality, there exist constants c1, c2 > 0 only

depending on σ∗, σ
∗ such that

|γj,j′(σ̂)− γj,j′(σ)| ≤ |γj,j′(σ̂)−
E∗(W ∗

jW
∗
j′)

v
1/2
j v

1/2
j′

|+ Υ/n

v
1/2
j v

1/2
j′

≤ |γj,j′(σ̂)||1−
v̂
1/2
j v̂

1/2
j′

v
1/2
j v

1/2
j′

|+ c1
Υ

nk
≤ c2

Υ

nk
.

Applying inequality (S40) with u = nkt/c2, letting t = ct∗ with a sufficiently large constant

c, we obtain (3.15) after elementary manipulations in view of Theorem 4.1 in [S2] (see also

Theorem 3.1 in [S1]). By Theorem 3.1, under (3.7), ρ∗ = o(1), implying that the right hand

side of (3.15) is o(1) via elementary manipulations.

S1.8 Proof of Theorem 3.3

We should prove Theorem 3.3 in the main paper together with the following Theorem S1.2

which concerns polynomial-tailed Zj.

Theorem S1.2. Assume Conditions 2.2, 2.5 and 3.1 and 2σ∗γ ≤ d
√
nk. Let

m = b2k1/2δσ∗n−1/2d−1c. Then

1− P
[
l̂ = l, max

j≤l
|τ̂j − τj| ≤ m

]
.

p

k
[
knKθ

θ

(kn)θ/2γθ
+ exp(−c1γ2)]
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+l[
knKθ

θ

(kn)θ/2δθ
+ exp(−c2δ2)], (S43)

where the constant in . and c1, c2 > 0 are independent of k, d, n and p.

Proof of Theorem S1.2. We shall use the argument in the proof in Theorem 2.2. Let

Sl =
∑l

j=1

∑n
i=1 Zij. Similarly as (S5), by Lemma S1.1(ii),

P [max
1≤l≤k

|Sl| ≥ (nk)1/2σ∗γ] .
knKθ

θ

(kn)θ/2(σ∗γ)θ
+ exp(−c3(γσ∗/σ∗)2). (S44)

As (S7), the above inequality implies

P ( max
k≤l≤3k

|Sl − Sl−k| ≥ (nk)1/2σ∗δ) .
knKθ

θ

(kn)θ/2δθ
+ exp(−c4δ2) =: $. (S45)

Let event A1 = {maxj≤p−k |R?
j − ER?

j | ≥ γ}. By (S44) and Condition 3.1,

P (A1) .
p

k
[
knKθ

θ

(kn)θ/2γθ
+ exp(−cγ2)]. (S46)

Recall the proof of Theorem 2.2 for the definitions of B�, N � and S�. If j ∈ S�, since

2σ∗γ ≤ d
√
nk, ER?

j > 2γ. Hence under Ac1, we have Q?
j = 0 if j ∈ N � and Q?

j = 2 if j ∈ S�.

Let event A2 = {maxj∈B� |R?
j − ER?

j | ≥ δ} and A = Ac1 ∩ Ac2. Similarly as (S8), we have

P (A2) . l$. (S47)

If τ1 +m+ 1 ≤ j ≤ τ1 + k, then EL?j > 2δ. Similarly as (S10), by (S45),

P

[
min

τ1+m+1≤j≤τ1+k
L?j ≤ δ

]
. $. (S48)
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If τ1 − k ≤ j ≤ τ1 −m− 1, then E(R[
j −R[

τ1
) ≤ k−1/2(j − τ1)n1/2d < −2δ. So by (S45)

P

[
max

τ1−k≤j≤τ1−m−1
R[
j > R[

τ1

]
. $. (S49)

Thus by the argument in the proof of Theorem 2.2, (S43) follows.

