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Abstract

Standard partial likelihood methodology for the proportional hazards model with

time-dependent covariates requires knowledge of the covariates at the observed failure

times, which is not realistic in practice. A simple and commonly used estimator imputes

the most recently observed covariate prior to each failure time, which is known to be

biased. In this paper, we show that a weighted last observation carried forward approach

may yield valid estimation. We establish the consistency and asymptotic normality of

the weighted partial likelihood estimators and provide a closed form variance estimator

for inference. The estimator may be conveniently implemented using standard software.

Interestingly, the convergence rate of the estimator is slower than the parametric rate

achieved with fully observed covariates but the same as that obtained with all lagged co-

variate values. Simulation studies provide numerical support for the theoretical findings.

Data from an Alzheimer’s study illustrate the practical utility of the methodology.
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1 Introduction

In clinical trials and epidemiological studies, covariates are often collected longitudinally.

Incorporation of these covariates into survival analysis is challenging since these covariates

are only observed at a finite number of time points. As an example, the proportional hazards

model (Cox, 1972) requires covariate values at each failure time. Very rarely do the failure

times coincide with the covariate observation times (Liu and Craig, 2006).

These issues may be understood more precisely by representing the event history using

counting processes. In the failure time setting, N(t) indicates whether an event has occurred

by time t and Z(·) is a p-dimensional covariate process. The proportional hazards model

specifies the hazard function for N(t) conditionally on the history of Z(r), r ≤ t as

λ{t | Z(r), r ≤ t} = λ0(t)eβ
T
0 Z(t), (1.1)

where λ0(·) is an unspecified function and β0 is a vector of unknown regression parameters.

A simple and frequently used estimator with time-dependent covariates is to impute the

last observed covariate value prior to each failure time. Such analyses are problematic (Molen-

berghs et al., 2002; Molnar et al., 2008). First, it is assumed that the longitudinal covariate

does not change from the time of the last measurement. Second, no distinction is made be-

tween those subjects who had a valid measurement and those subjects with imputed values,

artificially increasing the amount of information in the data. These issues can induce substan-

tial biases in parameter estimates and lead to inaccurate inferences (Andersen and Liestol ,

2003).

To circumvent these problems, likelihood based approaches such as joint modeling have

been proposed as more principled methods for analysis (Tsiatis et al., 1995; Henderson et al.,

2000; Xu and Zeger, 2001; Rizopoulos, 2012). Commonly, the time-dependent covariate follows
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a linear mixed effects model with normal measurement error and the hazard function depends

on the underlying random effects of this covariate process. Inference may be based on the joint

likelihood of the survival and longitudinal data under parametric assumptions on the random

effects. As an alternative, Tsiatis and Davidian (2001) proposed a semiparametric conditional

score estimator for the covariate effect that requires no assumptions on the distribution of

the random effects. Such methods impose stringent modeling assumptions and the inferences

they produce are highly dependent on untestable and often implicit assumptions regarding

the distribution of the unobserved measurements. Previous numerical work has shown that

such estimators may be quite biased with model misspecification (Cao et al., 2015).

In this paper, we propose an intuitively appealing weighting approach which retains the

simplicity of last observation carried forward imputation. The main idea is that the further the

last observation is from the current failure time, the less it should contribute to the estimating

equation. This is handled formally by weighting the last observation as a decreasing function

of the time between the most recently observed covariates and the failure event. Models for

the underlying covariate process and for the dependence structure between that process and

the event history process are unspecified, unlike the joint modeling approach. Cao et al. (2015)

proposed similar weighting approaches using all backward lagged covariates. We adapt these

techniques to obtain valid estimation employing only the most recently observed covariate,

denoted weighted last observation carried forward. This method may be implemented in

standard software for the proportional hazards model permitting time-dependent weights,

which is not possible when using all lagged covariate measurements.

The paper is organized as follows. In section 2, we discuss the proposed weighted last

observation carried forward estimator and corresponding asymptotic properties and inferences.

Interestingly, the proposed estimators converge more slowly than the usual parametric rates

which are achieved with fully observed covariates but at the same rate as in Cao et al. (2015).

Section 3 reports simulation studies which evidence little loss of efficiency versus using all
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previously observed covariates. Application to an Alzheimer’s dataset illustrates the practical

utility of the methodology in Section 4. Concluding remarks are given in Section 5. Proofs of

results from Section 2 are relegated to the Appendix.

2 Estimation and inference

2.1 Notation and last observation carried forward

Let T be the failure time and let C be the corresponding censoring variable. We assume

that censoring is coarsened at random such that T and C are conditionally independent

given Z(·) (Heitjan and Rubin, 1991). Let [{Ti, Zi(·), Ci}, i = 1, . . . , n] be n independent

copies of {T, Z(·), C}. The longitudinal covariates are observed at Mi observation times Rik ≤

Xi, k = 1, . . . ,Mi, where Xi = min(Ti, Ci), and Mi is assumed finite with probability one.

The p-dimensional covariate process may include both time-independent and time-dependent

covariates, under the restriction that the time-dependent covariates are observed at the same

time points within individuals. The measurement times Rik are assumed independent of

the measurements Zi(Rik), k = 1, . . . ,Mi. The observed data consist of the n independent

realizations {Xi,∆i, Zi(Rik), Rik, k = 1, . . . ,Mi}, i = 1, . . . , n, where ∆i = 1 if Xi = Ti and 0

otherwise.