Proof of Theorem 3.3. In Theorem 3.3 Zj are sub-Gaussian. By Lemma S1.1(iii), the

terms knKθ
θ/((kn)θ/2(σ∗γ)θ) in (S44) and knKθ

θ/((kn)θ/2γθ) in (S46) vanish. Then the claim

in Theorem 3.3 follows from the arguments in the proof of Theorem S1.2.

Based on Theorem S1.2, let γ[ = (log p)1/2+(nk)−1/2(np)1/θ, δ[ = (log p)1/2+(kn)1/θ−1/2l1/θ;

let γ = C1γ
[, δ = C2δ

[, where C1, C2 > 0 are constants. Then the right hand side of (S43)

can be arbitrarily small by letting C1, C2 sufficiently large. Theorem S1.2 implies that we can

have exact recovery with probability P [l̂ = l, maxj≤l |τ̂j − τj| = 0] going to 1 if

k1/2

n1/2

(log p)1/2 + (kn)1/θ−1/2l1/θ

d
→ 0.

S1.9 Proof of Theorem 3.4.

Note that the bound in (3.20) of Theorem 3.4 is the same as (2.10) in Theorem 2.1. By

Proposition S1.1, ‖((n2 − n)/2)1/2Wj‖θ = O(1). With the latter, Theorem 3.4 can be proved

along similar lines as the argument in Theorem 3.1. Details are omitted.

Proposition S1.1. Assume that U1, . . . , Un are i.i.d. with mean 0 and Kθ := ‖Ui‖θ < ∞,

θ > 2. Then

‖
∑

1≤i<i′≤n

UiUi′‖θ . nK2
2 + n2/θK2

θ , (S50)

where the constant in . only depends on θ.
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Proof of Proposition S1.1. Let Ui, U
′
j, i, j ∈ Z, be i.i.d. random variables. By the decou-

pling equality (see for example [S4]), we have

‖
∑

1≤i<i′≤n

UiUi′‖θ . ‖
∑

1≤i<i′≤n

UiU
′
i′‖θ

≤ ‖
∑

1≤i,i′≤n

UiU
′
i′‖θ + ‖

∑
1≤i≤n

UiU
′
i‖θ

By the Rosenthal inequality, we have ‖
∑

1≤i≤n Ui‖θ . n1/2K2+n1/θKθ and ‖
∑

1≤i≤n UiU
′
i‖θ .

n1/2K2
2 + n1/θK2

θ . Hence Proposition S1.1 follows.

S1.10 Proof of Theorem 3.5

We should prove Theorem 3.5 in the main paper together with the following Theorem S1.3

which concerns polynomial-tailed Zj.

Theorem S1.3. Let θ > 2. Assume either (i) n is bounded, (|Z1j|θ)j≥1 is uniformly integrable

or (ii) n → ∞. Let γ\ = (log p)1/2 + k−1/2p2/θ, δ\ = (log p)1/2 + (lk)2/θk−1/2; let γ = c1γ
\,

δ = c2δ
\, where c1, c2 > 0 are sufficiently large constants. Assume Conditions 2.4, 3.1 and

γ\ = o(d2n
√
k). Then there exists a constant c > 0 independent of n, k and p such that

P

[
l̂ = l, max

j≤l
|τ̂j − τj| ≤

ck1/2δ\

nd2

]
→ 1. (S51)

Proof of Theorem S1.3. Let Z̄·j = n−1
∑n

i=1 Zij and write

Wj =
2ξj

n(n− 1)
+ µ2

j + 2µjZ̄·j, where ξj =
∑

1≤i<i′≤n

ZijZi′j. (S52)

By Proposition 3.2 and Condition 3.1, E(|ξj|θ) . nθ(σ∗)2θ + n2Kθ
θ . Let Th =

∑h
j=1 ξj and

y = c4γ
\nk1/2, where c4 > 0 is a constant to be determined later. By Lemma S1.1(ii), there

15



exists a constant c3 > 0 such that

P (max
h≤k
|Th| ≥ y) .

k∑
j=1

E(|ξj/y|θ) + exp(− c3y
2

kn2(σ∗)4
) = O(k/p2) (S53)

by letting c4 = 2(σ∗)2c
−1/2
3 . By (S53), similarly as (S14), for some constant c1 > 0,

P (A1)→ 0, where A1 =

{
max
j∈N �

|Lj,4| ∨ |Rj,4| ≥ c1γ
\

}
. (S54)

Let a ∈ S�, a ≤ j ≤ a+ k− 1 and t =
∑a+k−1

j=a µ2
j . We first consider the case that n→∞.

By Nagaev’s inequality [S6] or Lemma S1.1(ii),

P (
a+k−1∑
j=a

(µ2
j + 4µjZ̄·j) < 0) .

∑a+k−1
j=a n|µj|θKθ

θ

(
∑a+k−1

j=a n|µj|2)θ
+ exp(−c5nt)

.
n1−θ

(kd2)θ/2
+ exp(−c5nkd2). (S55)

By the condition γ\ = o(d2n
√
k), we have n1−θ(kd2)−θ/2 = O(n1−θ/2p−1) and exp(−c5nkd2) =

o(p−2). Thus the right hand side of (S55) is of order o(p−1) since n → ∞. If n is bounded,

using the uniform integrability of (|Z1j|θ)j≥1, we shall show that the right hand side of (S55)

is also of order o(p−1). To this end, in view of (S15) and (S16), it suffices to show that

lim
u→∞

uθ max
j≥1
Mυ(Z1j/u) = 0. (S56)

Clearly, uθ maxj≥1E((Z1j/u)21|Z1j |≥u) ≤ E(|Z1j|θ1|Z1j |≥u)→ 0 as u→∞. Let ` = (1−θ/υ)/2.

Choose Ku ∈ N such that 2Ku ≤ u1−` < 2Ku+1. Then

E(|Z1j|υ1|Z1j |≤u) ≤ E(|Z1j|υ1|Z1j |≤u`) +
Ku∑
b=0

E(|Z1j|υ12−b−1u<|Z1j |≤2−bu)

≤ u`υ +
Ku∑
b=0

(2bu)υ−θE(|Z1j|θ12−Ku−1u<|Z1j |)
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Hence uθ maxj≥1E((Z1j/u)υ1|Z1j |≤u) → 0 as u → ∞. Thus (S56) follows. Using the same

argument in the proof of Theorem 2.3, we have (S51). The main difference is that ξj here has

finite θth moment, while ζj therein only has finite (θ/2)th moment. Details are omitted.

Proof of Theorem 3.5. Recall the proof of Theorem S1.3 for ξj. Let Qj = ξj/n. By

the Hanson-Wright inequality (cf. [S8]), there exists absolute constants c1, c2 > 0 such that

P (|Qj| ≥ u) ≤ 2 exp(−c1u2) + 2 exp(−c2u) for all u > 0. Hence Qj is sub-exponential in the

sense that E exp(t|Qj|) < ∞ for some t > 0. By Bernstein’s inequality, for some positive

constants c3, c4, c5,

P (max
h≤k
|

h∑
i=1

Qi| ≥ u) ≤ c3 exp(−c4u) + c3 exp(−c5u2/k). (S57)

Following the arguments in the proof of Theorem S1.3, Theorem 3.5 follows by replacing the

polynomial term
∑k

j=1E(|ξj/y|θ) in (S53) by the exponential term in (S57) and by removing

the term n1−θ/(kd2)θ/2 in (S55) in view of Lemma S1.1(iii).