To present the estimators, we adopt the counting process notation, where Ni(t) = I(Xi ≤

t,∆i = 1) and Yi(t) = I(Xi ≥ t). With fully observed covariates, the partial likelihood for

model (1.1) is

Ln(β) =
n∏
i=1

∏
t≥0

{ eβ
TZi(t)∑n

j=1 Yj(t)e
βTZj(t)

}∆Ni(t), (2.2)

where ∆Ni(t) =

 1 if Ni(t)−Ni(t−) = 1

0 otherwise.
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The log partial likelihood is:

ln(β) = n−1logLn(β) = n−1

n∑
i=1

∫ τ

0

[
βTZi(u)− log{

n∑
j=1

Yj(u)eβ
TZj(u)}

]
dNi(u)

= n−1

n∑
i=1

∆i

[
βTZi(Xi)− log{

n∑
j=1

Yj(Xi)e
βTZj(Xi)}

]
, (2.3)

where τ is a prespecified time point such that pr(X > τ) > 0. Because Zi(u), i = 1, . . . , n,

are not observed continuously, ln(β) is not computable from the observed data.

To use the last observation carried forward, in (2.3), βTZi(Xi) is replaced by βTZi(si)

and log{
∑n

j=1 Yj(Xi)e
βTZj(Xi)} is replaced by log{

∑n
j=1 Yj(Xi)e

βTZj(si)}, where si = max{x ≤

Xi, x ∈ (Ri1, . . . , RiMi
)}, i = 1, . . . , n. This method assumes that the subject’s covariate does

not change from the most recent observation time and does not account for the variability

inherent in this imputation. These assumptions may not hold in practice and violations can

confound covariates with time, which in turn can bias estimates of covariate effects and their

standard errors. As a result, the magnitude and even the direction of bias from last observation

carried forward is extremely difficult, if not impossible, to determine a priori.

2.2 Weighted last observation carried forward

We propose to remedy this bias by adopting a weighting strategy, downweighing imputed

values which are far in time from the failure event. To be specific, for a sample of n independent

subjects, the weighted log partial likelihood is

l∗n(β) = (2.4)

n−1

n∑
i=1

∫ τ

0

∫ τ

0

J(u, r)
(
βTZi(r)− log[

n∑
j=1

∫ τ

0

J(u, s)Yj(u)eβ
TZj(s)dN∗i (s)]

)
dN∗i (r)dNi(u),
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where J(u, r) = Kh(u − r)I{r ≤ u,
∫ u
r
dN∗i (t) = 0}, denoting the weighted last observation,

N∗i (t) =
∑Mi

k=1 I(Rik ≤ t) is a realization of N∗(t), the counting process for the covariate

observation times, Kh(t) = K(t/h)/h, h is the bandwidth and the kernel function K(t) is

a symmetric probability density with mean 0, and bounded first derivative. In simulation

studies and real data analysis, we use Epanechnikov kernel K(x) = 0.75(1 − x2)+ due to

its good empirical performance (Fan and Gijbels, 1996). If x > h, Kh(x) = K(x.h)/h = 0.

Consequently, if the distance between the last observed covariate and the failure time is greater

than h for a subject, this subject’s failure time does not contribute to the estimating equation.

This subject contributes to the estimating equation via
∑n

j=1

∫ τ
0
J(u, s)Yj(u)eβ

TZj(s)dN∗i (s) at

other observed failure times. When h → ∞, the proposed weighted last observation carried

forward reduces to the last observation carried forward and bias will incur. As sample size

n → ∞, h → 0 to ensure that bis is negligible. h strikes a balance between the bias and the

variability. Smaller h produces smaller bias yet larger variability. On the other hand, larger

h results larger bias and smaller variability. In practice, we choose h to minimize the mean

squared error.

Define β̂ to be the maximizer of l∗n(β). This estimator is a root of the score function

Un(β) = 0, where

Un(β) =
1

n

n∑
i=1

∫ τ

0

∫ τ

0

J(u, r){Zi(r)− Z̄(β, u)}dNi(u)dN∗i (r), (2.5)

where

S(k)
n (β, u) = n−1

n∑
j=1

∫ τ

0

J(u, s)Yj(u)Zj(s)
⊗keβ

TZj(s)dN∗j (s),

and Z̄(β, u) = S
(1)
n (β, u)/S

(0)
n (β, u), k = 0, 1, 2, a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . It can be

seen from (2.5) that different individuals receive different weights inside the integral in Un(β)

depending on the time between the most recently observed longitudinal covariate and the
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observed failure event. This is also reflected in Z̄(β, u). Regarding the computation, (2.4) is

concave in β and therefore there exists a unique root of (2.5). Once the kernel function K

has been chosen and the bandwidth has been fixed, the estimating equation can be solved

using a standard Newton-Raphson method, with good convergence properties. Standard

software for the proportional hazards model accommodating time-dependent covariates and

time-dependent weights may be used for these computations. If for certain subjects, there are

no covariate observations before their observed failure time, the subject’s failure time does not

contribute to the estimating equation (2.5). Such subjects still contribute to (2.5) via Z̄(β, u)

at other observed failure times.

The weighted last observation carried forward method is not a special case of the backward

lagged covariates approach (Cao et al., 2015). In the weighted log partial likelihood function

(2.4), I{r ≤ u,
∫ u
r
dN∗i (t) = 0} precludes the contribution of other covariates except for the last

observed covariate into the estimating equation. On the other hand, all covariates prior to the

failure time contribute to the estimating equation in the backward lagged covariates approach.

Even if the bandwidth h is extremely small, the backward lagged covariates approach cannot

guarantee to include only last observed covariate.

If Mi = 1, the two partial likelihoods are the same. In the backward lagged covariate

approach, for each failure time, all backward lagged covariates contribute to the partial like-

lihood and their effects are aggregated by summation weighted by the difference between

the longitudinal observation time and the failure time. In the general case, one cannot get

weighted last observation approach from backward lagged covariates approach or vice versa.

2.3 Statistical inference and asymptotic properties

To state our key results, additional notation and regularity conditions are needed. Denote

E{dNi(t) | Fs, s ≤ t} = Yi(t)e
βT
0 Zi(t)λ0(t)dt, where λ0(t) is assumed twice continuously dif-
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ferentiable and strictly positive for t ∈ [0, τ ], and Ft is the filtration, which includes all

information in {Ni(s), Yi(s), Zi(s), s ≤ min(t,Xi)}, as well as the measurement times up to

time t, i = 1, . . . , n. For u > r, the measurement times are allowed to depend on covariates

through

E
[
dN∗i (r)I{N∗i (u)−N∗i (r+) = 0} | Zi(r)

]
= λ∗{r, u;Zi(r)}dr. (2.6)

This assumption is weaker than that specified in Cao et al. (2015). Denote

s(k)(β, t) = E
[
Yi(t)Zi(t)

⊗keβ
TZi(t)λ∗{t, t;Zi(t)}

]
.

The following results provide the limiting distribution of the proposed estimator.

Theorem 1 Under (C1)-(C6) specified in the Appendix, we have

(nh)1/2A(β0)(β̂ − β0)
d→ N{0,Σ(β0)}, (2.7)

where

A(β0) =

∫ τ

0

{s(2)(β0, t)−
s(1)(β0, t)

⊗2

s(0)(β0, t)
}λ0(t)dt,

β0 is the true regression coefficient and the asymptotic variance

Σ(β0) =

∫ ∞
0

K(x)2dx

∫ τ

0

{s(2)(β0, t)−
s(1)(β0, t)

⊗2

s(0)(β0, t)
}λ0(t)dt.

In practice, inference is conducted based on the estimating equation (2.5). The first

moment of Un(β̂) is 0 and we can estimate the variance of Un(β̂) by

Σ̂ = n−2

n∑
i=1

(∫ τ

0

∫ [
J(u, r){Zi(r)− Z̄(β, u)}

]
dN∗i (r)dNi(u)

)⊗2

|β=β̂.
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By Taylor expansion, the variance of β̂ can be estimated by

{∂Un(β)

∂β
|β=β̂}

−1Σ̂{∂Un(β)

∂β
|β=β̂}

−1.

We show the validity of this approach in the following corollary.

Corollary 1 Under conditions (C1)-(C6) specified in the Appendix, the sandwich formula

{−∂Un(β)

∂β
|β=β̂}

−1Σ̂{−∂Un(β)

∂β
|β=β̂}

−1

consistently estimates the variance of β̂.

The validity of the weighted last observation carried forward method in Theorem 1 depends

on an appropriate choice of bandwidth. The bias is of order O(h) as shown in the Appendix.

Therefore, the allowable range of valid bandwidths is (n−1, n−1/3) as specified in condition

(C6) in the Appendix. With h = o(n−1/3), we achieve a rate of convergence o(n1/3). This rate

of convergence is the same as the half kernel approach in Cao et al. (2015) but slower than

the joint modeling approaches where strong modeling assumptions on the joint distribution of

the covariate process and event times facilitates likelihood based inferences which may achieve

parametric rates of convergence for the regression parameter β.

Following Cao et al. (2015), we propose a data adaptive bandwidth selection procedure.

The idea is to minimize the mean squared error, where the bias and variance are calculated

separately. From (A15), we know bias is of order h. We first regress β̂(h) on h in a reasonable

range of h to obtain the slope estimate Ĉ. To obtain the variance, we split the data randomly

into two parts and obtain regression coefficient estimates β̂1(h) and β̂2(h) based on each half

sample. The variance of β̂(h) is estimated by V̂ (h) = {β̂1(h)− β̂2(h)}2/4. Using both Ĉ and

V̂ (h), we thus calculate the mean squared error as Ĉ2h2 + V̂ (h). Finally, we select the optimal

bandwidth h minimizing this mean squared error.
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3 Simulation studies

We conducted extensive simulation studies to compare the performance of the proposed esti-

mator and the half kernel estimator in Cao et al. (2015). The simulated model is exactly the

same as that in Cao et al. (2015). Specifically, we generated 1, 000 datasets, each consisting

of 100, 400 or 900 subjects. The total number of covariate observation times for each subject

was Poisson distributed with intensity rate 8. The covariate observation times were generated

from uniform distribution U(0, 1). The covariate process was generated through a piecewise

constant function

Z(t) =
20∑
i=1

I{(i− 1)/20 ≤ t < i/20}zi,

where z = (z1, . . . , z20)T follows a unit variance multivariate normal distribution with mean 0

and correlation e−|i−j|/20, i, j = 1, . . . , 20. The survival time was simulated from model (1.1)

with λ0(t) = 2 and β0 = 1.5. The censoring time was generated from a uniform distribution

with lower bound 0 and upper bound giving censoring percentages of 15% and 50%. The

results for other choices of the model parameters were rather similar and thus omitted.