S2 Additional Simulation Studies

In the main paper we presented one-sided test with one realization and compare it with [S10]

in Section 4.1 and two-sided test with one realization in Section 4.2. In this Supplementary

Material we shall present additional simulation studies. One-sided test with multiple realiza-

tion is presented in Section S2.1. In Section S2.2, we examine two-sided test with multiple

realization and compare it with [S3].
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S2.1 Simulation study 3

We now study performance of our testing and estimation procedures based on multiple real-

izations with heteroscedastic variances for the one-sided test. Consider the model

Yij = µj + σjεij, i = 1, . . . , n, j = 1, . . . , p, (S1)

where µj follows the same configuration as in Table 1, σj ∼ U(1, 2), j = 1, . . . , p and εij ∼

N(0, 1), t(6)/1.50.5 or LP(0, 1)/20.5, i = 1, . . . , n; j = 1, . . . , p. We construct test statistic

R̂j =

∑j+k
l=j+1

√
nµ̂l

(
∑j+k

l=j+1 σ̂
2
l )

1/2
, j = 0, . . . , p− k,

where µ̂l = n−1
∑n

i=1 Yil and σ̂2
l =

∑n
i=1(Yil − µ̂l)2/(n− 1) and let

R∗j =

∑j+k
l=j+1

√
nµ̂l

(
∑j+k

l=j+1 σ
2
l )

1/2
, j = 0, . . . , p− k.

Let p = 600, 2000 and 6000, sample size n = 2 and 5 and error distributions N(0, 1), t(6)/1.50.5

and LP(0, 1)/20.5. We use k = bp1/2c. We follow Algorithm 3.1. For R̂j, γ and δ are the 0.95th

quantile of max0≤j≤p−kĜj and maxj∈W1Ĝj respectively, where Ĝj =
∑j+k

l=j+1 σ̂lηl/v̂
1/2
j and ηl are

i.i.d. N(0, 1) that are independent of (Yij) and v̂j =
∑j+k

l=j+1 σ̂
2
l . For R∗j , γ and δ are the 0.95th

quantile of max0≤j≤p−kG
∗
j and maxj∈W1G

∗
j , where G∗j =

∑j+k
l=j+1 σlηl/v

1/2
j and vj =

∑j+k
l=j+1 σ

2
l .

From Table S1, we can see that the performance of using estimated variance is comparable as

the one using the true variance and the detection accuracy improves with increased sample

sizes and number of tests. The combined error rate, FDR, power and the difference between

estimated break points and true break points are similar across different error terms.
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Table S1: Summary statistics for one-sided test with multiple realization based on 1, 000
simulations. Underscore e (resp. underscore t) is computed based on R̂j with the estimate σ̂2

j

(resp. the true σ2
j ).

p CERe CERt FDRe FDRt Powere Powert l̂e l̂t Diffe Difft

n = 2
N(0, 1)

600 0.0513 0.0513 0.0048 0.0037 0.75 0.74 2 2 5.49 5.43
2000 0.0294 0.0294 0.0019 0.0017 0.85 0.85 2 2 10.07 10.31
6000 0.0148 0.0149 0.0010 0.0009 0.93 0.93 2 2 18.14 17.76

t(6)/1.50.5

600 0.0517 0.0517 0.0040 0.0040 0.75 0.74 2 2 5.42 5.52
2000 0.0293 0.0293 0.0022 0.0018 0.86 0.85 2 2 10.48 10.03
6000 0.0147 0.0147 0.0017 0.0015 0.93 0.93 2 2 14.84 14.73

LP(0, 1)/20.5

600 0.0585 0.0584 0.0038 0.0026 0.71 0.70 2 2 5.30 5.34
2000 0.0290 0.0290 0.0022 0.0018 0.86 0.85 2 2 9.12 9.31
6000 0.0138 0.0138 0.0011 0.0011 0.93 0.93 2 2 13.48 13.68

n = 5
N(0, 1)

600 0.0257 0.0257 0.0081 0.0083 0.88 0.88 2 2 3.69 3.63
2000 0.0114 0.0114 0.0046 0.0046 0.95 0.95 2 2 6.95 6.93
6000 0.0052 0.0052 0.0031 0.0031 0.98 0.98 2 2 15.66 15.63

t(6)/1.50.5

600 0.0242 0.0242 0.0086 0.0077 0.89 0.88 2 2 3.58 3.57
2000 0.0117 0.0117 0.0048 0.0044 0.95 0.95 2 2 6.64 6.11
6000 0.0054 0.0054 0.0036 0.0035 0.98 0.98 2 2 15.25 15.21