For both estimators, the kernel function is the Epanechnikov kernel, which is K(x) =

0.75(1−x2)+. We employ bandwidths in the range (n−1, n−1/3) and the automatic bandwidth

selection described in the Appendix and Cao et al. (2015). Similar results were obtained using

other kernel functions.

Table 1 summarizes the main findings over 1, 000 simulations. We observe that the

weighted last observation carried forward estimator performs satisfactorily in terms of bias,

variance, and coverage probability, particularly with larger sample sizes. Compared with the

half kernel approach, the proposed estimator has similar biases and loses little efficiency, gen-

erally less than 10%, with the empirical variances of the two estimators in good agreement at

larger sample sizes. This finding can be explained heuristically: as the sample size increases,

the weight assigned to the most recent covariate observation tends to dominate those from
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earlier measurements. The advantage of the weighted last observation carried forward esti-

mator is that it is considerably easier to implement in practice using standard software and

is valid under weaker assumptions.

Table 1: Weighted last observation carried forward and half kernel comparison with different
censoring rate

Weighted LOCF Half Kernel
n BD Bias SD SE MSE CP(%) Bias SD SE MSE CP(%)

Censoring rate is 15%
100 n−0.7 0.059 0.501 0.419 0.254 92 0.051 0.502 0.420 0.255 91

n−0.6 0.025 0.367 0.340 0.135 93 0.019 0.384 0.346 0.148 91
auto 0.039 0.427 0.386 0.184 94 0.042 0.434 0.385 0.190 93

400 n−0.7 0.026 0.304 0.291 0.093 93 0.040 0.299 0.321 0.091 93
n−0.6 -0.005 0.232 0.222 0.054 94 -0.009 0.222 0.242 0.049 93
auto 0.000 0.295 0.258 0.087 91 0.028 0.298 0.263 0.090 93

900 n−0.7 0.006 0.248 0.246 0.062 94 0.008 0.247 0.253 0.061 95
n−0.6 0.001 0.177 0.175 0.031 95 0.006 0.181 0.188 0.033 94
auto 0.010 0.223 0.213 0.050 96 0.014 0.244 0.216 0.060 94

Censoring rate is 50%
100 n−0.7 0.139 0.734 0.540 0.558 91 0.169 0.740 0.543 0.576 90

n−0.6 0.050 0.529 0.441 0.282 93 0.084 0.584 0.451 0.348 91
auto -0.035 0.434 0.452 0.190 90 0.047 0.595 0.500 0.356 90

400 n−0.7 0.026 0.367 0.358 0.135 94 0.046 0.365 0.423 0.135 92
n−0.6 0.027 0.286 0.275 0.083 93 0.008 0.277 0.301 0.077 93
auto 0.053 0.367 0.325 0.137 94 0.035 0.378 0.332 0.144 95

900 n−0.7 0.019 0.323 0.299 0.105 93 0.033 0.305 0.327 0.094 93
n−0.6 0.006 0.226 0.216 0.051 93 0.007 0.220 0.236 0.048 94
auto 0.043 0.289 0.265 0.085 95 0.020 0.306 0.260 0.094 93

Note: “LOCF” represents last observation carried forward, “BD” represents different bandwidths, “Bias” is
the empirical bias, “SD” is the sample standard deviation, “SE” is the average of the standard error estimates,
“MSE” is the mean squared error and “CP” represents the coverage probability of the 95% confidence interval
for β̂.

Per the request of a referee, we have provided additional simulations comparing our ap-

proach and the half kernel approach with two covariates, one time-dependent covariate and

one time-independent covariate, to see the performance of our method in a multivariate re-

gression case. The simulation set up is exactly the same as that in Cao et al. (2015). The

results are summarized in Table 2. The results of half kernel and weighted LOCF are fairly

11



comparable.

Table 2: Power comparison with both time-dependent and time-independent covariate

Weighted LOCF Half Kernel
n Bias SD SE CP Power(%) Bias SD SE CP Power(%)

β1 = 0, β2 = 0.5
100 -0.032 0.255 0.251 92 8 -0.005 0.295 0.250 91 8
400 0.012 0.210 0.194 93 6 -0.001 0.190 0.188 94 5
900 -0.025 0.142 0.165 96 3 0.003 0.166 0.163 93 6

β1 = −0.3, β2 = 0.5
100 -0.001 0.280 0.270 92 18 0.021 0.280 0.253 92 24
400 0.026 0.194 0.191 92 31 -0.003 0.201 0.191 93 37
900 0.019 0.154 0.168 94 40 0.011 0.176 0.164 93 43

β1 = −0.15, β2 = 0.5
100 0.012 0.265 0.246 94 11 0.008 0.281 0.250 91 12
400 -0.007 0.210 0.202 93 14 -0.006 0.203 0.192 93 14
900 0.026 0.163 0.165 94 18 0.005 0.166 0.164 94 15

β1 = −0.3, β2 = 0
100 0.016 0.255 0.251 95 24 0.005 0.272 0.250 92 24
400 0.006 0.200 0.189 94 38 0.015 0.202 0.186 93 35
900 0.011 0.164 0.162 95 43 0.003 0.164 0.162 94 45

Note: The notations are the same as in Table 1.