LP(0, 1)/20.5

600 0.0283 0.0283 0.0071 0.0067 0.87 0.86 2 2 3.09 3.07
2000 0.0123 0.0122 0.0050 0.0044 0.94 0.94 2 2 7.75 7.72
6000 0.0052 0.0052 0.0033 0.0032 0.98 0.98 2 2 12.86 12.80
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S2.2 Simulation study 4

In this section, we study the empirical performance of the two-sided test with multiple realiza-

tions and compare it with the classical approach where individual self-normalized t-statistics

are used (see for example [S3]). Data generation is the same as the one in simulation study 3

except that µj, j = 1, . . . , p follow Table 5. We first compute the U-statistic Wj from (3.17).

Our test statistic is

R∗j,4 =
√
n(n− 1)/2

Wj+1 + . . .+Wj+k

(ω̂j+1 + . . . ω̂j+k)1/2
,

where ω̂j, 0 ≤ j ≤ p − m, are defined in (3.21) and are computed by (3.25). We use two

ways to approximate the limiting distribution of max0≤j≤p−kR
∗
j,4 by using (3.23) and (3.24),

respectively. We compare their empirical performances with different number of tests (p =

600, 2000 and 6000), sample size (n = 4 and 10) and error terms (N(0, 1), t(6)/1.50.5 and

LP(0, 1)/20.5). Let k = bp1/2c. We follow Algorithm 3.2. We compare these approximations

and the method in [S3] at significance level 0.05 and summarize the results in Table S2.

Table S2 suggests that the proposed methods have smaller combined error rates and FDR

and larger power across all scenarios and the performance improves with increased number of

tests and sample size. When n is large, χ2 approximation is better than normal approximation,

as can be seen in Table S2 when n = 10. When n is small, their performances are comparable.

The performance of the proposed methods improve with increased number of tests while the

combined error rate based on [S3] does not change much as number of tests increases. Both

approximations based on G?
j,4 and G�j,4 identify 4 break points across different scenarios.

S2.3 Data analysis with one realization

We removed missing data and based our analysis on the resulting p = 6233 genes. We used

k = bp1/2c = 78 in the computation of R◦i , i = k, . . . , p− k+ 1 and critical values γ and δ and

m = bp1/2c = 78 in the computation of σ̂2
i , i = 1, . . . , p−m + 1. Critical values γ and δ were
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Table S2: Summary statistics for two-sided test with multiple realization based on 1, 000
simulations. D represents difference between estimated break points and true break points.
Underscore F is computed based on [S3], and underscore N (resp. underscore χ2) is computed
by distributional approximations based on G∗j,4 (resp. G�j,4).

p CERF CERN CERχ2 FDRF FDRN FDRχ2 PowerF PowerN Powerχ2 DN Dχ2

n = 4
N(0, 1)

600 0.20 0.07 0.09 0.53 0.04 0.03 0.11 0.66 0.55 16 18
2000 0.20 0.04 0.04 0.50 0.01 0.01 0.10 0.83 0.80 19 18
6000 0.20 0.02 0.02 0.50 0.01 0.005 0.08 0.91 0.90 34 34

t(6)/1.50.5

600 0.19 0.08 0.11 0.44 0.03 0.02 0.12 0.60 0.48 15 24
2000 0.19 0.04 0.04 0.41 0.01 0.008 0.11 0.83 0.81 16 16
6000 0.19 0.02 0.02 0.42 0.008 0.007 0.10 0.90 0.89 44 34