To see how mean squared error changes with different bandwidth for the weighted last

observation carried forward and the half kernel approach, we plot the mean squared error as a

function of the bandwidth for sample size n = 400 and censoring rate 21.75%. As can be seen

from Figure 1,the optimal bandwidth for half kernel and weighted last observation carried

forward are close by.

4 Alzheimer’s data example

We now illustrate the proposed inferential procedure in Section 2 with a comparison to the

last observation carried forward and half kernel approach on data from an Alzheimer’s study.

This is a longitudinal population study of common chronic health problems of older persons,

in a biracial neighborhood in Chicago from 1993 to 2006. Their demographics are recorded

at baseline and they are longitudinally followed for clinical evaluation of Alzheimer’s disease.
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Their ages range from 60 to 100. For each patient, the time origin is the first visit on study

with the event time being the time since the first visit. We investigate the relationship between

mortality and the longitudinal predictor mean corpuscular volume, the average volume of red

cells in a specimen. Since the majority of subjects are caucasians (96%), our analysis is based

on caucasians only. 2, 209 persons were used for analysis with 59.74% censoring. Details of

the study design, methods and medical implications can be found in Bienias et al. (2003).

We use estimating equation (2.5) with bandwidths h = 2(Q3−Q1)n−γ, where Q3 is the 0.75

quantile and Q1 is the 0.25 quantile of the longitudinal measurement times, n is the number

of persons and γ = 0.6 or 0.7. This effectively scales the time alignment to be consistent

with our simulations. The results are summarized in Table 3 with fixed bandwidths and data

adaptive bandwidth. Results based on last observation carried forward, half kernel approach

and baseline mean corpuscular volume are presented for comparison.

We can see the negative association between time dependent mean corpuscular volume and

mortality using weighted last observation carried forward and half kernel approach, which are

statistically significant at the 0.05 level. The similarity of the two analyses, including the

agreement of the standard errors, matches the results of the simulation studies. In contrast,

last observation carried forward suggests a weak positive association, which is similar to results

produced by using the baseline mean corpuscular volume. The positive association between

mean corpuscular volume and mortality has recently been established using baseline only

observations (Yoon et al., 2016). It is very interesting that time dependent mean corpuscular

suggests a negative association. Further studies are needed to validate these findings.

5 Concluding remarks

In this paper, we proposed a weighted last observation carried forward approach for the

proportional hazards model with time-dependent covariates. The newly proposed estimator
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Table 3: Summary statistics for β̂ based on (2.5).

Weighted LOCF LOCF Half Kernel Base
h(γ) 0.129 (0.6) 0.060 (0.7) 0.129 (auto) 0.129 (0.6) 0.060 (0.7) 0.069 (auto)

β̂ -0.066 -0.094 -0.066 0.014 -0.066 -0.094 -0.0860 0.016
HR 0.936 0.911 0.936 1.014 0.936 0.911 0.918 1.017

SE(β̂) 0.030 0.051 0.030 0.008 0.030 0.051 0.049 0.011
z-value -2.193 -1.842 -2.193 1.840 -2.193 -1.842 -1.739 1.483
p-value 0.028 0.060 0.028 0.066 0.028 0.065 0.082 0.138

Note: “LOCF” represents last observation carried forward, “Half Kernel” represents the method that uses
backward lagged covariates in Cao et al. (2015), “Base” represents analysis based on baseline time-independent
mean corpuscular volume, “HR” represents hazard ratio, and “SE” represents standard error of the estimator.

is shown to be valid under weaker assumptions with little efficiency loss and is much faster

to compute compared to the half kernel approach (Cao et al., 2015). Numerical studies

corroborate our theoretical results and the proposed method can be conveniently implemented

using standard software. While we focus our analysis on the proportional hazards model, our

approach could also be used for other purposes such as additive hazards model, with additional

development.

In practice, it may happen that time-dependent covariates are observed at different time

points within individuals. For such scenarios, our proposed weighting methods would not be

applicable. Alternative weighting methods could potentially be developed which incorporate

that the time-dependent covariates are observed at different time points. This is beyond the

scope of the current paper but is an interesting and important topic for future research.

For time-dependent longitudinal covariates, joint modeling is commonly used. Joint mod-

eling consists of two sub-models: a longitudinal sub-model (such as a linear mixed effects

model) and a time-to-event sub-model (such as a Cox proportional hazards model) which are

linked using an association structure that quantifies the relationship between the outcomes of

interest. If interest lies on the dynamics of the longitudinal process, such as accounting for

informative dropout or the link between the outcomes, joint modeling will be used and the
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proposed method is not applicable. If interest lies on including the longitudinal variable as

a time-dependent covariate in a time-to-event model, both joint modeling and the proposed

method can be used, though investigators prefer one or another depending on the research

question of interest. If investigators would like to use the slope of the population trajectory

alone or in conjunction with the current value, joint modeling is preferred. On the other hand,

if the longitudinal process is very difficult to model or the working linear mixed model is a

mis-specified model, the weighted last observation carried forward is preferred. Joint modeling

is more efficient when modeling assumptions in the joint modeling approach are satisfied.

Time-dependent covariates are pervasive in various disciplines. An alternative two stage

modeling approach would be to apply kernel smoothing methods to the observed part of

covariate Zi(t) for individual i to get an estimated curve {Ẑi(t) : t ≤ Xi}, and to replace the

missing Zi(tj) with Ẑi(tj) for tj ≤ Xi. As the uncertainty inherent in Ẑi(tj) is ignored in the

second stage, this approach may induce bias. Comparison between the two stage approach

and the proposed method is beyond the current paper and warrant additional research.

A Appendix: Conditions of Theorem 1

We collect the required conditions of Theorem 1 below.

(C1) {Ni(·), Yi(·), Zi(·)}(i = 1, . . . , n) are independent and identically distributed.

(C2) pr(C ≥ τ) > 0 and pr(T ≥ τ) > 0.

(C3) For r < u, (2.6) is satisfied. N(τ) and N∗(τ) are bounded by finite constants, λ0(t)

is twice continuously differentiable and E
[
Z(s)Y (t)eβ

T
0 Z(t)λ∗{s, t;Z(s)}

]
is twice continuously

differentiable for s, t ∈ [0, τ ]⊗2.

(C4) For i = 1, . . . , n, Zi has bounded total variation, where |Zij(0)|+
∫ τ

0
|dZij(t)| ≤ D for

all j = 1, . . . , p, where Zij is the jth component of Zi and D is a finite constant.

(C5) A(β0) ≡
∫ τ

0
E
[
{Z(t)− s(1)(β0,t)

s(0)(β0,t)
}⊗2Y (t)eβ

T
0 Z(t)λ∗{t, t;Z(t)}

]
λ0(t)dt is a positive definite
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matrix.

(C6) K(z) is a symmetric probability density function with mean 0 and bounded first

derivative. In addition, K(z) satisfies
∫∞
−∞K(z)2dz < ∞. Moreover, nh → ∞ and nh3 → 0

as n→∞.

Conditions (C1) and (C2) are standard for the proportional hazards model. For r < u, the

condition (C3) requires conditionally independent observation times in which the expectation

of the counting process of measurement times is conditionally independent of the failure time

given the observed covariates. This assumption is weaker than that in Cao et al. (2015).

In (C3), the assumption of bounded N(t) and N∗(t) is also conventional. Conditions (C4)

and (C5) guarantee finiteness and positive definiteness of the estimator’s variance-covariance

matrix. Condition (C6) indicates the restriction on the kernel and bandwidths. The following

theorem, which is proved in the Appendix, states the asymptotic properties of β̂ from Un(β)

in (2.5).

B Appendix: Proofs of Theorems

This appendix includes the proofs of Theorem 1 and Corollary 1.

B.1 Proof of Theorem 1

Our main tools are empirical processes (van der Vaart & Wellner, 1996). First we need the

following proposition:

Proposition 1 Under (C1)-(C6), for any compact neighbourhood B of β0, we have

limn→∞sup0≤t≤τ,β∈B||S(k)
n (β, t)− s(k)(β, t)|| = 0 a.s. for k = 0, 1, 2. (A8)

Proof: This follows from Theorem 37 of Pollard (1984) and the observation that S
(k)
n (β, t)
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is Lipschitz continuous in β ∈ B. �

The key idea is to establish the following relationship

sup
|β−β0|<M(nh)−1/2

∣∣∣(nh)1/2Un(β)− (nh)1/2[Un(β0)− E{Un(β0)}] + (nh)1/2A(β0)(β − β0)
∣∣∣

= Dn1/2h3/2 + op{1 + (nh)1/2|β − β0|}, (A9)

where A(β0) is given in Theorem 1 and D is a constant.

To obtain (A9), first, using Pn and P to denote the empirical measure and true probability

measure respectively, we obtain

(nh)1/2Un(β) = (nh)1/2(Pn − P)

∫ τ

0

∫ τ

0

J(u, r){Z(r)− S
(1)
n (β, u)

S
(0)
n (β, u)

}dN∗(r)dN(u)

+ (nh)1/2E

[∫ τ

0

∫ τ

0

J(u, r){Z(r)− S
(1)
n (β, u)

S
(0)
n (β, u)

}dN∗(r)dN(u)

]
(A10)

= I + II,

(A11)

where J(u, r) = Kh(u − r)I{r ≤ u,
∫ u
r
dN∗(t) = 0}, kernel weighting of the last observed

covariate and failure time.

We now calculate the second term on the right-hand side of (A10). From Proposition 1,

it follows that

II = (nh)1/2

∫ τ

0

∫ τ

0

1

h
K(

u− r
h

)E
[
Z(r)Y (u)eβ

T
0 Z(u)λ∗{r, u, Z(r)}

]
λ0(u)drdu

− (nh)1/2

∫ τ

0

∫ τ

0

1

h
K(

u− r
h

){z̄(β, u) + o(1)}E
[
Y (u)eβ

T
0 Z(u)λ∗{r, u, Z(r)}

]
λ0(u)drdu,
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where

z̄(β, u) =
s(1)(β, u)

s(0)(β, u)
.