LP(0, 1)/20.5

600 0.18 0.07 0.09 0.29 0.03 0.03 0.16 0.67 0.57 10 13
2000 0.18 0.03 0.04 0.29 0.01 0.01 0.13 0.84 0.81 16 18
6000 0.18 0.02 0.02 0.27 0.005 0.005 0.12 0.90 0.89 51 33

n = 10
N(0, 1)

600 0.17 0.03 0.03 0.08 0.04 0.04 0.15 0.89 0.89 15 13
2000 0.18 0.02 0.01 0.08 0.02 0.02 0.11 0.95 0.95 33 27
6000 0.18 0.01 0.01 0.07 0.01 0.01 0.08 0.97 0.97 49 47

t(6)/1.50.5

600 0.17 0.03 0.03 0.07 0.04 0.04 0.18 0.88 0.89 17 14
2000 0.18 0.02 0.02 0.05 0.02 0.02 0.13 0.94 0.94 47 25
6000 0.18 0.01 0.01 0.04 0.01 0.01 0.11 0.97 0.98 51 47

LP(0, 1)/20.5

600 0.16 0.03 0.03 0.03 0.03 0.03 0.18 0.89 0.90 21 13
2000 0.17 0.02 0.01 0.02 0.02 0.02 0.16 0.94 0.95 53 47
6000 0.18 0.01 0.01 0.02 0.01 0.01 0.12 0.97 0.97 52 48
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Figure S1: Testing results and detected break-points of amplification for breast cancer cell
line BT474.

computed through the simulation-assisted approach. Specifically, γ and δ are empirical 0.95th

quantiles of 104 independent realizations of σ̂max1≤i≤p−k+1G
◦
i , and σ̂maxi∈W1G

◦
i , respectively,

where G◦i = k−1
∑i+k−1

j=i ηj, j ∈ Z, ηj are i.i.d. N(0, 1) random variables and W1 includes

indices i such that the smoothed Q̃◦i = 1. They are 0.4375 and 0.1204, respectively. We use

the median of σ̂2
i =

∑i+m−1
j=i X2

j /m, i = 1, . . . , p−m+ 1 as our estimate of σ2, which is 0.0897.

We follow Algorithm 2.1 and present the results in Figure S2. It detects three clusters. Most

amplifications on chromosomes 11, 17 and 20 are well known, as they have been identified by

previous studies and in other breast cancer cell lines [S7, S5].

22



References

[S1] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approxima-

tions and multiplier bootstrap for maxima of sums of high-dimensional random vectors.

Ann. Statist., 41 2786–2819

[S2] Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems

and bootstrap in high dimensions. Ann. Probab., 45 2309–2352

[S3] Fan, J., Hall, P. and Yao, Q. (2007). To how many simultaneous hypothesis tests

can normal, student’s t or bootstrap calibration be applied? J. Amer. Statist. Assoc.,

102 1282–1288.

[S4] de la Pena, Victor (1992) Decoupling and Khintchine’s Inequalities for U -Statistics,

Ann. Probab., 20 1877–1892,

[S5] Lai, T.-L., Xing, H. and Zhang, N. (2008). Stochastic segmentation models for array-

based comparative genomic hybridization data analysis. Biostatistics, 9 290–307.

[S6] Nagaev, S. V. (1979) Large deviations of sums of independent random variables. Ann.

Probab., 7 745–789,

[S7] Pollack, J. R., Perou, C. M., Alizadeh, A.A., Eisen, M. B., Pergamen-

schikov, A., Williams, C. F., Jeffrey, S. S., Botstein, D. and Brown, P. O.

(1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays.

Nature Genetics, 23 41–46.

[S8] Rudelson, M. and Vershynin, R. (2013). Hanson-Wright inequality and sub-gaussian

concentration. Electronic Communications in Probability, 18.

[S9] Sakhanenko, A. I. (2006) Estimates in the invariance principle in terms of truncated

power moments. Siberian Math. J. 47 1113–1127

23



[S10] Yao, Q. (1993) Tests for change-points with epidemic alternatives. Biometrika, 80

179–191.

24