After change of variable and incorporating (C3) and (C6), we obtain

II = (nh)1/2

∫ τ

0

E
[
Y (r)Z(r)eβ

T
0 Z(r)λ∗{r, r;Z(r)}

]
λ0(r)dr (A12)

− (nh)1/2

∫ τ

0

z̄(β, r)s(0)(β0, r)λ0(r)dr +O(n1/2h3/2).

Following a Taylor expansion, we have

z̄(β, r) = z̄(β0, r) +
∂z̄(β, r)

∂β
|β=β0(β − β0) + o(|β − β0|)

= z̄(β0, r) + {s
(2)(β0, r)

s(0)(β0, r)
− s(1)(β0, r)

⊗2

s(0)(β0, r)⊗2
}(β − β0) + o(|β − β0|).

Plug this into (A12), we obtain

II = (nh)1/2

∫ τ

0

s(1)(β0, r)λ0(r)dr − (nh)1/2

∫ τ

0

s(1)(β0, r)λ0(r)dr +O(n1/2h3/2)

− (nh)1/2

∫ τ

0

{s(2)(β0, r)−
s(1)(β0, r)

⊗2

s(0)(β0, r)
}λ0(r)dr(β − β0) + o{(nh)1/2|β − β0|}

= −(nh)1/2A(β0)(β − β0) +Dn1/2h3/2 + o{(nh)1/2|β − β0|}, (A13)

where D is a constant and

A(β0) =

∫ τ

0

{s(2)(β0, t)−
s(1)(β0, t)

⊗2

s(0)(β0, t)
}λ0(t)dt

=

∫ τ

0

E
[
{Z(t)− s(1)(β0, t)

s(0)(β0, t)
}{Z(t)− s(1)(β0, t)

s(0)(β0, t)
}TY (t)eβ

T
0 Z(t)λ∗{t, t, Z(t)}

]
λ0(t)dt.

The matrix A(β0) is non-singular by assumption (C5). For the first term on the right-hand
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side of (A10), we consider the class of functions

{
h1/2

∫ τ

0

∫ τ

0

J(u, r){Z(r)− S
(1)
n (β, u)

S
(0)
n (β, u)

}dN∗(r)dN(u) : |β − β0| < ε
}

for a given constant ε. Note that the functions in this class are Lipschitz continuous in β and

the Lipschitz constant is uniformly bounded by

M1

∫ τ

0

∫ τ

0

h1/2Kh(u− r)dN∗(r)dN(u),

which has finite second moment and M1 is the upper bound of s(2)(β,t)

s(0)(β,t)
−{ s

(1)(β,t)

s(0)(β,t)
}⊗2. Therefore,

this class is P-Donsker class by the Jain-Marcus theorem (van der Vaart & Wellner, 1996). As

the result, we obtain that the first term in the right-hand side of (A10) for |β−β0| < M(nh)−1/2

is equal to

(nh)1/2(Pn − P)

∫ τ

0

∫ τ

0

J(u, r){Z(r)− S
(1)
n (β0, u)

S
(0)
n (β0, u)

}dN∗(r)N(u) + op(1)

= (nh)1/2
[
Un(β0)− E{Un(β0)}

]
+ op(1). (A14)

Combining (A10), (A13) and (A14), we obtain (A9). Consequently,

(nh)1/2A(β0)(β̂ − β0) +Op(n
1/2h3/2) + op{1 + (nh)1/2|β̂ − β0|}

= (nh)1/2[Un(β0)− E{Un(β0)}]. (A15)
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On the other hand, as the subjects are independent identically distributed, we calculate

Var{(nh)1/2Un(β0)} = hVar
{∫ τ

0

∫ τ

0

J(u, r){Z(r)− Z̄(β0, u)}dN∗(r)dN(u)
}

= hE

∫∫ τ

0

∫∫ τ

0

J(u1, r1)J(u2, r2){Z(r1)− Z̄(β0, u1)}{Z(r2)− Z̄(β0, u2)}

dN∗(r1)dN∗(r2)dN(u1)dN(u2)

− h
(
E

∫ τ

0

∫ τ

0

J(u, r){Z(r)− Z̄(β0, u)}dN∗(r)dN(u)
)2

= A−B

We next show that B = o(h). By Proposition 1, we have

E

∫ τ

0

∫ τ

0

J(u, r){Z(r)− Z̄(β0, u)}dN∗(r)dN(u)

= E

∫ τ

0

∫ τ

0

J(u, r){Z(r)− z̄(β0, u)}dN∗(r)dN(u) + o(1),

where

z̄(β0, u) =
s(1)(β0, u)

s(0)(β0, u)

and

s(k)(β, t) = E
[
Y (t)Z(t)⊗keβ

TZ(t)λ∗{t, t;Z(t)}
]
.

Taking conditional expectation, we have

E

∫ τ

0

∫ τ

0

J(u, r){Z(r)− z̄(β0, u)}dN∗(r)dN(u)

= E

∫ τ

0

∫ τ

0

Z(r)Y (u)eβ
T
0 Z(u)λ0(u)λ∗{r, u, Z(r)}drdu

− E

∫ τ

0

∫ τ

0

s(1)(β0, u)

s(0)(β0, u)
Y (u)eβ

T
0 Z(u)λ0(u)λ∗{r, u, Z(r)}drdu

= I1 − I2
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After a change of variable and Taylor expansion, we obtain

I1 = E

∫ τ

0

∫ +∞

−∞
K(z)dzZ(r)Y (r)eβ

T
0 Z(r)λ0(r)λ∗{r, r, Z(r)}dr + o(1)

=

∫ τ

0

s(1)(β0, r)λ0(r)dr + o(1).

Similarly,

I2 = E

∫ τ

0

∫ +∞

−∞
K(z)dz

s(1)(β0, r)

s(0)(β0, r)
Y (r)eβ

T
0 Z(r)λ0(r)λ∗{r, r, Z(r)}dr + o(1)

=

∫ τ

0

s(1)(β0, r)λ0(r)dr + o(1).

Consequently, B = o(h). Now we decompose A into four parts

A = hE

∫
u1 6=u2

∫
r1 6=r2

J(u1, r1)J(u2, r2){Z(r1)− Z̄(β0, u1)}{Z(r2)− Z̄(β0, u2)}

dN∗(r1)dN∗(r2)dN(u1)dN(u2)

+ hE

∫
u1 6=u2

∫ τ

0

J(u1, r)J(u2, r){Z(r)− Z̄(β0, u1)}{Z(r)− Z̄(β0, u2)}

dN∗(r)dN(u1)dN(u2)

+ hE

∫ τ

0

∫
r1 6=r2

J(u, r1)J(u, r2){Z(r1)− Z̄(β0, u)}{Z(r2)− Z̄(β0, u)}

dN∗(r1)dN∗(r2)dN(u)

+ hE

∫ τ

0

∫ τ

0

J(u, r)2{Z(r)− Z̄(β0, u)}⊗2dN∗(r)dN(u)

= A1 + A2 + A3 + A4.

It is easy to see that A1 = O(h), A2 = O(h), A3 = O(h). After change of variables and Taylor

expansion, we obtain

A4 =

∫ ∞
0

K(x)2dx

∫ τ

0

{s(2)(β0, t)−
s(1)(β0, t)

⊗2

s(0)(β0, t)
}λ0(t)dt+O(h) +O{(nh)−1}.
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Therefore

Var{(nh)1/2Un(β0)} → Σ(β0),

where

Σ(β0) =

∫ ∞
0

K(x)2dx

∫ τ

0

{s(2)(β0, t)−−
s(1)(β0, t)

⊗2

s(0)(β0, t)
}λ0(t)dt.

To prove the asymptotic normality, we verify that the Lyapunov condition holds. Define

ψi = (nh)1/2n−1

∫ τ

0

∫ τ

0

J(u, r){Zi(r)− Z̄(β0, u)}dN∗i (r)dNi(u).

Similar to the calculation of Σ(β0),

n∑
i=1

E
(
|ψi − Eψi|3

)
= nO{(nh)3/2n−3h−2} = O{(nh)−1/2}.

Thus,

(nh)1/2
[
Un(β0)− E{Un(β0)}

]
→ N{0,Σ(β0)}.

Combining with (A15), we finish the proof of Theorem 1. �

B.2 Proof of Corollary 1

To begin with, we have

−∂Un(β)

∂β
= n−1

n∑
i=1

∫ τ

0

∫ τ

0

J(u, r)dN∗i (r)
{S(2)

n (β, u)

S
(0)
n (β, u)

− S
(1)
n (β, u)⊗2

S
(0)
n (β, u)2

}
dNi(u).

Using a similar argument as for equation (A14), we show

{∫ τ

0

∫ τ

0

J(u, r)dN∗(r)
{S(2)

n (β, u)

S
(0)
n (β, u)

− S
(1)
n (β, u)⊗2

S
(0)
n (β, u)2

}
dN(u) : |β − β0| < ε

}
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is a P-Glivenko-Cantelli class. Therefore, sup|β−β0|<ε|
∂Un(β)
∂β
|β=β̂ − E{∂Un(β)

∂β
|β=β̂}| → 0 in

probability. Since β̂ is consistent for β0, by continuous mapping theorem, ∂Un(β)
∂β
|β=β̂ converges

in probability to −A(β0). Similarly, let

Σ̂(β) = n−2

n∑
i=1

[ ∫ τ

0

∫ τ

0

K(u, r){Zi(r)− Z̄(β, u)}dN∗i (r)dNi(u)
]⊗2

,

then sup|β−β0|<ε|Σ̂(β)− E{Σ̂(β)}| → 0 in probability. On the other hand,

E{Σ̂(β)} = n−1E
[ ∫ τ

0

∫ τ

0

K(u, r){Zi(r)− Z̄(β, u)}dN∗i (r)dNi(u)
]⊗2

.

After change of variables, and by (C3),

E{Σ̂(β)} =
1

nh

∫ ∞
0

K(z)2dz

∫ τ

0

{s(2)(β0, u)− s(1)(β0, u)⊗2

s(0)(β0, u)
}du.

Therefore,

(nh)Σ̂
p→ Σ(β0) as nh→∞.

The consistency of variance estimate follows.
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